首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulmonary maturation in 8 ovine fetuses bilaterally adrenalectomized at 98-101 days and infused at term with either ACTH1-24 or cortisol was compared with that in 4 untreated sham-operated controls. Four of the adrenalectomized fetuses were infused intravascularly with ACTH1-24 5 micrograms/h for 84 h before delivery and the other four were infused with cortisol 1 mg/h for 72 h. The high plasma concentrations of immunoreactive ACTH in the adrenalectomized fetuses (2762 +/- 1339 ng/l, mean +/- SD) were not significantly elevated by infusion of ACTH1-24 but were markedly depressed by infusion of cortisol. Distensibility (V40) of the lungs was less than that of controls in both the ACTH1-24-infused and cortisol-infused fetuses (1.86 +/- 0.31 ml/g vs 0.62 +/- 0.13 ml/g and 1.27 +/- 0.34 ml/g respectively) but it was significantly greater in the cortisol-infused fetuses compared to those infused with ACTH1-24. The volume of air retained at 5 cm H2O pressure (V5) during deflation was markedly reduced in adrenalectomized fetuses (controls 1.14 +/- 0.52 ml/g vs 0.25 +/- 0.25 ml/g and 0.12 +/- 0.6 ml/g). The wet weight of the lungs and the concentrations of saturated phosphatylcholine in lung tissue and lavage fluid were lower in the adrenalectomized fetuses than in controls but the differences were not significant. It is concluded that infusion of ACTH1-24 at term in adrenalectomized fetuses is probably without effect whereas cortisol enhances distensibility.  相似文献   

2.
The effect of adrenocorticotropic hormone (ACTH) administration on plasma cortisol concentrations was determined in pregnant gilts and their fetuses. In a first experiment, 100 IU ACTH (Synacthen Depot) was administered intramuscularly to the gilts every second day from Days 49 to 75 of gestation. ACTH injections were carried out at 08:00 h and, thereafter, 10 blood samples were taken within the following 8h via jugular catheters. Blood samples were analysed for plasma cortisol concentrations, and results were compared with values from animals which were treated with physiological saline and untreated animals (blood sampling only). The values for plasma cortisol concentrations increased until 3h after ACTH applications to a mean maximum level of 276.5+/-17.2 nmol/l in the whole 4-week stimulation period. Plasma cortisol levels did not return to pre-treatment values within the 8 h post-injection. No differences in cortisol levels were found between the physiological saline and untreated control, and no habituation of the adrenocortical response to ACTH was found during the 4-week stimulation period. In a second experiment, 100 IU ACTH were administered to pregnant gilts at gestation Day 65. After 3 h, fetuses were recovered under general anaesthesia and blood samples were taken from the umbilical vein, artery, and, after decapitation, from periphery. Application of ACTH to the sows significantly increased their plasma cortisol concentrations (P<0.001), and also increased plasma cortisol concentrations in peripheral blood samples from the fetuses (P=0.09) and in the umbilical vein (P<0.001) and artery (P<0.01), respectively. Plasma ACTH concentrations did not differ in fetuses from ACTH-treated or control sows. The results show that in gilts the adrenocortical response to an exogenous application of Synacthen Depot is consistent over time during mid-gestation. Furthermore, cortisol but not ACTH levels were increased in fetuses from ACTH-treated sows, indicating that maternal cortisol can cross the placenta during mid-gestation. The stimulation of maternal cortisol release through exogenous ACTH with subsequent elevation of fetal cortisol levels is, therefore, a useful approach for studying effects of elevated maternal glucocorticoids in prenatal stress studies in pigs.  相似文献   

3.
Corticosteroids are known to accelerate maturation of the fetal lung and production of surfactant. We examined the effect of cortisol administration to fetal rabbits on the phospholipid content and composition of lung lavage and lung tissue, as well as on the activities of enzymes involved in the synthesis of phosphatidylcholine and phosphatidylglycerol, the major surface-active components of surfactant. Cortisol was administered by intrauterine injection at 25 days' gestation and the fetuses were delivered at 27 days (full term, 31 days). Saline-injected fetuses, littermates of the cortisol-treated as well as non-littermates, were used as controls. The amount of phospholipid in lung lavage from the hormone-treated fetuses was almost double that of the saline-injected controls and was similar to that of an untreated fetus of more than 30 days' gestation. Similarly, the phospholipid composition of lung lavage from the hormone-treated fetuses was similar to that of an untreated fetus at a greater gestational age. These data, therefore, suggest that cortisol acts by accelerating physiological development. Cortisol administratration stimulated the activity of cholinephosphate cytidylyltransferase and lysolecithin acyltransferase to a small, but statistically significant extent. This is also consistent with an acceleration of normal development. The stimulation of lysolecithin acyltransferase is of interest, since this enzyme is believed to be involved in the synthesis of dipalmitoylglycerophosphocholine, the major surface-active species of phosphatidylcholine. Cortisol administration had no effect on the activities of pulmonary choline kinase, cholinephosphotransferase, lysophosphatidic acid acyltransferase and glycerolphosphate phosphatidyltranferase, although we have previously shown the latter enzyme to be stimulated following a longer period of exposure to the hormone. Saline injection produced some maturational effects presumably as a result of stress, which may be mediated by corticosteroids or other hormones.  相似文献   

4.
We determined whether ACTH1-24, infused into fetal lambs at a rate that is known to cause premature labor, elicits changes in the responsiveness of the fetal adrenal glands, and alters the pattern of corticosteroid output. Plasma cortisol (F), corticosterone (B) and progesterone (P4) were measured during 72 h of infusion of saline or ACTH (10 micrograms/h) beginning on Day 127 of pregnancy. Adrenals were then dispersed into isolated cells, and the output of F, B and P4 after exogenous ACTH determined in vitro. Plasma concentrations of F and B were higher in ACTH-treated fetuses. The increment in F (5-to 7-fold) was greater than that in B (2-fold) such that the F:B ratio in plasma of ACTH-treated fetuses on Days 2 and 3 of infusion was 2.5 times higher than in controls. After 72 h of infusion, the adrenal weights in ACTH-treated fetuses (741 +/- 38 mg, +/- SEM; n = 4) were greater than in the control animals (349 +/- 11 mg). There was a significant effect of ACTH pretreatment in vivo on F output by isolated adrenal cells in vitro. Mean increments in F output after addition of ACTH1-24 (5000 pg/ml) in vitro rose from 368 +/- 235 pg/50,000 cells in controls, to 64,639 +/- 19,875 pg/50,000 cells after ACTH in vivo. There was no significant effect of ACTH in vivo on B output in vitro; the ratio of F:B output, either in the absence or presence of ACTH in vitro, was significantly higher in cells from ACTH-pretreated fetuses. There was a significant effect of in vivo ACTH on in vitro P4 output. After ACTH treatment in vivo there was an increase in the vitro output ratio of F:P4, but no change in the output ratio of B:P4. We conclude that ACTH treatment of the fetal lamb in vivo results in activation of fetal adrenal function, increased fetal adrenal responsiveness to ACTH, and directed corticosteroid biosynthesis towards cortisol. Our results are consistent with an increase in fetal adrenal 17 alpha-hydroxylase activity after ACTH treatment.  相似文献   

5.
In the intact, unstressed ovine fetus, both plasma immunoreactive adrenocorticotrophin (ACTH) and blood cortisol concentrations increased after 121 days gestation. The mean ACTH and cortisol concentrations in intact fetuses of 90-121, 122-135 and 136-144 days gestation were for ACTH 20.4 +/- 3.9 (50) (mean +/- SEM, n), 30.2 +/- 5.6 (26) and 56.0 +/- 6.3 pg/ml (37) respectively, and for cortisol 0.07 +/- 0.01 (24), 0.17 +/- 0.03 (21) and 0.64 +/- 0.13 microgram/100 ml (15), respectively. After 121 days ACTH and cortisol concentrations were correlated positively. Cortisol infused into intact or adrenalectomized fetuses and corticosterone infused into adrenalectomized fetuses suppressed fetal plasma ACTH concentrations. In summary, ACTH and cortisol increase concomitantly after 122 days, so that it is highly probable that ACTH is the trophic stimulus for fetal adrenal maturation. The suppression of ACTH by cortisol and corticosterone suggests that these are the natural feedback regulators. It is proposed that while the mechanism for cortisol feedback may exist early in gestation, it is not until after 121 days that feedback control of ACTH becomes evident and physiologically important.  相似文献   

6.
In sheep parturition may be induced within 33 h in late gestation by inhibiting progesterone production with the 3 beta hydroxysteroid dehydrogenase inhibitor Epostane. Its effect has now been investigated in ewes carrying adrenalectomised (n = 5), hypophysectomised (n = 4) or intact (n = 5) fetuses to determine the role of the fetal adrenal during this type of maternally-induced delivery. Epostane was infused i.v. (1.5 mg/kg) into each group of ewes at 137-156 days gestation. Fetus and mother were sampled from the time of administration until delivery. Measurements of plasma ACTH, cortisol, progesterone and PGF2 alpha metabolite (PGFM) were made and intrauterine pressure was monitored. Epostane induced delivery significantly later in the adrenalectomised (44 h) and hypophysectomised (52 h) animals compared with the controls (33 h). The drop in maternal plasma progesterone was similar in all 3 groups, but the subsequent increases in arterial and uterine venous PGFM were smaller in the adrenalectomised and hypophysectomised ewes than in the controls. The large escalation in fetal plasma cortisol before birth in controls was absent in adrenalectomised and hypophysectomised fetuses. The slight rises in plasma cortisol observed in the latter from about 24 h after Epostane, were related to the concomitant increases in maternal plasma levels (r = 0.76, P less than 0.01). No fetuses became hypoxic or acidotic during the period of induction despite the prolonged labour of hypophysectomised and adrenalectomised fetuses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The prolonged stimulatory influence of corticotropin (ACTH) on the adrenocortical steroidogenic response to ACTH was studied in guinea-pig adrenocortical cells harvested from control and ACTH-treated animals (ACTH1-24, 50 micrograms s.c. twice daily on the day preceding the in vitro experiment). The maximal capacity to produce cortisol in response to ACTH (by 10(5) cells and 2 h incubation) was increased from 341.8 +/- 36.3 ng (control group) to 663.3 +/- 37.6 ng for cells obtained from guinea-pigs treated in vivo with ACTH. In the presence of trilostane, added to the cells in order to block the conversion of pregnenolone to cortisol, the net maximal output of pregnenolone and 17-hydroxypregnenolone in response to ACTH was significantly increased in adrenocortical cells from ACTH-treated animals (449.5 +/- 35.8 ng pregnenolone and 85.7 +/- 10.5 ng 17-hydroxypregnenolone vs 269.1 +/- 36.3 ng pregnenolone and 43.7 +/- 8.51 ng 17-hydroxypregnenolone for cells from control guinea-pigs). It appeared therefore that the total production of pregnenolone (as estimated by the sum of pregnenolone and 17-hydroxypregnenolone produced by the cells incubated with trilostane) nearly reached the level of the maximal production of cortisol in response to ACTH and was also significantly enhanced for cells from ACTH-treated animals (532.2 +/- 38.4 ng vs 312.8 +/- 40.0 ng for cells from control group). By contrast, no effect was documented on 17 alpha-hydroxylase activity since 17 alpha-hydroxylation index was similar for both types of adrenocortical cells (16.3 +/- 2.05% for ACTH-treated animals and 14.2 +/- 2.83% for control group). It was concluded therefore that the prolonged stimulatory influence of ACTH on pregnenolone production is the main mechanism of the enhancement of cortisol synthesis by guinea-pig adrenocortical cells previously stimulated by ACTH.  相似文献   

8.
This study examined the effects of dexamethasone treatment on basal hypothalamo-pituitary-adrenal (HPA) axis function and HPA responses to subsequent acute hypoxemia in the ovine fetus during late gestation. Between 117 and 120 days (term: approximately 145 days), 12 fetal sheep and their mothers were catheterized under halothane anesthesia. From 124 days, 6 fetuses were continuously infused intravenously with dexamethasone (1.80 +/- 0.15 microg.kg(-1).h(-1) in 0.9% saline at 0.5 ml/h) for 48 h, while the remaining 6 fetuses received saline at the same rate. Two days after infusion, when dexamethasone had cleared from the fetal circulation, acute hypoxemia was induced in both groups for 1 h by reducing the maternal fraction of inspired O2. Fetal dexamethasone treatment transiently lowered fetal basal plasma cortisol, but not ACTH, concentrations. However, 2 days after treatment, fetal basal plasma cortisol concentration was elevated without changes in basal ACTH concentration. Despite elevated basal plasma cortisol concentration, the ACTH response to acute hypoxemia was enhanced, and the increment in plasma cortisol levels was maintained, in dexamethasone-treated fetuses. Correlation of fetal plasma ACTH and cortisol concentrations indicated enhanced cortisol output without a change in adrenocortical sensitivity. The enhancements in basal cortisol concentration and the HPA axis responses to acute hypoxemia after dexamethasone treatment were associated with reductions in pituitary and adrenal glucocorticoid receptor mRNA contents, which persisted at 3-4 days after the end of treatment. These data show that prenatal glucocorticoids alter the basal set point of the HPA axis and enhance HPA axis responses to acute stress in the ovine fetus during late gestation.  相似文献   

9.
The effects of fetal infusions of cortisol and thyrotropin-releasing hormone (TRH) singly and together on pressure-volume relationships and saturated phosphatidylcholine (SPC) concentrations in the lungs were studied in 28 fetal sheep delivered at 128 days of gestation. Four groups each of 7 fetuses were infused with either saline (for 156 h), TRH (25 micrograms/h in 60-s pulses for 156 h), TRH (for 156 h) combined with cortisol (1 mg/h for 84 h), or cortisol (for 84 h). Cortisol had no effect on SPC concentrations, whereas both TRH and cortisol plus TRH increased the concentration of SPC in lavage fluid but not lung tissue. Neither cortisol nor TRH significantly affected lung distensibility [V40; 0.64 +/- 0.04 and 0.57 +/- 0.10 (SE) ml/g, respectively, vs. 0.41 +/- 0.03 ml/g in controls] or stability (V5; 0.24 +/- 0.01 and 0.35 +/- 0.07 ml/g vs. 0.24 +/- 0.03 ml/g), whereas treatment with a combination of the two hormones was associated with a fourfold increase in V40 (1.70 +/- 0.16 ml/g) and V5 (1.03 +/- 0.15 ml/g). Since raised concentrations of cortisol, triiodothyronine, and estradiol-17 beta (treatment with cortisol) had no effect on V40 and V5, whereas similar hormonal changes associated with elevated prolactin levels (treatment with cortisol plus TRH) had marked effects, we conclude that prolactin plays an essential part in the synergism of cortisol and TRH.  相似文献   

10.
Fetal adrenocortical responsiveness to ACTH declines during 90-120 days gestation and fetal pituitary peptides have been implicated in this refractoriness. In these studies the ACTH-induced cortisol responses were measured in 11 ovine fetuses of 114 days gestation. Five animals were hypophysectomized as evidenced by prolonged gestation, pituitary histology, TRH-testing, delayed maturation and decreasing fetal plasma prolactin concentrations (less than 1 ng.ml-1) (P less than 0.005). Resting cortisol concentrations decreased from 22.4 to 8.1 ng.ml-1 in the hypophysectomy group and were not different from the control group (19.6-14.9 ng.ml-1) over the 5 days of study. Responses measured as increments in plasma cortisol concentrations increased equally and successively in both groups. Since pituitary ablation fails to enhance fetal adrenal responsiveness to ACTH we conclude that refractoriness is unlikely to be caused by an inhibitor of pituitary origin.  相似文献   

11.
Although it has been recognized for over a decade that hypothalamic-pituitary disconnection (HPD) in fetal sheep prevents the late gestation rise in plasma cortisol concentrations, the underlying mechanisms remain unclear. We hypothesized that reductions in adrenal responsiveness and ACTH receptor (ACTH-R) expression may be mediating factors. HPD or sham surgery was performed at 120 days of gestation, and catheters were placed for blood sampling. At approximately 138 days of gestation, fetuses were killed, and adrenals were removed for cell culture and analyses of ACTH-R mRNA and protein. After 48 h, adrenocortical cells were stimulated with ACTH for 2 h, and the medium was collected for cortisol measurement. The same cells were incubated overnight with medium or medium containing ACTH or forskolin (FSK), followed by ACTH stimulation (as above) and cortisol and cellular ACTH-R mRNA analyses. HPD prevented the late gestation increase in plasma cortisol and bioactive ACTH and reduced adrenal ACTH-R mRNA and protein levels by over 35%. HPD cells secreted significantly less cortisol than sham cells (3.2 +/- 1.2 vs. 47.3 +/- 11.1 ng.ml(-1).2 h(-1)) after the initial ACTH stimulation. Overnight incubation of HPD cells with ACTH or FSK restored cortisol responses to acute stimulation to levels seen in sham cells initially. ACTH-R mRNA levels in cells isolated from HPD fetuses were decreased by over 60%, whereas overnight incubation with ACTH or FSK increased levels by approximately twofold. Our findings indicate that the absence of the cortisol surge in HPD fetuses is a consequence, at least in part, of decreased ACTH-R expression and adrenal responsiveness.  相似文献   

12.
Lung surfactant dipalmitoylphosphatidylcholine (DPPC) is endocytosed by alveolar epithelial cells and degraded by lysosomal-type phospholipase A2 (aiPLA2). This enzyme is identical to peroxiredoxin 6 (Prdx6), a bifunctional protein with PLA2 and GSH peroxidase activities. Lung phospholipid was studied in Prdx6 knockout (Prdx6-/-) mice. The normalized content of total phospholipid, phosphatidylcholine (PC), and disaturated phosphatidylcholine (DSPC) in bronchoalveolar lavage fluid, lung lamellar bodies, and lung homogenate was unchanged with age in wild-type mice but increased progressively in Prdx6-/- animals. Degradation of internalized [3H]DPPC in isolated mouse lungs after endotracheal instillation of unilamellar liposomes labeled with [3H]DPPC was significantly decreased at 2 h in Prdx6-/- mice (13.6 +/- 0.3% vs. 26.8 +/- 0.8% in the wild type), reflected by decreased dpm in the lysophosphatidylcholine and the unsaturated PC fractions. Incorporation of [14C]palmitate into DSPC at 24 h after intravenous injection was decreased by 73% in lamellar bodies and by 54% in alveolar lavage surfactant in Prdx6-/- mice, whereas incorporation of [3H]choline was decreased only slightly. Phospholipid metabolism in Prdx6-/- lungs was similar to that in wild-type lungs treated with MJ33, an inhibitor of aiPLA2 activity. These results confirm an important role for Prdx6 in lung surfactant DPPC degradation and synthesis by the reacylation pathway.  相似文献   

13.
Umbilical cord compression (UCC) sufficient to reduce umbilical blood flow by 30% for 3 days, results in increased fetal plasma cortisol and catecholamines that are likely to promote maturation of the fetal lung and brown adipose tissue (BAT). We determined the effect of UCC on the abundance of uncoupling protein (UCP)1 (BAT only) and -2, glucocorticoid receptor (GR), and 11beta-hydroxysteroid dehydrogenase (11beta-HSD)1 and -2 mRNA, and mitochondrial protein voltage-dependent anion channel (VDAC) and cytochrome c in these tissues. At 118 +/- 2 days of gestation (dGA; term approximately 145 days), 14 fetuses were chronically instrumented. Eight fetuses were then subjected to 3 days of UCC from 125 dGA, and the remaining fetuses were sham operated. All fetuses were then exposed to two 1-h episodes of hypoxemia at 130 +/- 1 and 134 +/- 1 dGA before tissue sampling at 137 +/- 2 dGA. In both tissues, UCC upregulated UCP2 and GR mRNA, plus VDAC and cytochrome c mitochondrial proteins. In lung, UCC increased 11beta-HSD1 mRNA but decreased 11beta-HSD2 mRNA abundance, a pattern reversed for BAT. UCC increased UCP1 mRNA and its translated protein in BAT. UCP2, GR, 11beta-HSD1 and -2 mRNA, plus VDAC and cytochrome c protein abundance were all significantly correlated with fetal plasma cortisol and catecholamine levels, but not thyroid hormone concentrations, in the lung and BAT of UCC fetuses. In conclusion, chronic UCC results in precocious maturation of the fetal lung and BAT mitochondria, an adaptation largely mediated by the surge in fetal plasma cortisol and catecholamines that accompanies UCC.  相似文献   

14.
The effects of hydrocortisone on lung structure in fetal lambs   总被引:1,自引:0,他引:1  
The effect of cortisol infusion on fetal lung development was studied in lambs. Changes were compared with those of control groups of saline-infused fetuses of the same age (day 132) and normal late gestation fetuses (142 +/- 4.6 days). Cortisol was infused into five fetal lambs at 129 days of gestation at a rate of 17.0 mg/day. Four fetuses were delivered by hysterotomy at the onset of labour-like uterine activity (58 +/- 3 h). In cortisol-infused fetuses the concentration of cortisol in fetal plasma and tracheal fluid rose to levels similar to those in normal fetuses during the last week of gestation. Progesterone concentration in maternal plasma declined at about 48 h after the start of treatment. Cortisol-infused lambs showed increases in fixed lung volume, specific lung volume, absolute volume of both parenchyma and non-parenchyma and the proportion of the parenchyma which was potential airspace and a decrease in the proportion of parenchyma. For cortisol-infused lambs Type II cell size and the abundance of lamellar bodies, and the volume fraction of cell occupied by the nucleus were similar to the 142 day group, whereas Golgi apparatus and RER were closer to age matched saline-infused (day 132) controls. Glycogen content was midway between the two control groups. We conclude that infusion of cortisol for about 60 h at physiological levels, beginning at 0.85 of gestation, accelerates many, but not all aspects of pulmonary parenchymal maturation, expressed in terms either of morphogenesis of the gas exchange area or differentiation of Type II alveolar cells.  相似文献   

15.
In the present study we investigated the maturation of the surfactant phospholipids and the role of fetal sex on the effect of betamethasone in male and female rabbit fetuses. Betamethasone was administered to the doe (0.2 mg/kg intramuscularly) 42 and 18 h prior to killing. The fetuses were studied at 27 and 28 days from conception. Results from the alveolar lavage show that male fetuses tended to have a lower disaturated phosphatidylcholine/sphingomyelin ratio and lower levels of phosphatidylinositol. Phosphatidylglycerol was detected in trace amounts. This was apparently due to the high extracellular levels of myo-inositol inhibiting the synthesis of surfactant phosphatidylglycerol while increasing the synthesis of surfactant phosphatidylinositol. Betamethasone increased the recovery of disaturated phosphatidylcholine and phosphatidylinositol from the lung lavage in both sexes. As studied in lung slices in vitro, the betamethasone treatment decreased the incorporation of glucose into phospholipids, including into the fatty acid moiety of disaturated phosphatidylcholine, although it had no significant effect on the incorporation of glucose into the glycerol moiety of disaturated phosphatidylcholine. However, the addition of palmitate increased the incorporation of glucose into the glycerol moiety of disaturated phosphatidylcholine. The betamethasone treatment did not increase the incorporation of [1-14C]pyruvate into disaturated phosphatidylcholine. Following betamethasone administration, the availability of fatty acids may become rate-limiting for the synthesis of surfactant phospholipids. Betamethasone increased the activities of phosphatidic acid phosphohydrolase and phosphatidate cytidyltransferase in a fraction of microsomal membranes. The present evidence suggests that the glucocorticoid-induced lung maturation and the maturation of the normal lung are associated with an increase in the activity of the enzymes which are involved in metabolizing phosphatidic acid to neutral and acidic surfactant secretion of the male fetus was not explained by possible sex-related differences in the biosynthesis of the phospholipids.  相似文献   

16.
The rise in cortisol in fetal sheep during late pregnancy has been related to increased responsiveness of the adrenal to ACTH. Most reports have suggested that plasma ACTH concentrations rise coincident with or after the prepartum increase in cortisol. To reexamine the relationship of cortisol with basal immunoreactive ACTH (IR-ACTH) throughout the last 40 days of pregnancy and to determine changes in fetal pituitary responsiveness during this time, we measured basal and synthetic ovine corticotrophin-releasing factor (oCRF) (10 ng-10 micrograms) induced rises in ACTH and cortisol in fetal sheep at days 110-115, 125-130, and 135-140 of pregnancy. The fetuses were catheterized on day 105-120 and entered spontaneous labour at greater than 140 days. Basal IR-ACTH (picograms per millilitre +/- SEM) rose from 16.7 +/- 2.9 pg/mL at day 110-115 to 34.8 +/- 8.7 pg/mL at day 141-145. There was a significant effect of time on basal ACTH concentrations with a mean increase of approximately 5 pg ACTH per millilitre of plasma per 5-day sampling interval. Plasma cortisol changed gradually between day 110 and 125 of gestation and then more rapidly to term. At day 110-115 of gestation there was no significant change in plasma ACTH after 10 or 100 ng oCRF, but there was a significant increase in ACTH after 1 microgram of oCRF. Plasma cortisol did not change after any CRF injection. The change in IR-ACTH after oCRF at day 125-130 of gestation was significantly greater than that at day 110-115. Plasma cortisol concentrations were elevated following 1- and 10-micrograms injections of oCRF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Lung development is associated with increases in specific phospholipids and proteins that function as critical pulmonary surfactant components. Attempts to characterize the pattern of surfactant development in fetal rat lungs have been hampered by the lack of a micromethod which will permit quantitative isolation of surface active components from small tissue specimens. As part of studies designed to elucidate the metabolic regulation of lung development in the rat, we developed sucrose density gradient centrifugation procedures to separate pulmonary phospholipids and proteins into a presumed surfactant (S) fraction and a residual (R) fraction. Electron microscopy of S pellets from mature fetuses identified predominant lamellar bodies and minimal contamination; incubation with 5 mM CaCl2 induced the appearance of tubular myelin figures, implying functional potential. This was confirmed by demonstrating low surface tension (less than 1 dyn/cm) in S, but not R, fractions at term gestation (21.5 days) and in 1-day-old neonatal lung isolates, based on dynamic measurements using the oscillating bubble technique. Surface activity was also high in the S pellets from fetuses at 20.5 days of gestation; however, at 19.5 days, minimum surface tension values of at least 19 dyne/cm were seen. These results correlated directly with biochemical analyses which indicated striking increases in three surfactant-associated proteins (SP-A, SP-B, and SP-C) after 19.5 days of gestation; a finding in agreement with previously reported data on the developmental increase of disaturated phosphatidylcholine in fetal rat lung. We conclude that isolation of S fraction components is valuable for demonstrating maturation of the fetal rat lung and may provide a useful tool for the study of regulatory mechanisms influencing surfactant production and function.  相似文献   

18.
During acute hypoxemia in fetal sheep the elevation in ACTH concentration in the fetal circulation at days 125-129 is greater than that at term, but similar rises in AVP occur at both times. To examine whether the diminished ACTH response is due to elevated endogenous cortisol, and if there is differential control of ACTH and AVP release in hypoxemia, we infused either vehicle or cortisol (5 micrograms/min) into fetal sheep at days 123-128 for 5 h before and then during a 2-h period of acute hypoxemia (mean PaO2 decrease 8.2 mmHg) without acidemia. During cortisol infusion, plasma cortisol rose to 40-50 ng/ml, similar to values in term fetuses. In vehicle-infused fetuses, cortisol rose from 2.1 to 7.0 ng/ml at +1 to +2 h of hypoxemia. ACTH rose significantly during hypoxemia in the vehicle-infused fetuses, and this response was attenuated by cortisol infusion. In contrast, fetal AVP rose significantly during hypoxemia both in the presence and absence of cortisol infusion. Fetal breathing movements, and electroocular activity decreased during hypoxemia, and these responses were not altered by cortisol. We conclude that cortisol exerts differential negative feedback on ACTH but not on AVP release during hypoxemia. The maintained AVP response may facilitate cardiovascular adjustments of the fetus to hypoxemia even when endogenous cortisol is elevated, such as near term.  相似文献   

19.
Exogenous ACTH1-24 promotes adrenal maturation in fetal sheep, and this effect appears to be modulated in part by cortisol (Challis et al. 1985). We have examined whether similar changes in adrenal metabolism of progesterone occur with ACTH-induced labour as at spontaneous term and whether the site of cortisol modulation is on adrenal steroidogenesis or at the level of cAMP generation. Chronically catheterized fetal sheep were infused in utero for 100 h between days 127 and 131 of pregnancy with P-ACTH, P-ACTH + metopirone, P-ACTH + metopirone + cortisol, or saline. After 100 h the metabolism of [3H]progesterone was measured in adrenal homogenates. Similar incubations were performed with adrenal tissue from fetal sheep at day 130 of pregnancy and at spontaneous labour. In the treatment groups of sheep, cAMP output by dispersed adrenal cells in response to ACTH added in vitro was also determined. Similar qualitative patterns of [3H]progesterone metabolism were found in adrenal homogenates after in vivo ACTH or at term. At both times there was an increase in cortisol and in total 17 alpha-hydroxycorticosteroid accumulation and also evidence for increased activity of 11 beta-hydroxylase enzyme. The formation of total 17 alpha-hydroxycorticosteroids was not affected significantly by concurrent treatment in vivo with metopirone +/- cortisol. The accumulation of cAMP in vitro was increased after in vivo ACTH, attenuated after ACTH + metopirone, but statistical significance over controls was restored after ACTH + metopirone + cortisol treatment. We conclude that ACTH-induced labour and spontaneous parturition in sheep is associated with qualitatively similar changes in progesterone metabolism by the fetal adrenal gland.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We investigated whether leptin can suppress the prepartum activation of the fetal hypothalamus-pituitary-adrenal (HPA) axis and delay the timing of parturition in the sheep. First, we investigated the effects of a 4-day intravascular infusion of recombinant ovine leptin (n = 7) or saline (n = 6) on fetal plasma adrenocorticotropic hormone (ACTH) and cortisol concentrations, starting from 136 days gestation (i.e., at the onset of the prepartum activation of the fetal HPA axis. The effects of a continuous intrafetal infusion of leptin (n = 7) or saline (n = 5) from 144 days gestation on fetal plasma ACTH and cortisol concentrations and the timing of delivery were also determined in a separate study. There was an increase in fetal plasma ACTH (P < 0.01) and cortisol (P < 0.001) concentrations when saline was infused between 136-137 and 140-141 days gestation. Plasma ACTH and cortisol concentrations did not rise, however, when leptin was infused during this period of gestation. When leptin was infused after 144 days gestation, there was no effect of a 4- to 5-fold increase in circulating leptin on fetal ACTH concentrations. In contrast, leptin infusion from 144 days gestation suppressed (P < 0.05) fetal plasma cortisol concentrations by around 40% between 90 and 42 h before delivery. There was no difference, however, in the length of gestation between the saline- and leptin-infused groups (saline infused, 150.2 +/- 0.5 days; leptin infused, 149.8 +/- 1.0 days). In saline-infused fetuses, there was a significant negative relationship between the plasma concentrations of cortisol (y) and leptin (x) between 138 and 146 days gestation (y = 81.4 - 7.7x, r = 0.38, P < 0.005). This study provides evidence for an endocrine negative feedback loop between leptin and the HPA axis in fetal life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号