首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The metagenomic approach provides direct access to diverse unexplored genomes, especially from uncultivated bacteria in a given environment. This diversity can conceal many new biosynthetic pathways. Type I polyketide synthases (PKSI) are modular enzymes involved in the biosynthesis of many natural products of industrial interest. Among the PKSI domains, the ketosynthase domain (KS) was used to screen a large soil metagenomic library containing more than 100,000 clones to detect those containing PKS genes. Over 60,000 clones were screened, and 139 clones containing KS domains were detected. A 700-bp fragment of the KS domain was sequenced for 40 of 139 randomly chosen clones. None of the 40 protein sequences were identical to those found in public databases, and nucleic sequences were not redundant. Phylogenetic analyses were performed on the protein sequences of three metagenomic clones to select the clones which one can predict to produce new compounds. Two PKS-positive clones do not belong to any of the 23 published PKSI included in the analysis, encouraging further analyses on these two clones identified by the selection process.  相似文献   

2.
Polyketides are structurally diverse secondary metabolites, many of which have antibiotic or anticancer activity. Type I modular polyketide synthase (PKS) genes are typically large and encode repeating enzymatic domains that elongate and modify the nascent polyketide chain. A fosmid metagenomic library constructed from an agricultural soil was arrayed and the macroarray was screened for the presence of conserved ketosynthase [β-ketoacyl synthase (KS)] domains, enzymatic domains present in PKSs. Thirty-four clones containing KS domains were identified by Southern hybridization. Many of the KS domains contained within metagenomic clones shared significant similarity to PKS or nonribosomal peptide synthesis genes from members of the Cyanobacteria or the Proteobacteria phyla. However, analysis of complete clone insert sequences indicated that the blast analysis for KS domains did not reflect the true phylogenetic origin of many of these metagenomic clones that had a %G+C content and significant sequence similarity to genes from members of the phylum Acidobacteria. This conclusion of an Acidobacteria origin for several clones was further supported by evidence that cultured soil Acidobacteria from different subdivisions have genetic loci closely related to PKS domains contained within metagenomic clones, suggesting that Acidobacteria may be a source of novel polyketides. This study also demonstrates the utility of combining data from culture-dependent and -independent investigations in expanding our collective knowledge of microbial genomic diversity.  相似文献   

3.
Type I polyketide synthases (PKSI) are modular multidomain enzymes involved in the biosynthesis of many natural products of industrial interest. PKSI modules are minimally organized in three domains: ketosynthase (KS), acyltransferase (AT), and acyl carrier protein. The KS domain phylogeny of 23 PKSI clusters was determined. The results obtained suggest that many horizontal transfers of PKSI genes have occurred between actinomycetales species. Such gene transfers may explain the homogeneity and the robustness of the actinomycetales group since gene transfers between closely related species could mimic patterns generated by vertical inheritance. We suggest that the linearity and instability of actinomycetales chromosomes associated with their large quantity of genetic mobile elements have favored such horizontal gene transfers.Reviewing Editor : Dr. Nicolas Galtier  相似文献   

4.
Diverse ketosynthase (KS) genes were retrieved from the microbial community associated with the Great Barrier Reef sponge Pseudoceratina clavata. Bacterial isolation and metagenomic approaches were employed. Phylogenetic analysis of 16S rRNA of culturable sponge-associated bacterial communities comprised eight groups over four phyla. Ten KS domains were amplified from four genera of isolates and phylogenetics demonstrated that these KS domains were located in three clusters (actinobacterial, cyanobacterial and trans-AT type). Metagenomic DNA of the sponge microbial community was extracted to explore community KS genes by two approaches: direct amplification of KS domains and construction of fosmid libraries for KS domain screening. Five KS domains were retrieved from polymerase chain reaction (PCR) amplification using sponge metagenome DNA as template and five fosmid clones containing KS domains found using multiplex PCR screening. Analysis of selected polyketide synthase (PKS) from one fosmid showed that the PKS consists of two modules. Open reading frames located up- and downstream of the PKS displayed similarity with membrane synthesis-related proteins such as cardiolipin synthase. Metagenome approaches did not detect KS domains found in sponge isolates. All KS domains from both metagenome approaches formed a single cluster with KS domains originating from metagenomes derived from other sponge species from other geographical regions.  相似文献   

5.
马敏  唐敏  洪葵 《微生物学通报》2013,40(7):1231-1240
[目的]探究红树林土壤中聚酮合酶(Polyketide synthase,PKS)基因的多样性和新颖性.[方法]用Ⅰ型和Ⅱ型PKS基因酮基合成酶(Ketosynthase,KS)域的简并引物对海南清澜港红树林海莲、黄槿、银叶、老鼠簕4种红树根际土壤样品中DNA进行PCR扩增,之后利用PCR-限制性酶切片段多样性(PCR-RFLP)和测序分析法对Ⅰ型和Ⅱ型PKS基因的多样性进行探讨.[结果]对得到的72条Ⅰ型PKS基因的酮基合成酶(Ketosynthase,KS)域DNA序列进行PCR-RFLP分析,共得到51个可操作分类单元(Operational taxonomic unit,OTUs),其中37个OTUs为单克隆产生,没有明显的优势OTU.选取了26个代表不同OTU的克隆进行测序分析,这些序列与GenBank中已知序列的最大相似率均未超过85%. KS域氨基酸序列的系统发育分析显示,所得KS域来源广泛,包括蓝细菌门(Cyanobacteria)、变形杆菌门(Proteobacteria)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)和一些未可培养细菌;对55条PKSⅡ基因KS域DNA序列的PCR-RFLP分析后共得到25个OTUs,有两个明显的优势OTUs,代表的克隆子数所占比例超过10%.[结论]PCR-RFLP分析表明红树林根际土壤中存在着丰富多样的Ⅰ型和Ⅱ型PKS基因,且前者多样性更高;低的序列相似度表明所获得的PKSⅠ基因KS域序列独特;系统发育分析表明得到的PKSⅠ基因来源广泛.  相似文献   

6.
Actinomycetes produce many pharmaceutically useful compounds through type I polyketide biosynthetic pathways. Soil has traditionally been an important source for these actinomycete-derived pharmaceuticals. As the rate of antibiotic discovery has decreased and the incidence of antibiotic resistance has increased, researchers have looked for alternatives to soil for bioprospecting. Street sediment, where actinomycetes make up a larger fraction of the bacterial population than in soil, is one such alternative environment. To determine if these differences in actinomycetal community structure are reflected in type I polyketide synthases (PKSI) distribution, environmental DNA from soils and street sediments was characterized by sequencing amplicons of PKSI-specific PCR primers. Amplicons covered two domains: the last 80 amino acids of the ketosynthase (KS) domain and the first 240 amino acids of the acyltransferase (AT) domain. One hundred and ninety clones from ten contrasting soils from six regions and nine street sediments from six cities were sequenced. Twenty-five clones from two earthworm-affected samples were also sequenced. UniFrac lineage-specific analysis identified two clades that clustered with actinomycetal GenBank matches that were street sediment-specific, one similar to the PKSI segment of the mycobactin siderophore involved in mycobacterial virulence. A clade of soil-specific sequences clustered with GenBank matches from the ambruticin and jerangolid pathways of Sorangium cellulosum. All three of these clades were found in sites >700 km apart. Street sediments are enriched in actinomycetal PKSIs. Non-actinomycetal PKSI pathways may be more chemically diverse than actinomycetal PKSIs. Common soil and street sediment PKIs are globally distributed.  相似文献   

7.
Bacterial production of long-chain fatty acids via a polyketide synthase-related mechanism has thus far only been investigated in isolate-based studies. Here, the genetic capacity for production of long-chain fatty acids was investigated using a culture-independent approach. PCR primers targeting the keto-acyl synthase (KS) domain of the pfaA gene involved in omega-3 polyunsaturated fatty acid (PUFA) biosynthesis were used to construct clone libraries to investigate KS sequence diversity in disparate marine habitats. Of the 446 sequences recovered, 123 (27.6%) clustered with KS sequences involved in the synthesis of eicosapentaenoic acid (EPA, C20:5n-3), docosahexaenoic acid (DHA, C22:6n-3) and arachidonic acid (AA, C20:4n-6). The remaining 72.4% of clones formed environmental-only groups or grouped with the KS domains of pfaA homologues from organisms producing unidentified products. In total, 17 groups were recovered - four known and 13 newly identified. A query of metagenomic data sets revealed sequences related to EPA KS domains, as well as sequences related to four environmental-only groups discovered in the clone libraries. The phylogenetic affiliation and end product of these environmental-only KS clusters is unknown. These findings reveal a widespread capacity for long-chain fatty acid production in marine microorganisms, including biosynthetic pathways not yet characterized.  相似文献   

8.
A putative instance of horizontal gene transfer (HGT) involving adjacent, discrete beta-ketoacyl synthase (KS), acyl carrier protein (ACP) and nonribosomal peptide synthase (NRPS) domains of the epothilone Type I polyketide biosynthetic gene cluster from the myxobacterium Sorangium cellulosom was identified using molecular phylogenetics and sequence analyses. The specific KS domain of the module EPO B fails to cluster phylogenetically with other epothilone KS sequences present at this locus, in contrast to what is typically observed in many other Type I polyketide synthase (PKS) biosynthetic loci. Furthermore, the GC content of the epoB KS, epoA ACP and NRPS domains differs significantly from the base composition of other epothilone domain sequences. In addition, the putatively transferred epothilone loci are located near previously identified transposon-like sequences. Lastly, comparison with other KS loci revealed another possible case of horizontal transfer of secondary metabolite genes in the genus Pseudomonas. This study emphasizes the use of several lines of concordant evidence (phylogenetics, base composition, transposon sequences) to infer the evolutionary history of particular gene and enzyme sequences, and the results support the idea that genes coding for adaptive traits, e.g. defensive natural products, may be prone to transposition between divergent prokaryotic taxa and genomes.  相似文献   

9.
A series of cDNA clones for the human core protein of the large cartilage-specific proteoglycan was isolated. Nucleotide sequencing of the clones provided over 2 kilobases of new coding sequences for the human protein. Comparison with published data for cDNA clones covering the same region in rat and chick indicated that domain 8, the lectin-like domain, is highly conserved among species. In contrast, domain 7 is poorly conserved among species. Some of the cDNA clones also contained an additional structural domain between domains 7 and 8 which was not described in the rat or chick sequences. The additional domain of 38 amino acids was highly homologous to epidermal growth factor (EGF)-like sequences seen in other proteins. Because some cDNA clones contained codons for the EGF-like domain and some did not, the results suggested that the EGF-like domain underwent alternative RNA splicing. To confirm alternative splicing of the EGF-like domain, RNA from cartilage cells was used as a template for the polymerase chain reaction. Products of two sizes were obtained. One had the size predicted for mRNA containing the domain and the other had the size predicted for mRNA not containing the domain. Alternative splicing of an EGF-like domain may provide a mechanism of feedback regulation for both the biosynthetic activity and the proliferation of cartilage cells.  相似文献   

10.
Aggrecan possesses both chondroitin sulfate (CS) and keratan sulfate (KS) chains attached to its core protein, which reside mainly in the central region of the molecule termed the glycosaminoglycan-attachment region. This region is further subdivided into the KS-rich domain and two adjacent CS-rich domains (CS1 and CS2). The CS1 domain of the human is unique in exhibiting length polymorphism due to a variable number of tandem amino acid repeats. The focus of this work was to determine how length polymorphism affects the structure of the CS1 domain and whether CS and KS chains can coexist in the different glycosaminoglycan-attachment domains. The CS1 domain possesses several amino acid repeat sequences that divide it into three subdomains. Variation in repeat number may occur in any of these domains, with the consequence that CS1 domains of the same length may possess different amino acid sequences. There was no evidence to support the presence of KS in either the CS1 or the CS2 domains nor the presence of CS in the KS-rich domain. The structure of the CS chains was shown to vary between the CS1 and CS2 domains, particularly in the adult, with variation occurring in chain length and the sulfation of the non-reducing terminal N-acetyl galactosamine residue. CS chains in the adult CS2 domain were shorter than those in the CS1 domain and possessed disulfated terminal residues in addition to monosulfated residues. There was, however, no change in the sulfation pattern of the disaccharide repeats in the CS chains from the two domains.  相似文献   

11.
Forty original sequences of peptide substrates and inhibitors of protein kinases and phosphatases were aligned in a chain matrix without artificial gaps. Fifteen protein kinase peptide substrates and inhibitors (PKSI peptides) contained a common dipeptide ArgArg and also additional important tetra-, tri- and dipeptide homologies. Three further peptide substrates were significantly similar to these peptides but lacked the ArgArg dipeptide. Sequence comparison of individual PKSI peptides revealed probabilistically restricted consensus sequence—PKSI motif—comprising 8 homologous and 13 non-randomly distributed amino acids without considering mutation analysis. This template motif was compared with the consensus sequences of 12 different immunoglobulin domains. In 11 of 12 these domains, the starts of homologous segments were found at nearly the same domain related sites, beginning with serine. A single-triplet mutation, of any of the first two triplet bases that encode equally localized amino acids in each of the two sequence sets (PKSI and Ig) revealed additional homologies with the other set. A primary derived motif version composed of 9 homologous and seven non-randomly distributed amino acids was consequently established by its feedback projection into the original sequence sets. This procedure yielded a second preliminary motif version (revised motif) formed by a sequence of 9 homologous amino acids and two non-randomly distributed amino acids. In addition, three shorter oligopeptide motifs called important stereotypes were derived, based on repeated homology between Ig chains and the revised motif. The most extensive similarities in terms of these stereotypes occurred in the CH2 and CH4 domains of Ig peptides, and inhibitors of cAMP dependent protein kinase and protein kinase A. Further comparisons based on a reference sequence set arranged with the aid of feedback projection revealed a lower similarity between variable Ig chains reflected in a decreased number of homologous amino acids. Two final motif versions, FMC and FMV, were found in two different subsets of constant and variable Ig chains, respectively. FMC was composed of seven homologous and one non-randomly distributed amino acids forming the dispersed structure STLR(C)LVSD, whereas 6 homologous and one questionable amino acid constituted FMV. Only CH4 and CH1 domain segments contained all five high-incidence amino acids, which represented a higher level of similarity than homologous amino acids of all preliminary and final motifs. Four such amino acids were present also in three PKSI peptides. All similarities described here occur in domain segments positionally overlapping with the CDR1 region of variable chains. The results are discussed in terms of immunoglobulin evolution, the position of Fc receptor binding sites and degeneration or mutability of the triplets of motif-constituting amino acids.  相似文献   

12.
A putative instance of horizontal gene transfer (HGT) involving adjacent, discrete -ketoacyl synthase (KS), acyl carrier protein (ACP) and nonribosomal peptide synthase (NRPS) domains of the epothilone Type I polyketide biosynthetic gene cluster from the myxobacterium Sorangium cellulosom was identified using molecular phylogenetics and sequence analyses. The specific KS domain of the module EPO B fails to cluster phylogenetically with other epothilone KS sequences present at this locus, in contrast to what is typically observed in many other Type I polyketide synthase (PKS) biosynthetic loci. Furthermore, the GC content of the epoB KS, epoA ACP and NRPS domains differs significantly from the base composition of other epothilone domain sequences. In addition, the putatively transferred epothilone loci are located near previously identified transposon-like sequences. Lastly, comparison with other KS loci revealed another possible case of horizontal transfer of secondary metabolite genes in the genus Pseudomonas. This study emphasizes the use of several lines of concordant evidence (phylogenetics, base composition, transposon sequences) to infer the evolutionary history of particular gene and enzyme sequences, and the results support the idea that genes coding for adaptive traits, e.g. defensive natural products, may be prone to transposition between divergent prokaryotic taxa and genomes.Communicated by W. Arber  相似文献   

13.
14.
Sequences of immunoglobulin (Ig) domains of adhesive molecule GSAMS from the living fossil spongeGeodia cydonium were compared with the important motif of peptide protein kinase substrates and inhibitors (PKSI), detail PKSI sequences, and a common template sequence, derived from structures determined previously. We found the site-restricted sequence similarities to these peptide sequences predominantly in the GSAM Ig1 domain of GSAMS in the domain region related to corresponding Ig similarities detected earlier. Additional sequence block-related analysis revealed the presence of CDR1-like segments within PKSI-related regions and resulted in the detection of increased numbers of hypermutation motifs just in the CDR1-like segment of GSAM Ig1 (GSAM(cdr1.1)). In the following database searches with PKSI-related regions and GSAM(cdr1.1) we looked for: (i) peptide similarities present in the context of Ig domains or related structures in a large range of species fromArchaea toVertebrata, and (ii) some special nucleotide similarities. This study was supported by grant ofInternal Grant Agency of the Ministry of Public Health of the Czech Republic no. 6747-3.  相似文献   

15.
16.

Background

The proportion of conserved DNA sequences with no clear function is steadily growing in bioinformatics databases. Studies of sequence and structural homology have indicated that many uncharacterized protein domain sequences are variants of functionally described domains. If these variants promote an organism''s ecological fitness, they are likely to be conserved in the genome of its progeny and the population at large. The genetic composition of microbial communities in their native ecosystems is accessible through metagenomics. We hypothesize the co-variation of protein domain sequences across metagenomes from similar ecosystems will provide insights into their potential roles and aid further investigation.

Methodology/Principal findings

We calculated the correlation of Pfam protein domain sequences across the Global Ocean Sampling metagenome collection, employing conservative detection and correlation thresholds to limit results to well-supported hits and associations. We then examined intercorrelations between domains of unknown function (DUFs) and domains involved in known metabolic pathways using network visualization and cluster-detection tools. We used a cautious “guilty-by-association” approach, referencing knowledge-level resources to identify and discuss associations that offer insight into DUF function. We observed numerous DUFs associated to photobiologically active domains and prevalent in the Cyanobacteria. Other clusters included DUFs associated with DNA maintenance and repair, inorganic nutrient metabolism, and sodium-translocating transport domains. We also observed a number of clusters reflecting known metabolic associations and cases that predicted functional reclassification of DUFs.

Conclusion/Significance

Critically examining domain covariation across metagenomic datasets can grant new perspectives on the roles and associations of DUFs in an ecological setting. Targeted attempts at DUF characterization in the laboratory or in silico may draw from these insights and opportunities to discover new associations and corroborate existing ones will arise as more large-scale metagenomic datasets emerge.  相似文献   

17.
18.
Phylogenetic surveys based on cultivation-independent methods have revealed that tidal flat sediments are environments with extensive microbial diversity. Since most of prokaryotes in nature cannot be easily cultivated under general laboratory conditions, our knowledge on prokaryotic dwellers in tidal flat sediment is mainly based on the analysis of metagenomes. Microbial community analysis based on the 16S rRNA gene and other phylogenetic markers has been widely used to provide important information on the role of microorganisms, but it is basically an indirect means, compared with direct sequencing of metagenomic DNAs. In this study, we applied a sequence-based metagenomic approach to characterize uncultivated prokaryotes from tidal flat sediment. Two large-insert genomic libraries based on fosmid were constructed from tidal flat metagenomic DNA. A survey based on end-sequencing of selected fosmid clones resulted in the identification of clones containing 274 bacterial and 16 archaeal homologs in which majority were of proteobacterial origins. Two fosmid clones containing large metagenomic DNAs were completely sequenced using the shotgun method. Both DNA inserts contained more than 20 genes encoding putative proteins which implied their ecological roles in tidal flat sediment. Phylogenetic analyses of evolutionary conserved proteins indicate that these clones are not closely related to known prokaryotes whose genome sequence is known, and genes in tidal flat may be subjected to extensive lateral gene transfer, notably between domains Bacteria and Archaea. This is the first report demonstrating that direct sequencing of metagenomic gene library is useful in underpinning the genetic makeup and functional roles of prokaryotes in tidal flat sediments.  相似文献   

19.
以间接提取法提取了沼气池样品的微生物宏基因组DNA,用柯斯质粒载体pWEB:TNC构建了一个含三万个克隆的沼气池宏基因组文库,对文库中的克隆随机分析表明,该文库的外源片段平均长度为40 kb,文库的总容量为1 .2×106kb。对其中的一个在七叶苷平板上显色的阳性克隆pGXN100进行进一步亚克隆、测序和序列分析。结果表明,pGXN100上有一个全长为1 863bp的ORF,编码621个氨基酸组成的蛋白质。将该基因命名为Unglu100。与产气克雷伯菌属的一个β-葡萄糖苷酶基因AN292在核苷酸和氨基酸水平上分别有76%和85%的同源性,利用SMART软件进行预测表明,Unglu100可能是PTS中β-葡萄糖苷酶特异性的转运蛋白组件。  相似文献   

20.
Two varieties of similar, but structurally distinct, cDNA clones for the human low-affinity receptors for the Fc portion of immunoglobulin G (FcγRII) have been isolated. One type of clone was obtained from human B lymphocytes, and the other from PHA-activated peripheral T cells and monocytes. Transfection of both prototype clones into Cos-7 cells and subsequent specific staining with monoclonal antibodies of the CDw32 group confirmed the identification of the gene products. The nucleotide sequence of the cDNA clone from B lymphocytes contains an open reading frame that encodes a protein of relative mass (M r) 27000 with an extracellular domain of 179 amino acids containing three potential N-glycosylation sites, a 26 amino acid transmembrane domain, and a 44 amino acid cytoplasmic domain. The clones from peripheral T cells and monocytes both encoded a protein ofM r 31000 with a 179 amino acid extracellular domain containing two potential N-glycosylation sites and a 26 amino acid transmembrane domain. The two types of clones had similar sequences in their immunoglobulin-like extracellular and transmembrane domains, but differed in their leader sequences and 3′-untranslated regions. The most notable difference between the clones was the presence of a distinctive 76 amino acid cytoplasmic domain in those isolated from T cells and monocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号