首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium binding epidermal growth factor-like domains (cbEGFs) are present in many extracellular proteins, including fibrillin-1, Notch-3, protein S, factor IX and the low density lipoprotein (LDL) receptor, which perform a diverse range of functions. Genetic mutations that cause amino acid changes within these proteins have been linked to the Marfan syndrome (MFS), CADASIL, protein S deficiency, haemophilia B and familial hypercholesterolaemia, respectively. A number of these mutations disrupt calcium binding to cbEGFs, emphasising the critical functional role of calcium in these proteins.We have determined the calcium binding affinity of two sites within a cbEGF pair (cbEGF12-13) from human fibrillin-1 using two-dimensional nuclear magnetic resonance (NMR) and fluorescence techniques. Fibrillin-1 is a mosaic protein containing 43 cbEGF domains, mainly arranged as tandem repeats. Our results show that the cbEGF13 site in the cbEGF12-13 pair possesses the highest calcium affinity of any cbEGF investigated from fibrillin-1. A comparative analysis of these and previously reported calcium binding data from fibrillin-1 demonstrate that the affinity of cbEGF13 is enhanced more than 70-fold by the linkage of an N-terminal cbEGF domain. In contrast, comparison of calcium binding by cbEGF32 in isolation relative to when linked to a transforming growth factor beta-binding protein-like domain (TB6-cbEGF32) reveals that the same enhancement is not observed for this heterologous domain pair. Taken together, these results indicate that fibrillin-1 cbEGF Ca2+ affinity can be significantly modulated by the type of domain which is linked to its N terminus. The cbEGF12-13 pair is located within the longest contiguous section of cbEGFs in fibrillin-1, and a number of mutations in this region are associated with the most severe neonatal form of MFS. The affinities of cbEGF domains 13 and 14 in this region are substantially higher than in the C-terminal region of fibrillin-1. This increased affinity may be important for fibrillin assembly into 10-12 nm connective tissue microfibrils and/or may contribute to the biomechanical properties of the microfibrillar network.  相似文献   

2.
Human fibrillin-1, the major structural protein of extracellular matrix (ECM) 10-12 nm microfibrils, is dominated by 43 calcium binding epidermal growth factor-like (cbEGF) and 7 transforming growth factor beta binding protein-like (TB) domains. Crystal structures reveal the integrin binding cbEGF22-TB4-cbEGF23 fragment of human fibrillin-1 to be a Ca(2+)-rigidified tetragonal pyramid. We suggest that other cbEGF-TB pairs within the fibrillins may adopt a similar orientation to cbEGF22-TB4. In addition, we have located a flexible RGD integrin binding loop within TB4. Modeling, cell attachment and spreading assays, immunocytochemistry, and surface plasmon resonance indicate that cbEGF22 bound to TB4 is a requirement for integrin activation and provide insight into the molecular basis of the fibrillin-1 interaction with alphaVbeta3. In light of our data, we propose a novel model for the assembly of the fibrillin microfibril and a mechanism to explain its extensibility.  相似文献   

3.
Fibrillin-1 is a mosaic protein mainly composed of 43 calcium binding epidermal growth factor-like (cbEGF) domains arranged as multiple, tandem repeats. Mutations within the fibrillin-1 gene cause Marfan syndrome (MFS), a heritable disease of connective tissue. More than 60% of MFS-causing mutations identified are localized to cbEGFs, emphasizing that the native properties of these domains are critical for fibrillin-1 function. The cbEGF12-13 domain pair is within the longest run of cbEGFs, and many mutations that cluster in this region are associated with severe, neonatal MFS. The NMR solution structure of Ca(2+)-loaded cbEGF12-13 exhibits a near-linear, rod-like arrangement of domains. This observation supports the hypothesis that all fibrillin-1 (cb)EGF-cbEGF pairs, characterized by a single interdomain linker residue, possess this rod-like structure. The domain arrangement of cbEGF12-13 is stabilized by additional interdomain packing interactions to those observed for cbEGF32-33, which may help to explain the previously reported higher calcium binding affinity of cbEGF13. Based on this structure, a model of cbEGF11-15 that encompasses all known neonatal MFS missense mutations has highlighted a potential binding region. Backbone dynamics data confirm the extended structure of cbEGF12-13 and lend support to the hypothesis that a correlation exists between backbone flexibility and cbEGF domain calcium affinity. These results provide important insight into the potential consequences of MFS-associated mutations for the assembly and biomechanical properties of connective tissue microfibrils.  相似文献   

4.
Fibrillin-1 is the major structural component of extracellular microfibrils. However, the mechanism by which extracellular fibrillin-1 assembles into microfibrils is not fully understood. Fibrillin-1 contains the Arg-Gly-Asp (RGD) motif, which may allow binding to RGD-recognizing integrins. We hypothesized that integrin αvβ3 on the cell surface of human periodontal ligament (PDL) fibroblasts may influence fibrillin-1 assembly into cell/matrix layers. We treated PDL fibroblasts with an integrin αvβ3-specific antagonist to examine fibrillin-1 assembly. Western blotting and immunofluorescence analysis showed that treatment with the integrin αvβ3 antagonist at 5 μM clearly abolished fibrillin-1 deposition. These results provide for the first time evidence that integrin αvβ3 regulates extracellular assembly of fibrillin-1, thereby modulating cell-mediated homeostasis of microfibrils.  相似文献   

5.
The calcium-binding epidermal growth factor-like (cbEGF) domain is a common structural motif in extracellular and transmembrane proteins. K(d) values for Ca2+ vary from the millimolar to nanomolar range; however the molecular basis for this variation is poorly understood. We have measured K(d) values for six fibrillin-1 cbEGF domains, each preceded by a transforming growth factor beta-binding protein-like (TB) domain. Using NMR and titration with chromophoric chelators, we found that K(d) values varied by five orders of magnitude. Interdomain hydrophobic contacts between TB-cbEGF domains were studied by site-directed mutagenesis and could be correlated directly with Ca2+ affinity. Furthermore, in TB-cbEGF pairs that displayed high-affinity binding, NMR studies showed that TB-cbEGF interface formation was strongly Ca2+-dependent. We suggest that Ca2+ affinity is a measure of interface formation in both homologous and heterologous cbEGF domain pairs, thus providing a measure of flexibility in proteins with multiple cbEGF domains. These data highlight the versatile role of the cbEGF domain in fine tuning the regional flexibility of proteins and provide new constraints for the organization of fibrillin-1 within 10-12-nm microfibrils of the extracellular matrix.  相似文献   

6.
Fibrillin-1 is a major constituent of the 10-12 nm extracellular microfibrils. Here we identify, characterize, and localize heparin/heparan sulfate-binding sites in fibrillin-1 and report on the role of such glycosaminoglycans in the assembly of fibrillin-1. By using different binding assays, we localize two calcium-independent heparin-binding sites to the N-terminal (Arg(45)-Thr(450)) and C-terminal (Asp(1528)-Arg(2731)) domains of fibrillin-1. A calcium-dependent-binding site was localized to the central (Asp(1028)-Thr(1486)) region of fibrillin-1. Heparin binding to these sites can be inhibited by a highly sulfated and iduronated form of heparan sulfate but not by chondroitin 4-sulfate, chondroitin 6-sulfate, and dermatan sulfate, demonstrating that the heparin binding regions represent binding domains for heparan sulfate. When heparin or heparan sulfate was added to cultures of skin fibroblasts, the assembly of fibrillin-1 into a microfibrillar network was significantly reduced. Western blot analysis demonstrated that this effect was not due to a reduced amount of fibrillin-1 secreted into the culture medium. Inhibition of the attachment of glycosaminoglycans to core proteins of proteoglycans by beta-d-xylosides resulted in a significant reduction of the fibrillin-1 network. These studies suggest that binding of fibrillin-1 to proteoglycan-associated heparan sulfate chains is an important step in the assembly of microfibrils.  相似文献   

7.
8.
Human fibrillin-1, an extracellular matrix glycoprotein, has a modular organization that includes 43 calcium-binding epidermal growth factor-like (cbEGF) domains arranged as multiple tandem repeats. A missense mutation that changes a highly conserved glycine to serine (G1127S) has been identified in cbEGF13, which results in a variant of Marfan syndrome, a connective tissue disease. Previous experiments on isolated cbEGF13 and a cbEGF13-14 pair indicated that the G1127S mutation caused defective folding of cbEGF13 but not cbEGF14. We have used limited proteolysis methods and two-dimensional NMR spectroscopy to identify the structural consequences of this mutation in a covalently linked cbEGF12-13 pair and a cbEGF12-14 triple domain construct. Protease digestion studies of the cbEGF12-13 G1127S mutant pair indicated that both cbEGF12 and 13 retained similar calcium binding properties and thus tertiary structure to the normal domain pair, because all identified cleavage sites showed calcium-dependent protection from proteolysis. However, small changes in the conformation of cbEGF13 G1127S, revealed by the presence of a new protease-sensitive site and comparative two-dimensional NOESY data, suggested that the fold of the mutant domain was not identical to the wild-type, but was native-like. Additional cleavage sites identified in cbEGF12-14 G1127S indicated further subtle changes within the mutant domain but not the flanking domains. We have concluded the following in this study. (i) Covalent linkage of cbEGF12 preserves the native-like fold of cbEGF13 G1127S and (ii) conformational effects introduced by G1127S are localized to cbEGF13. This study demonstrates that missense mutations in fibrillin-1 cbEGF domains can cause short range structural effects in addition to long range effects previously observed with a E1073K mutation in cbEGF12.  相似文献   

9.
The calcium-binding epidermal growth factor-like (cbEGF) module and the transforming growth factor beta-binding protein-like (TB) module are the two major structural motifs found in fibrillin-1, the extracellular matrix (ECM) protein defective in the Marfan syndrome (MFS). An MFS-causing mutation, N2144S, which removes a calcium ligand in cbEGF32, does not detectably affect fibrillin-1 biosynthesis, rate of secretion, processing, or deposition of reducible fibrillin-1 into the ECM. Since the residue at position 2144 is normally engaged in calcium ligation, it is unable to mediate intermolecular interactions. We have shown previously that this mutation does not affect the folding properties of the TB or cbEGF domains in vitro, but does decrease calcium-binding in cbEGF and TB-cbEGF domain constructs. Here, we use NMR spectroscopy to probe the effects of the N2144S mutation on backbone dynamic properties of TB6-cbEGF32. Analysis of the backbone (15)N relaxation data of wild-type TB6-cbEGF32 has revealed a flexible inter-domain linkage. Parallel dynamics analysis of the N2144S mutant has shown increased flexibility in the region joining the two domains as well as in the calcium-binding site at the N terminus of cbEGF32. This research demonstrates that a small change in peptide backbone flexibility, which does not enhance proteolytic susceptibility of the domain pair, is associated with an MFS phenotype. Flexibility of the TB-cbEGF linkage is likely to contribute to the biomechanical properties of fibrillin-rich connective tissue microfibrils, and may play a role in the microfibril assembly process.  相似文献   

10.
Fibrillin-1 and fibrillin-2 constitute the backbone of extracellular filaments, called microfibrils. Fibrillin assembly involves complex multistep mechanisms to result in a periodical head-to-tail alignment in microfibrils. Impaired assembly potentially plays a role in the molecular pathogenesis of genetic disorders caused by mutations in fibrillin-1 (Marfan syndrome) and fibrillin-2 (congenital contractural arachnodactyly). Presently, the basic molecular interactions involved in fibrillin assembly are obscure. Here, we have generated recombinant full-length human fibrillin-1, and two overlapping recombinant polypeptides spanning the entire human fibrillin-2 in a mammalian expression system. Characterization by gel electrophoresis, electron microscopy after rotary shadowing, and reactivity with antibodies demonstrated correct folding of these recombinant polypeptides. Analyses of homotypic and heterotypic interaction repertoires showed N- to C-terminal binding of fibrillin-1, and of fibrillin-1 with fibrillin-2. The interactions were of high affinity with dissociation constants in the low nanomolar range. However, the N- and C-terminal fibrillin-2 polypeptides did not interact with each other. These results demonstrate that fibrillins can directly interact in an N- to C-terminal fashion to form homotypic fibrillin-1 or heterotypic fibrillin-1/fibrillin-2 microfibrils. This conclusion was further strengthened by double immunofluorescence labeling of microfibrils. In addition, the binding epitopes as well as the entire fibrillin molecules displayed very stable properties.  相似文献   

11.
Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-elastic tissues. Fibrillin-1 contains one evolutionarily conserved RGD sequence that mediates cell–matrix interactions through cell-surface integrins. Here, we present a novel paradigm how extracellular fibrillin-1 controls cellular function through integrin-mediated microRNA regulation. Comparative mRNA studies by global microarray analysis identified growth factor activity, actin binding and integrin binding as the most important functional groups that are regulated upon fibrillin-1 binding to dermal fibroblasts. Many of these mRNAs are targets of miRNAs that were identified when RNA from the fibrillin-1-ligated fibroblasts was analyzed by a miRNA microarray. The expression profile was specific to fibrillin-1 since interaction with fibronectin displayed a partially distinct profile. The importance of selected miRNAs for the regulation of the identified mRNAs was suggested by bioinformatics prediction and the interactions between miRNAs and mRNAs were experimentally validated. Functionally, we show that miR-503 controls p-Smad2-dependent TGF-β signaling, and that miR-612 and miR-3185 are involved in the focal adhesion formation regulated by fibrillin-1. In conclusion, we demonstrate that fibrillin-1 interaction with fibroblasts regulates miRNA expression profiles which in turn control critical cell functions.  相似文献   

12.
Fibrillins are major constituents of microfibrils, which are essential components of the extracellular matrix of connective tissues where they contribute to the tissue homeostasis. Although it is known that microfibrils are abundantly expressed in the left ventricle of the heart, limited data are available about the presence of microfibrils in the other parts of the myocardial tissue and whether there are age or sex-related differences in the spatial arrangement of the microfibrils. This basic knowledge is essential to better understand the impact of fibrillin-1 pathogenic variants on the myocardial tissue as seen in Marfan related cardiomyopathy. We performed histological analyses on wild-type male and female murine myocardial tissue collected at different time-points (1, 3 and 6 months). Fibrillin-1 and -2 immunofluorescence stainings were performed on cross-sections at the level of the apex, the mid-ventricles and the atria. In addition, other myocardial matrix components such as collagen and elastin were also investigated. Fibrillin-1 presented as long fibres in the apex, mid-ventricles and atria. The spatial arrangement differed between the investigated regions, but not between age groups or sexes. Collagen had a similar broad spatial arrangement to that of fibrillin-1, whereas elastic fibres were primarily present in the atria and the vessels. In contrast to fibrillin-1, limited amounts of fibrillin-2 were observed. Fibrillin-rich fibres contribute to the architecture of the myocardial tissue in a region-dependent manner in wild-type murine hearts. This knowledge is helpful for future experimental set-ups of studies evaluating the impact of fibrillin-1 pathogenic variants on the myocardial tissue.  相似文献   

13.
Homocystinuria is an inborn error of methionine metabolism that results in raised serum levels of the highly reactive thiol-containing amino acid homocysteine. Homocystinurics often exhibit phenotypic abnormalities that are similar to those found in Marfan syndrome (MFS), a heritable connective tissue disorder that is caused by reduced levels of, or defects in, the cysteine-rich extracellular matrix (ECM) protein fibrillin-1. The phenotypic similarities between homocystinuria and MFS suggest that elevated homocysteine levels may result in an altered function of fibrillin-1. We have used recombinant calcium binding epidermal growth factor-like (cbEGF) domain fragments from fibrillin-1, and an unrelated protein Notch1, to analyse the effects of homocysteine on the native disulphide (cystine) bonds of these domains. We show using analytical reverse phase, high performance liquid chromatography (HPLC), electrospray ionisation mass spectrometry (ESI-MS) and limited proteolysis that homocysteine attacks intramolecular disulphide bonds causing reduction of cystine and domain misfolding, and that the effects of homocysteine are dependent on its concentration. We also identify the importance of calcium binding to cbEGF domains for their stabilisation and protection against homocysteine attack. Collectively, these data suggest that reduction of intramolecular cbEGF domain disulphide bonds by homocysteine and the resulting disruption of this domain fold may contribute to the change in connective tissue function seen in homocystinuria. Furthermore, since we show that the effects of homocysteine are not unique to fibrillin-1, other cbEGF-containing proteins may be implicated in the pathogenic mechanisms underlying homocystinuria.  相似文献   

14.
The largest group of disease-causing mutations affecting calcium-binding epidermal growth factor-like (cbEGF) domain function in a wide variety of extracellular and transmembrane proteins is that which results in cysteine substitutions. Although known to introduce proteolytic susceptibility, the detailed structural consequences of cysteine substitutions in cbEGF domains are unknown. Here, we studied pathogenic mutations C1977Y and C1977R, which affect cbEGF30 of human fibrillin-1, in a recombinant three cbEGF domain fragment (cbEGF29-31). Limited proteolysis, 1H NMR, and calcium chelation studies have been used to probe the effect of each substitution on cbEGF30 and its flanking domains. Analysis of the wild-type fragment identified two high affinity and one low affinity calcium-binding sites. Each substitution caused the loss of high affinity calcium binding to cbEGF30, consistent with intradomain misfolding, but the calcium binding properties of cbEGF29 and cbEGF31 were surprisingly unaffected. Further analysis of mutant fragments showed that domain packing of cbEGF29-30, but not cbEGF30-31, was disrupted. These data demonstrate that C1977Y and C1977R have localized structural effects, confined to the N-terminal end of the mutant domain, which disrupt domain packing. Cysteine substitutions affecting other cbEGF disulfide bonds are likely to have different effects. This proposed structural heterogeneity may underlie the observed differences in stability and cellular trafficking of proteins containing such changes.  相似文献   

15.
16.
Calcium binding (cb) epidermal growth factor-like (EGF) domains are found in a wide variety of extracellular proteins with diverse functions. In several proteins, including the fibrillins (1 and 2), the low-density lipoprotein receptor, the Notch receptor and related molecules, these domains are organised as multiple tandem repeats. The functional importance of calcium-binding by EGF domains has been underscored by the identification of missense mutations associated with defective calcium-binding, which have been linked to human diseases. Here, we present (15)N backbone relaxation data for a pair of cbEGF domains from fibrillin-1, the defective protein in the Marfan syndrome. The data were best fit using a symmetric top model, confirming the extended conformation of the cbEGF domain pair. Our data demonstrate that calcium plays a key role in stabilising the rigidity of the domain pair on the pico- to millisecond time-scale. Strikingly, the most dynamically stable region of the construct is centred about the domain interface. These results provide important insight into the properties of intact fibrillin-1, the consequences of Marfan syndrome causing mutations, and the ultrastructure of fibrillins and other extracellular matrix proteins.  相似文献   

17.
The Ca(2+)-binding epidermal growth factor (cbEGF)-like module is a structural component of numerous diverse proteins and occurs almost exclusively within repeated motifs. Notch-1, a fundamental receptor for cell fate decisions, contains 36 extracellular EGF modules in tandem, of which 21 are potentially Ca(2+)-binding. We report the Ca(2+)-binding properties of EGF11-12 and EGF10-13 from human Notch-1 (hNEGF11-12 and hNEGF10-13), modules previously shown to support Ca(2+)-dependent interactions with the ligands Delta and Serrate. Ca2+ titrations in the presence of chromophoric chelators, 5,5''-Br2BAPTA and 5-NBAPTA, gave two binding constants for hNEGF11-12, Kd1 = 3.4 x 10(-5) M and Kd2 > 2.5 x 10(-4) M. The high-affinity site was found to be localized to hNEGF12. Titration of hNEGF10-13 gave three binding constants, Kd1 = 3.1 x 10(-6) M, Kd2 = 1.6 x 10(-4) M, and Kd3 > 2.5 x 10(-4) M, demonstrating that assembly of EGF modules in tandem can increase Ca2+ affinity. The highest affinity sites in hNEGF11-12 and hNEGF10-13 had 10 to 100-fold higher affinity than reported for EGF32-33 and EGF25-31, respectively, from fibrillin-1, a connective tissue protein with 43 cbEGF modules. A model of hNEGF11-12 based on fibrillin-1 EGF32-33 demonstrates electronegative potential that could contribute to the higher affinity of the Ca(2+)-binding site in hNEGF12. These data demonstrate that the Ca2+ affinity of cbEGF repeats can be highly variable among different classes of cbEGF containing proteins.  相似文献   

18.
The fibrillins   总被引:4,自引:0,他引:4  
Fibrillins 1 and 2 are the main constituents of the extracellular microfibrils responsible for the biomechanical properties of most tissues and organs. They are cysteine-rich glycoproteins predominantly made of multiple repeats homologous to the calcium-binding epidermal growth factor module, and are translated as precursor proteins cleaved by furine/PACE-like activities. Fibrillins polymerize extracellularly as parallel bundles of head-to-tail monomers. Binding to calcium rigidifies the structure of the monomers and the supramolecular organization of the macroaggregates. Fibrillin-1 mutations result in the pleiotropic manifestations of Marfan syndrome, and fibrillin-2 alterations cause the overlapping phenotype of congenital contractural arachnodactyly. It is hypothesized that fibrillin-2 guides elastogenesis, whereas fibrillin-1 provides force-bearing structural support. Gene targeting work in the mouse is shedding new light on their distinct and overlapping contributions to tissue morphogenesis and homeostasis. It is also providing an animal model in which to test therapies aimed at reducing hemodynamic stress and the collapse of the aortic matrix during dissecting aneurysm.  相似文献   

19.
20.

Introduction

Systemic sclerosis (SSc) is a connective tissue disorder characterized by endothelial cell injury, autoimmunity and fibrosis. The following three fibrillin-1 alterations have been reported in SSc. (1) Fibrillin-1 microfibrils are disorganized in SSc dermis. (2) Fibrillin-1 microfibrils produced by SSc fibroblasts are unstable. (3) Mutations in the FBN1 gene and anti-fibrillin-1 autoantibodies have been reported in SSc. Fibrillin-1 microfibrils, which are abundantly produced by blood and lymphatic microvascular endothelial cells (B-MVECs and Ly-MVECs, respectively), sequester in the extracellular matrix the latent form of the potent profibrotic cytokine transforming growth factor β (TGF-β). In the present study, we evaluated the effects of SSc sera on the deposition of fibrillin-1 and microfibril-associated glycoprotein 1 (MAGP-1) and the expression of focal adhesion molecules by dermal B-MVECs and Ly-MVECs.

Methods

Dermal B-MVECs and Ly-MVECs were challenged with sera from SSc patients who were treatment-naïve or under cyclophosphamide (CYC) treatment and with sera from healthy controls. Fibrillin-1/MAGP-1 synthesis and deposition and the expression of αvβ3 integrin/phosphorylated focal adhesion kinase and vinculin/actin were evaluated by immunofluorescence and quantified by morphometric analysis.

Results

Fibrillin-1 and MAGP-1 colocalized in all experimental conditions, forming a honeycomb pattern in B-MVECs and a dense mesh of short segments in Ly-MVECs. In B-MVECs, fibrillin-1/MAGP-1 production and αvβ3 integrin expression significantly decreased upon challenge with sera from naïve SSc patients compared with healthy controls. Upon challenge of B-MVECs with sera from CYC-treated SSc patients, fibrillin-1/MAGP-1 and αvβ3 integrin levels were comparable to those of cells treated with healthy sera. Ly-MVECs challenged with SSc sera did not differ from those treated with healthy control sera in the expression of any of the molecules assayed.

Conclusions

Because of the critical role of fibrillin-1 in sequestering the latent form of TGF-β in the extracellular matrix, its decreased deposition by B-MVECs challenged with SSc sera might contribute to dermal fibrosis. In SSc, CYC treatment might limit fibrosis through the maintenance of physiologic fibrillin-1 synthesis and deposition by B-MVECs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号