首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 400 毫秒
1.
We have examined the effects of FK-506 and of the struturally related macrolide rapamycin, which bind with high affinity to a specific binding protein (FKBP), to evaluate the involvement of this protein in the release of preformed (histamine) and de novo synthesized inflammatory mediators (sulfidopeptide leukotriene C4 and prostaglandin D2) from mast cells isolated from human lung parenchyma. FK-506 (0.1 to 300 nM) concentration dependently inhibited histamine release from lung parenchymal mast cells activated by anti-IgE. FK-506 was more potent in lung mast cells than in basophils (IC50 = 1.13 +/- 0.46 nM vs 5.28 +/- 0.88 nM; p less than 0.001), whereas the maximal inhibitory effect was higher in basophils than in lung mast cells (88.4 +/- 2.5% vs 76.4 +/- 3.8%; p less than 0.01). FK-506 had little or no inhibitory effect on histamine release from lung mast cells challenged with compound A23187, whereas it completely suppressed A23187-induced histamine release from basophils. FK-506 also inhibited the de novo synthesis of 5-lipoxygenase (sulfidopeptide leukotriene C4) and cyclo-oxygenase (prostaglandin D2) metabolites of arachidonic acid from mast cells challenged with anti-IgE. Unlike in basophils, Il-3 (3 to 30 ng/ml) did not modify anti-IgE- or A23187-induced histamine release from lung mast cells nor did it reverse the inhibitory effect of FK-506. Rapamycin (3 to 300 nM) had little or no effect on the release of histamine from lung mast cells, but it was a competitive antagonist of the inhibitory effect of FK-506 on anti-IgE-induced histamine release from human mast cells with a dissociation constant of about 12 nM. These data indicate that FK-506 is a potent anti-inflammatory agent that acts on human lung mast cells presumably by binding to a receptor site (i.e., FKBP).  相似文献   

2.
Binding of LA350, a lymphoblastoid human B cell line, by phorbol myristate acetate (PMA) plus a calcium ionophore, either ionomycin or A23187, produced unique alterations in the release of arachidonic acid (AA) from cellular phospholipids. After equilibrium labeling of cells with radioactive fatty acids, [14C]AA demonstrated a selective enhanced release from the cells in response to the binding of PMA plus calcium ionophore as compared to the release of [14C]stearic acid (STE), [3H]oleic acid (OLE) and [3H]palmitic acid (PAL). The major phospholipid sources of the released [14C]AA were shown to be phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. The participation of protein kinase C (PKC) in the enhanced synergistic release of [14C]AA was demonstrated by the inhibition of the release by the PKC inhibitor, staurosporine. Approximately 2-6% of the labeled AA liberated was converted to 5-hydroxyeicosatetraenoic acid by an endogenous 5-lipoxygenase. Therefore during cell activation the B cell is capable of liberating AA via a PKC-dependent mechanism, implicating AA and/or its metabolites in signal transduction.  相似文献   

3.
To examine steroid-induced biochemical alterations in the mast cell secretory process, rats were injected with intramuscular dexamethasone or saline for 4 days, and serosal mast cells and lung tissue were obtained from each group. Radioligand binding studies utilizing 1-[propyl-1,2-3H]dihydroalprenolol (3H-DHA) demonstrated a 23.1 +/- 0.8% increase in rat lung beta-adrenergic receptors in steroid-treated rats, but the mast cell beta-adrenergic receptors were unaffected. Neither resting mast cell cyclic adenosine 3':5'-monophosphate (cAMP) levels nor the degree of cAMP augmentation induced by isoproterenol were changed by steroid administration. Mast cells from rats treated with dexamethasone released only 48.6 +/- 8.9 and 58.8 +/- 6.0% of the beta-hexosaminidase released from saline-treated rat mast cells when sensitized with anti-dinitrophenyl (DNP) IgE and challenged with DNP-bovine serum albumin antigen or the calcium ionophore A23187, respectively. [3H]serotonin release in cells from steroid-treated rats was 41.8 +/- 7.9 and 87.6 +/- 2.6% of control release stimulated by antigen or A23187, respectively. [14C]arachidonic acid incorporation into mast cell phospholipids followed by antigen or A23187 challenge revealed that cells from dexamethasone-treated rats release 61.3 +/- 15.6% and 62.1 +/- 11.8% of labeled metabolites, respectively, compared to controls. The addition of exogenous arachidonic acid 5 min prior to antigen challenge caused a similar decrease in mediator release in cells from saline- and steroid-treated rats (36.7 +/- 6.1 and 38.4 +/- 0.9%, respectively). When arachidonic acid was added to sensitized cells after specific antigen, no significant changes in beta-hexosaminidase release were noted in either group. Chronic in vivo dexamethasone administration markedly decreases mast cell mediator release without changing resting cAMP levels. The release of arachidonic acid metabolites is reduced in steroid-treated cells, possibly through the inhibition of phospholipases. Exogenous arachidonic acid cannot overcome this inhibition, suggesting that an earlier step in phospholipid metabolism, perhaps involving phospholipase C, may be important.  相似文献   

4.
A cloned murine mast cell line designated MC9 expresses a 5-lipoxygenase activity when stimulated with the ionophore A23187. Upon addition of 0.5 microM ionophore, MC9 cells produce 270 +/- 43 pmoles 5-HETE, 74 +/- 40 pmoles 5,12 diHETEs and 65 +/- 31 pmoles LTC4/10(6) cells from 37 microM exogenously added [1-14C]arachidonic acid in two minutes. 5-HETE and 5,12-diHETES, including LTB4 were identified by GC/MS whereas LTC4 was confirmed by HPLC mobility, bio-assay, RIA and enzymatic transformation. The principal cyclooxygenase products were PGD2 and TxB2 (8.5 +/- 2.4 and 5.4 +/- 1.2 pmoles/10(6) cells respectively). Prostanoids were identified by comigration with authentic standards on two-dimensional thin layer chromatograms. Production of arachidonic acid lipoxygenase metabolites stimulated with ionophore proved relatively insensitive to removal of extracellular Ca+2 and chelation by EGTA. In addition, MC9 5-lipoxygenase required only low micromolar amounts of exogenous arachidonic acid for maximal activity. Whereas production of arachidonic acid metabolites lasted only two to five minutes, histamine release stimulated with ionophore was not initiated until 5 minutes (12 +/- 3% cellular histamine) and continued for 30 minutes (37 +/- 7% cellular histamine). Although these cells metabolize arachidonic acid differently from the classic peritoneal-derived mast cell, they resemble subpopulations found in certain tissues (such as mucosa) and should be useful in understanding the biochemistry of mast cell mediator release.  相似文献   

5.
In an attempt to elucidate further the relationship between changes in phospholipid metabolism in, and histamine secretion from, purified rat peritoneal mast cells, the effects of the phorbol diester 12-O-tetradecanoylphorbol 13-acetate (TPA) on these responses in stimulated and unstimulated cells was investigated. TPA caused a dose-dependent increase in the incorporation of 32PO4(3-) into the mast cell phospholipids; phosphatidic acid (PA) and phosphatidylcholine (PC), but not phosphatidylinositol (PI). TPA synergistically enhanced histamine release from cells stimulated by anti-immunoglobulin E (IgE) and the calcium ionophore A23187, reducing its ED50 from 150 nM to 40 nM, but did not alter histamine release from cells stimulated by compound 48/80. The effect of TPA on the changes in 32PO4(3-) incorporation into phospholipids associated with the above secretagogues did not, however, correlate well with the observed effects on histamine secretion induced by the same secretagogues. These observations are discussed in relation to the known effects of phorbol esters upon both secretory processes and phospholipid metabolism in other tissues.  相似文献   

6.
Enhanced phospholipid methylation has been suggested to be an obligatory process in IgE-dependent stimulus-secretion coupling in human lung mast cells. Our studies with mast cell-enriched lung preparations do not support this hypothesis, demonstrating no increased 3H-methyl radiolabeling of chloroform/methanol-extracted lipids or chromatographically separated phospholipids accompanying anti-IgE-dependent histamine secretion. Inhibitors of transmethylation, 3-deazaadenosine, and homocysteine thiolactone inhibited histamine secretion by both anti-IgE and calcium ionophore A23187, reflecting a requirement of secretion for overall integrity of cellular transmethylation. These agents induced small increases in cAMP concentration which are considered to make at most a minor contribution to this inhibition. The inability of methylation inhibitors to diminish anti-IgE-dependent increases in lung mast cell cAMP levels would suggest that not only does phospholipid methylation have no role in histamine secretion but also it does not participate in the activation of adenylate cyclase by this stimulus.  相似文献   

7.
Cytocentrifuge preparations of enzymatically dispersed human lung parenchymal mast cells were examined by light microscopy after fixation in either Mota's basic lead acetate or 10% neutral buffered formalin followed by toluidine blue staining at pH 0.5. Fixation in Mota's basic lead acetate allowed detection of all mast cells. However, after formalin fixation only 10.8 +/- 1.3%, range 4.7 to 17%, n = 8 remained detectable (i.e., formalin "resistant"). Therefore, the vast majority of human lung mast cells lose their metachromatic staining after formalin fixation (i.e., are formalin "sensitive"). Mast cells were then separated on the basis of diameter by countercurrent elutriation and on the basis of density by discontinuous Percoll gradients. Histochemically distinct populations of mast cell types emerged in all lungs studied. The proportion of formalin-resistant mast cells increased as a function of diameter: less than 5% at diameters of less than or equal to 11 mu and densities less than or equal to 1.063 g/ml, to 30 to 40% in cells of diameters greater than or equal to 16 mu and densities greater than or equal to 1.100 g/ml. Maximum anti-IgE challenge of nearly homogeneous formalin-sensitive mast cells (94.3 +/- 2.1% purity, n = 6) caused the generation of both leukotriene C4 (64.6 +/- 26.4 pg/mast cell) and PGD2 (114.8 +/- 37.5 pg/mast cell). Six- to eight-fold enrichment of formalin-resistant mast cells did not significantly alter the histamine release response or profiles of arachidonate metabolites. Similar results were obtained for the nonimmunologic stimulus ionophore A23187. We conclude that two histochemically distinct subpopulations, of mast cells are present in human lung suspensions. Although formalin-sensitive cells account for almost 90% of lung mast cells, formalin-resistant cells are separable by their large diameters and higher densities. Both subtypes show similar histamine release responses and arachidonate oxidation profiles.  相似文献   

8.
As part of an ongoing investigation of human mast cell heterogeneity, we have isolated, partially purified, and characterized the uterine mast cell and compared it with mast cells isolated from other organs. The average histamine content of myometrium and leiomyofibroma obtained from hysterectomies was 2.1 +/- 0.3 (mean +/- SEM) microgram/g of tissue (n = 10), and the histamine content of the two tissues did not differ significantly. A mild collagenase, hyaluronidase, and DNase digestion was used to disperse the uterine mast cells, with an average yield of 9.5% (range, 0 to 21%). The average histamine/uterine mast cell was 2.1 +/- 0.2 pg (n = 3), and 61 +/- 7% (n= 3) of the uterine mast cells survived overnight culture. Early purification efforts with Percoll gradients have yielded up to 80% pure uterine mast cells, with an average of 27 +/- 10% (n = 5). Uterine mast cells released histamine in response to the secretogogues anti-IgE and A23187 but did not respond to substance P or to the basophil secretogogues FMLP, C5a, and 12-O-tetradecanoylphorbol-13-acetate. After 1 microgram/ml anti-IgE stimulation, the uterine mast cell appeared to make significant quantities of PGD2 (89 +/- 26 ng/10(6) cells, n = 6) (p less than 0.05), as assayed by RIA. Simultaneously, leukotriene C4 release was 45 +/- 15 ng/10(6) cells, (n = 6) (p less than 0.05), as assayed by RIA. Combined gas-chromatography mass spectroscopy analysis of anti-IgE-stimulated cell supernatants confirmed the production of PGD2. In pharmacologic studies, isobutyl-methylxanthine and isoproterenol blocked anti-IgE-induced histamine release. The uterine mast cell is similar to the lung mast cell in terms of response to secretogogues and release of arachidonic acid metabolites. Ultrastructurally, the uterine mast cell contains scroll granules, crystal granules, combined granules, homogeneously dense granules, and large lipid bodies, many with focal lucencies within them. Particle granules, most frequently present in gut mast cells of mucosal origin, were absent from uterine mast cells. Although certain features are analogous to the ultrastructure of skin or lung mast cells, the combination of structures is distinctive for uterine mast cells.  相似文献   

9.
Membrane phospholipid turnover was investigated during histamine release from rat mast cells. Addition of calcium ionophore A23187 (0.5 microgram/ml) to mast cells prelabeled with [3H]glycerol induced the rapid and progressive increase in phosphatidic acid (PA) and 1,2-diacylglycerol (DG), which was concomitant with the small rise in phosphatidylinositol (PI). Loss of the level in triacylglycerol (TG) was very marked. Polyamine compound 48/80 (5 micrograms/ml) was shown to cause rises in PA, 1,2-DG, and PI without any significant changes in TG. Both stimuli increased incorporation of exogenous [3H]glycerol into phospholipids, indicating the involvement of de novo synthesis in phospholipid metabolism. Studies with [3H]arachidonic acid-labeled mast cells showed an enhanced liberation of radioactive arachidonate and metabolites upon histamine release. There were associated decreases of radioactivity in phosphatidylcholine (PC) and TG when exposed to A23187, while phosphatidylethanolamine (PE) was degraded as a result of 48/80 activation. The transient increases of [3H]arachidonoyl-1,2-DG and PA were caused by 48/80, while A23187 showed a gradual rise in the radioactivity in these two lipid fractions. These findings reflect activation of phospholipase C. When mast cells were activated by low concentrations of A23187 (0.1 microgram/ml) and 48/80 (0.5 microgram/ml), different behaviors of PI metabolism were observed. An early degradation of PI and a subsequent formation of 1,2-DG and PA suggest that the lower concentrations of these agents stimulate the PI cycle initiated by PI breakdown rather than de novo synthesis. These results demonstrate that marked and selective changes in membrane phospholipid metabolism occur during histamine release from mast cells, and that these reactions seem to be controlled by the coordination of degradation and biosynthesis, depending on the type and the concentration of stimulants. A23187 stimulates arachidonate release perhaps via the cleavages of PC and TG, whereas 48/80 liberates arachidonate from PE.  相似文献   

10.
Methylcholanthrene-transformed mouse fibroblasts synthesize prostaglandins in response to bradykinin, thrombin, serum, and the ionophore A23187. These agents activate phospholipases, thereby releasing fatty acids from phospholipids. To examine the phospholipid specificity of the phospholipases activated by bradykinin, thrombin, serum, and A23187, cells were labeled with [14C]arachidonic acid and stimulated with these agents in the presence of delipidated bovine serum albumin. Phospholipid classes were resolved by two-dimensional chromatography on silica gel-coated paper. Only phosphatidylinositol and phosphatidylcholine lost radioactivity upon stimulation. To characterize the fatty acid specificity of the phospholipases, cells were incubated with 14C-labeled stearic, oleic, linoleic, eicosatrienoic, or arachidonic acid and then exposed to the stimuli. Bradykinin, thrombin, and serum caused specific release of radioactivity into the medium only from cells labeled with arachidonic acid or eicosatrienoic acid, whereas A23187 caused release from cells labeled with any one of the five fatty acids. We conclude that bradykinin, thrombin, and serum activate phospholipases that specifically hydrolyze arachidonyl and eicosatrienoyl phosphatidylinositol and phosphatidylcholine, whereas A23187 is less specific activator of phospholipases.  相似文献   

11.
The role of cyclic AMP in the secretory mechanism of mast cells has been investigated by comparing the time course of changes in cellular levels of this cyclic nucleotide with the kinetics of secretion induced by basic peptides, antigen, anti-IgE and calcium ionophore. ACTH(1–24) peptide and a synthetic decapeptide representative of the sequence 497–506 within the Cε4 domain of human IgE induced a transient rise in cyclic AMP which reached approx. 150% of the resting levels by 10 s. Peptide-induced secretion of histamine was also rapid, reaching a maximum after 5–10 s. Immunological triggering of mast cells with antigen and anti-IgE raised levels of cyclic AMP to 150% of resting levels within 15 s, accompanying secretion of histamine which reached a maximum after 30 s. A relatively slower release of histamine induced by the calcium ionophore A23187 was paralleled by a significant reduction in cyclic AMP to 50% of the resting levels after 300 s. These data suggest a relationship between the accumulation of cyclic AMP in mast cells and secretion of histamine mediated by the Cε4 decapeptide and the ACTH(1–24) peptide as well as by IgE-dependent mechanisms. However, the simultaneous increase in cyclic AMP and secretion of histamine suggests that the two events may not be causally related.  相似文献   

12.
We have examined the effects of cyclosporin A (CsA) and a series of CsA analogs that bind with decreasing affinity to cyclophilin, to evaluate the involvement of this protein in the release of preformed (histamine) and de novo synthesized (peptide leukotriene C4; LTC4) mediators of inflammatory reactions from human basophils. CsA (8 to 800 nM) concentration-dependently inhibited (5 to 60%) histamine release from peripheral blood basophils challenged with anti-IgE. CsA was more potent (92.6 +/- 1.8 vs 59.1 +/- 4.5%; p less than 0.001) and, at low concentrations, more effective when the channel-operated influx of Ca2+ was bypassed by the ionophore A23187 (IC40 = 24.1 +/- 3.9 vs 105.5 +/- 22.2 nM; p less than 0.05). CsA had no effect on the release of histamine caused by phorbol myristate and bryostatin 1 that activate different isoforms of protein kinase C. Inhibition of histamine release from basophils challenged with anti-IgE was not abolished by washing (three times) the cells before anti-IgE challenge. CsA also inhibited the de novo synthesis of LTC4 from basophils challenged with anti-IgE. The inhibitory effect of CsA was very rapid, and the drug, added from 1 to 10 min during the reaction, inhibited the ongoing release of histamine caused by anti-IgE and by A23187. The experiments with CsA analogs (CsG, CsC, CsD, and CsH) showed that CsH, which has an extremely low affinity for cyclophilin, has no effect on basophil mediator release. In addition, there is a significant correlation between the concentrations of CsA, G, C, and D that inhibited by 30% the histamine release induced by anti-IgE (r = 0.99; p less than 0.001) and by A23187 (r = 0.87; p less than 0.001) and their affinity for cyclophilin.  相似文献   

13.
Purified rat mast cells were used to study the effects of anti-inflammatory steroids on the release of [1-14C]-arachidonic acid ([1-14C]AA) and metabolites. Mast cells were incubated overnight with glucocorticoids, [1-14C]AA incorporated into cellular phospholipids and the release of [1-14C]AA, and metabolites determined using a variety of secretagogues. Release of [1-14C]AA and metabolites by concanavalin A, the antigen ovalbumin and anti-immunoglobulin in E antibody was markedly reduced by glucocorticoid treatment. Neither the total incorporation of [1-14C]AA nor the distribution into phospholipids was altered by hydrocortisone pretreatment. Glucocorticoid pretreatment did not alter [1-14C]AA release stimulated by somatostatin, compound 48/80, or the calcium ionophore, A23187. These data indicate that antiinflammatory steroids selectively inhibit immunoglobulin dependent release of arachidonic acid from rat mast cells. These findings question the role of lipomodulin and macrocortin as general phospholipase inhibitors and suggest that they may be restricted to immunoglobulin stimuli.  相似文献   

14.
Rat peritoneal mast cells respond to various secretagogues, such as ionophore A23187, concanavalin A (Ig E receptor cross-bridging) and compound 48/80 (membrane perturbing), to secrete histamine and to liberate arachidonic acid. Arachidonic acid release was made identifiable by pretreatment with BW755C, an inhibitor of both lipoxygenase and cyclo-oxygenase. The extent of arachidonic acid release varied among these three secretagogues. A23187 appeared to be most potent, whereas compound 48/80 was weakest. The sources of released arachidonic acids may be different depending on the types of stimulants. The stimulation with A23187 released arachidonic acid mainly from phosphatidylcholine and triacylglycerol. After treatment with concanavalin A and compound 48/80, in addition to phosphatidylcholine, phosphatidylinositol also appeared to serve as a donor of arachidonic acid.  相似文献   

15.
We examined the effect of low density lipoprotein (LDL) on histamine release from purified human lung mast cells. LDL inhibited anti-IgE- induced histamine release in a dose-dependent manner, with 100 micrograms/ml LDL-protein inhibiting histamine release by 53 +/- 8% (mean +/- SEM); half-maximal inhibition occurred at 40-80 micrograms/ml. LDL also inhibited calcium ionophore A23187-induced histamine release in a dose-dependent manner, with 1 mg/ml of LDL inhibiting histamine release by 83 +/- 9%; half maximal inhibition occurred at 220-280 micrograms/ml. Inhibition by LDL was time-dependent: half-maximal inhibition of anti-IgE- induced histamine release by LDL occurred at 30-50 minutes of incubation. The inhibitory effect of LDL was independent of buffer calcium concentrations (0-5 mM) or temperature (0-37 degrees C). These data are consistent with a newly defined immunoregulatory role for LDL.  相似文献   

16.
Phospholipid remodeling resulting in arachidonic acid (AA) release and metabolism in human neutrophils stimulated by calcium ionophore A23187 has been extensively studied, while data obtained using physiologically relevant stimuli is limited. Opsonized zymosan and immune complexes induced stimulus-specific alterations in lipid metabolism that were different from those induced by A23187. [3H]AA release correlated with activation of phospholipase A2 (PLA2) but not with cellular activation as indicated by superoxide generation. The latter correlated more with calcium-dependent phospholipase C (PLC) activation and elevation of cellular diacylglycerol (DAG) levels. When cells that had been allowed to incorporate [3H]AA were stimulated with A23187, large amounts of labeled AA was released, most of which was metabolized to 5-HETE and leukotriene B4. Stimulation with immune complexes also resulted in the release of [3H]AA but this released radiolabeled AA was not metabolized. In contrast, stimulation with opsonized zymosan induced no detectable release of [3H]AA. Analysis of [3H]AA-labeled lipids in resting cells indicated that the greatest amount of label was incorporated into the phosphatidylinositol (PI) pool, followed closely by phosphatidylcholine and phosphatidylserine, while little [3H]AA was detected in the phosphatidylethanolamine pool. During stimulation with A23187, a significant decrease in labeled PI occurred and labeled free fatty acid in the pellet increased. With immune complexes, only a small decrease was seen in labeled PI while the free fatty acid in the pellets was unchanged. In contrast, opsonized zymosan decreased labeled PI, and increased labeled DAG. Phospholipase activity in homogenates from human neutrophils was also assayed. A23187 and immune complexes, but not zymosan, significantly enhanced PLA2 activity in the cell homogenates. On the other hand, PLC activity was enhanced by zymosan and immune complexes. Stimulated increases in PLC activity correlated with enhanced superoxide generation induced by the stimulus.  相似文献   

17.
The functional and biochemical characterization of rat bone marrow derived mast cells (RBMMC) confirms both species-related differences between rat and mouse bone marrow-derived mast cells (MBMMC) as well as mast cell heterogeneity in a single species. Such RBMMC have the staining characteristics of mucosal mast cells and contain the mucosal mast cell protease. The RBMMC release the preformed granule mediator beta-hexosaminidase both in response to immunologic stimulation with 200 ng Ag (net release 15.8 +/- 3.8%) and in response to 1 microM calcium ionophore A23187 (net release 21.8 +/- 6.8%). However, compound 48/80, substance P, and somatostatin did not induce mast cell degranulation. In experiments with optimal beta-hexosaminidase release, the RBMMC generated similar quantities of the newly formed arachidonic acid metabolites leukotriene C4 and PGD2 when stimulated with either Ag or calcium ionophore A23187. The RBMMC incorporate [35S]sulfate into proteoglycans consisting of 90% chondroitin sulfates and 10% heparin. The chondroitin sulfates were comprised of chondroitin 4 sulfate and chondroitin sulfate diB sulfated disaccharides in a ratio of 4/1. Although we show that RBMMC and MBMMC share a low histamine content, functional IgE receptors and unresponsiveness to cromolyn and selective secretagogues (compound 48/80, substance P, and somatostatin), we also provide evidence that RBMMC differ from MBMMC in their profile of newly generated mediators, preformed granule proteoglycan, and lack of proliferative response to mouse IL-3.  相似文献   

18.
When applied to the skin, phorbol esters (PEs) elicit signs of acute inflammation, suggesting they may induce the release of mediators from mast cells. Therefore, we have studied the effects of PEs on purified rat peritoneal and thoracic mast cells both alone and in conjunction with the calcium ionophore, A23187, and various other secretagogues that interact with immunoglobulin E (e.g., anti-IgE and Con A) or other cell surface receptors, e.g., somatostatin and compd 48/80. PEs alone caused little or no release of histamine. However, the PE 12-O-tetradecanoylphorbol-13-acetate (TPA, 10 ng/ml) tremendously potentiated release induced by the calcium ionophore A23187, reducing the EC50 for A23187 from 832 ng/ml to 56 ng/ml. In the presence of suboptimal A23187 (50 ng/ml), only active tumor promoting PEs elicited histamine release. The EC50 values of the various active PEs were: TPA 5 ng/ml; 4 beta-PDD, 83 ng/ml; and 4-O-methyl-TPA, 807 ng/ml, with maximal histamine release ranging from 54 to 80%. TPA synergistically enhanced stimulation of histamine release by anti-IgE and Con A over the entire concentration-response range. In contrast, this synergism was absent when cells were stimulated with somatostatin and compd 48/80. Phorbol esters may act by increasing the activity of a calcium/phospholipid-dependent protein kinase (Ca/PL-PK). Mast cells do have Ca/PL-PK activity, and TPA in the presence of suboptimal A23187 induces protein phosphorylation comparable with other secretagogues. These results suggest that in the purified mast cell, PE-induced mediator release increases the sensitivity of release mechanisms for calcium, acts syngergistically with secretagogues interacting with IgE, and as suggested from structure-activity relationships, occurs via a specific mechanism of action perhaps involving the Ca/PL-PK.  相似文献   

19.
Co-polymers composed of polyoxyethylene and polyoxypropylene have been shown previously to trigger histamine release from mouse peritoneal mast cells; this property quantitatively is directly related to the ionophorous ability of these compounds to cause a functional exchange of intracellular K+ for extracellular Na+ across the cell membrane. We investigated the effect of an inflammatory copolymer, T130R2, on human basophils. The data demonstrate that T130R2 can cause calcium-dependent histamine release from human basophils in vitro. Further, at concentrations that do not cause histamine release, this co-polymer markedly augments release by suboptimal concentrations of the lectin Con A or anti-IgE antibody and the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate but not the calcium ionophore A23187. Thus, these co-polymers induce mediator release from cells of both rodents and humans. In both instances it is likely that calcium-dependent cell triggering is the result of an influx of sodium ions with concomitant depolarization of the transmembrane potential. In common with the calcium ionophore A23187, the co-polymer T130R2 has the ability to synergize with stimuli which trigger the IgE receptor as well as those which directly activate the cellular calcium- and phospholipid-dependent protein kinase.  相似文献   

20.
Human mast cells, dispersed from lung tissue by proteolytic treatment and enriched to a purity of 23 to 68% by density-gradient centrifugation, were maintained ex vivo for up to 13 days when co-cultured with mouse skin-derived 3T3 fibroblasts in RPMI 1640 containing 10% fetal calf serum. The human mast cells were adherent to the fibroblast cultures within 2 to 4 hr after seeding, and after 7 days of co-culture were localized between the layers of fibroblasts. The cell surfaces of the mast cells and the fibroblasts did not form tight junctions, but rather approached within 20 nm of each other. The co-cultured mast cells did not divide; they maintained their cellular content of histamine and TAMe esterase and resembled in vivo mast cells in that their secretory granules exhibited scroll patterns and their nuclei were oval. Both the freshly isolated and the co-cultured mast cells responded to activation with anti-human IgE by exocytosing histamine and generating and releasing arachidonic acid metabolites. When freshly isolated mast cells were activated immunologically, they exocytosed 38 +/- 8% of their total histamine content and released 28 +/- 1.9 ng (mean +/- range, n = 2) of immunoreactive equivalents of prostaglandin D2 (PGD2) per microgram of total cellular histamine, but did not generate significant amounts of either leukotriene C4 (LTC4) or leukotriene B4 (LTB4). The 1-wk co-cultured mast cells, on the other hand, exocytosed 43 +/- 2.4% of their total histamine content, and released 86 +/- 10, 43 +/- 20, and 5.2 +/- 5.2 ng (mean +/- SD, n = 4) of immunoreactive equivalents of PGD2, LTC4, and LTB4, respectively, per microgram of histamine. Thus, human lung-derived mast cells can be maintained ex vivo when co-cultured with fibroblasts, and, when treated with anti-IgE, they metabolize arachidonic acid via both the cyclooxygenase and the 5-lipoxygenase pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号