共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The Rep protein of adeno-associated virus type 2 interacts with single-stranded DNA-binding proteins that enhance viral replication 总被引:1,自引:0,他引:1 下载免费PDF全文
Stracker TH Cassell GD Ward P Loo YM van Breukelen B Carrington-Lawrence SD Hamatake RK van der Vliet PC Weller SK Melendy T Weitzman MD 《Journal of virology》2004,78(1):441-453
Adeno-associated virus (AAV) type 2 is a human parvovirus whose replication is dependent upon cellular proteins as well as functions supplied by helper viruses. The minimal herpes simplex virus type 1 (HSV-1) proteins that support AAV replication in cell culture are the helicase-primase complex of UL5, UL8, and UL52, together with the UL29 gene product ICP8. We show that AAV and HSV-1 replication proteins colocalize at discrete intranuclear sites. Transfections with mutant genes demonstrate that enzymatic functions of the helicase-primase are not essential. The ICP8 protein alone enhances AAV replication in an in vitro assay. We also show localization of the cellular replication protein A (RPA) at AAV centers under a variety of conditions that support replication. In vitro assays demonstrate that the AAV Rep68 and Rep78 proteins interact with the single-stranded DNA-binding proteins (ssDBPs) of Ad (Ad-DBP), HSV-1 (ICP8), and the cell (RPA) and that these proteins enhance binding and nicking of Rep proteins at the origin. These results highlight the importance of intranuclear localization and suggest that Rep interaction with multiple ssDBPs allows AAV to replicate under a diverse set of conditions. 相似文献
3.
Charged-to-alanine scanning mutagenesis of the N-terminal half of adeno-associated virus type 2 Rep78 protein 下载免费PDF全文
Urabe M Hasumi Y Kume A Surosky RT Kurtzman GJ Tobita K Ozawa K 《Journal of virology》1999,73(4):2682-2693
The adeno-associated virus (AAV) Rep78 and Rep68 proteins are required for site-specific integration of the AAV genome into the AAVS1 locus (19q13.3-qter) as well as for viral DNA replication. Rep78 and Rep68 bind to the GAGC motif on the inverted terminal repeat (ITR) and cut at the trs (terminal resolution site). A similar reaction is believed to occur in AAVS1 harboring an analogous GAGC motif and a trs homolog, followed by integration of the AAV genome. To elucidate the functional domains of Rep proteins at the amino acid level, we performed charged-to-alanine scanning mutagenesis of the N terminus (residues 1 to 240) of Rep78, where DNA binding and nicking domains are thought to exist. Mutants were analyzed for their abilities to bind the GAGC motif, nick at the trs homolog, and integrate an ITR-containing plasmid into AAVS1 by electrophoretic mobility shift assay, trs endonuclease assay, and PCR-based integration assay. We identified the residues responsible for DNA binding: R107A, K136A, and R138A mutations completely abolished the binding activity. The H90A or H92A mutant, carrying a mutation in a putative metal binding site, lost nicking activity while retaining binding activity. Mutations affecting DNA binding or trs nicking also impaired the site-specific integration, except for E66A and E239A. These results provide important information on the structure-function relationship of Rep proteins. We also describe an aberrant nicking of Rep78. We found that Rep78 cuts predominantly at the trs homolog not only between the T residues (GGT/TGG), but also between the G and T residues (GG/TTGG), which may be influenced by the sequence surrounding the GAGC motif. 相似文献
4.
Ammar I Gogol-Döring A Miskey C Chen W Cathomen T Izsvák Z Ivics Z 《Nucleic acids research》2012,40(14):6693-6712
The Sleeping Beauty (SB), piggyBac (PB) and Tol2 transposons are promising instruments for genome engineering. Integration site profiling of SB, PB and Tol2 in human cells showed that PB and Tol2 insertions were enriched in genes, whereas SB insertions were randomly distributed. We aimed to introduce a bias into the target site selection properties of the transposon systems by taking advantage of the locus-specific integration system of adeno-associated virus (AAV). The AAV Rep protein binds to Rep recognition sequences (RRSs) in the human genome, and mediates viral integration into nearby sites. A series of fusion constructs consisting of the N-terminal DNA-binding domain of Rep and the transposases or the N57 domain of SB were generated. A plasmid-based transposition assay showed that Rep/SB yielded a 15-fold enrichment of transposition at a particular site near a targeted RRS. Genome-wide insertion site analysis indicated that an approach based on interactions between the SB transposase and Rep/N57 enriched transgene insertions at RRSs. We also provide evidence of biased insertion of the PB and Tol2 transposons. This study provides a comparative insight into target site selection properties of transposons, as well as proof-of-principle for targeted chromosomal transposition by composite protein-protein and protein-DNA interactions. 相似文献
5.
Mutational analysis of adeno-associated virus type 2 Rep68 protein endonuclease activity on partially single-stranded substrates 下载免费PDF全文
The endonuclease activity of the Rep68 and Rep78 proteins (Rep68/78) of adeno-associated virus type 2 (AAV) cuts at the terminal resolution site (trs) within the hairpin structure formed by the AAV inverted terminal repeats. Recent studies suggest that a DNA unwinding function of Rep68/78 may be required for endonuclease activity. We demonstrate that several mutant proteins which are endonuclease negative on a fully duplex hairpin substrate are endonuclease positive on a partially single-stranded hairpin substrate. Truncation analysis revealed that the endonuclease function is contained within the first 200 amino acids of Rep68/78. This endonucleolytic cleavage is believed to involve the covalent attachment of Rep68/78 to the trs via a phosphate-tyrosine linkage. A previous report (S. L. Walker, R. S. Wonderling, and R. A. Owens, J. Virol. 71:2722-2730, 1997) suggested that tyrosine 152 was part of the active site. We individually mutated each tyrosine within the first 200 amino acids of the Rep68 moiety of a maltose binding protein-Rep68/78 fusion protein to phenylalanine. Only mutation of tyrosine 156 resulted in a protein incapable of covalent attachment to a partially single-stranded hairpin substrate, suggesting that tyrosine 156 is part of the endonuclease active site. 相似文献
6.
Adeno-associated virus type 2 Rep endonuclease activity is necessary for both viral DNA replication and site-specific integration of the viral genome into human chromosome 19. The biochemical activities required for site-specific endonuclease activity (namely specific DNA binding and transesterification activity) have been mapped to the amino-terminal domain of the AAV2 Rep protein. The amino-terminal 208 amino acids are alone sufficient for site-specific endonuclease activity, and nicking by this domain is metal-dependent. To identify this metal-binding site, we have employed a cysteine mutagenesis approach that targets conserved acidic amino acids. By using this technique, we provide functional biochemical data supporting a role for glutamate 83 in the coordination of metal ions in the context of Rep endonuclease activity. In addition, our biochemical data suggest that glutamate 164, although not involved in the coordination of metal ions, is closely associated with the active site. Thus, in lieu of a crystal structure for the AAV type 2 amino-terminal domain, our data corroborate the recently published structural studies of the AAV type 5 endonuclease and suggest that although the two enzymes are not highly conserved with respect to the AAV family, their active sites are highly conserved. 相似文献
7.
8.
9.
Rep68 and Rep78 DNA helicases, encoded by adeno-associated virus 2 (AAV2), are required for replication of AAV viral DNA in infected cells. They bind to imperfect palindromic elements in the inverted terminal repeat structures at the 3'- and 5'-ends of virion DNA. The ATPase activity of Rep68 and Rep78 is stimulated up to 10-fold by DNA containing the target sequence derived from the inverted terminal repeat; nontarget DNA stimulates ATPase activity at 50-fold higher concentrations. Activation of ATPase activity of Rep68 by DNA is cooperative with a Hill coefficient of 1.8 +/- 0.2. When examined by gel filtration at 0.5 M NaCl in the absence of DNA, Rep68 self-associates in a concentration-dependent manner. In the presence of DNA containing the binding element, Rep68 (and Rep78) forms protein-DNA complexes that exhibit concentration-dependent self-association in gel filtration analysis. The ATPase activity of the isolated Rep68-DNA and Rep78-DNA complexes is not activated by additional target DNA. Results of sedimentation velocity experiments in the presence of saturating target DNA are consistent with Rep68 forming a hexamer of the protein with two copies of the DNA element. Activation of the ATPase activity of Rep68 is associated with the formation of a protein-DNA oligomer. 相似文献
10.
11.
Vectors derived from adeno-associated virus type 2 (AAV2) are promising gene delivery vehicles, but it is still challenging to get the large number of recombinant adeno-associated virus (rAAV) particles required for large animal and clinical studies. Current transfection technology requires adherent cultures of HEK 293 cells that can only be expanded by preparing multiple culture plates. A single large-scale suspension culture could replace these multiple culture preparations, but there is currently no effective co-transfection scheme for generating rAAV from cells in suspension culture. Here, we weaned HEK 293 cells to suspension culture using hydrogel-coated six-well culture plates and established an efficient transfection strategy suitable for these cells. Then the cultures were gradually scaled up. We used linear polyethylenimine (PEI) to mediate transfection and obtained high transfection efficiencies ranging from 54% to 99%, thereby allowing efficient generation of rAAV vectors. Up to 10(13) rAAV particles and, more importantly, up to 10(11) infectious particles were generated from a 2-L bioreactor culture. The suspension-transfection strategy of this study facilitates the homogeneous preparation of rAAV at a large scale, and holds further potential as the basis for establishing a manufacturing process in a larger bioreactor. 相似文献
12.
13.
Stable secondary structure near the nicking site for adeno-associated virus type 2 Rep proteins on human chromosome 19 下载免费PDF全文
Adeno-associated virus serotype 2 (AAV-2) can preferentially integrate its DNA into a 4-kb region of human chromosome 19, designated AAVS1. The nicking activity of AAV-2's Rep68 or Rep78 proteins is essential for preferential integration. These proteins nick at the viral origin of DNA replication and at a similar site within AAVS1. The current nicking model suggests that the strand containing the nicking site is separated from its complementary strand prior to nicking. In AAV serotypes 1 through 6, the nicking site is flanked by a sequence that is predicted to form a stem-loop with standard Watson-Crick base pairing. The region flanking the nicking site in AAVS1 (5'-GGCGGCGGT/TGGGGCTCG-3' [the slash indicates the nicking site]) lacks extensive potential for Watson-Crick base pairing. We therefore performed an empirical search for a stable secondary structure. By comparing the migration of radiolabeled oligonucleotides containing wild-type or mutated sequences from the AAVS1 nicking site to appropriate standards, on native and denaturing polyacrylamide gels, we have found evidence that this region forms a stable secondary structure. Further confirmation was provided by circular dichroism analyses. We identified six bases that appear to be important in forming this putative secondary structure. Mutation of five of these bases, within the context of a double-stranded nicking substrate, reduces the ability of the substrate to be nicked by Rep78 in vitro. Four of these five bases are outside the previously recognized GTTGG nicking site motif and include parts of the CTC motif that has been demonstrated to be important for integration targeting. 相似文献
14.
Biologically active Rep proteins of adeno-associated virus type 2 produced as fusion proteins in Escherichia coli. 总被引:4,自引:17,他引:4 下载免费PDF全文
J A Chiorini M D Weitzman R A Owens E Urcelay B Safer R M Kotin 《Journal of virology》1994,68(2):797-804
Four Rep proteins are encoded by the human parvovirus adeno-associated virus type 2 (AAV). The two largest proteins, Rep68 and Rep78, have been shown in vitro to perform several activities related to AAV DNA replication. The Rep78 and Rep68 proteins are likely to be involved in the targeted integration of the AAV DNA into human chromosome 19, and the full characterization of these proteins is important for exploiting this phenomenon for the use of AAV as a vector for gene therapy. To obtain sufficient quantities for facilitating the characterization of the biochemical properties of the Rep proteins, the AAV rep open reading frame was cloned and expressed in Escherichia coli as a fusion protein with maltose-binding protein (MBP). Recombinant MBP-Rep68 and MBP-Rep78 proteins displayed the following activities reported for wild-type Rep proteins when assayed in vitro: (i) binding to the AAV inverted terminal repeat (ITR), (ii) helicase activity, (iii) site-specific (terminal resolution site) endonuclease activity, (iv) binding to a sequence within the integration locus for AAV DNA on human chromosome 19, and (v) stimulation of radiolabeling of DNA containing the AAV ITR in a cell extract. These five activities have been described for wild-type Rep produced from mammalian cell extracts. Furthermore, we recharacterized the sequence requirements for Rep binding to the ITR and found that only the A and A' regions are necessary, not the hairpin form of the ITR. 相似文献
15.
Adeno-associated virus type 2 (AAV) is the only known eucaryotic virus capable of targeted integration in human cells. AAV integrates preferentially into human chromosome (ch) 19q13.3qter. The nonstructural proteins of AAV-2, Rep78 and Rep68, are essential for targeted integration. Rep78 and Rep68 are multifunctional proteins with diverse biochemical activities, including site-specific binding to AAV and ch-19 target sequences, helicase activity, and strand-specific, site-specific endonuclease activities. Both a Rep DNA binding element (RBE) and a nicking site essential for AAV replication present within the viral terminal repeats are also located on ch-19. Recently, identical RBE sequences have been identified at other locations in the human genome. This fact raises numerous questions concerning AAV targeted integration; specifically, how many RBE sequences are in the human genome? How does Rep discriminate between these and the ch-19 RBE sequence? Does Rep interact with all sites and, if so, how is targeted integration within a fixed time frame facilitated? To better characterize the role of Rep in targeted integration, we established a Rep-dependent filter DNA binding assay using a highly purified Rep-68 fusion protein. Electron microscopy (EM) analysis was also performed to determine the characteristics of the Rep-RBE interaction. Our results determined that the Rep affinity for ch-19 is not distinct compared to other RBEs in the human genome when utilizing naked DNA. In fact, a minimum-binding site (GAGYGAGC) efficiently associated with Rep, suggesting that as many as 2 × 105 sites may exist. In addition, such sites also exist frequently in nonprimate mammalian genomes, although AAV integrates site specifically into primate genomes. EM analysis demonstrated that only one Rep-DNA complex was formed on ch-19 target DNA. Surprisingly, identically sized complexes were observed on all substrates containing a RBE sequence, but never on DNA lacking an RBE. Rep-DNA complexes involved a multimeric protein structure that spanned ca. 60 bp. Immunoprecipitation of AAV latently infected cells determined that 1,000 to 4,000 copies of Rep78 and Rep68 protein are expressed per cell. Comparison of the Rep association constant with those of established DNA binding proteins indicates that sufficient molecules of Rep are present to interact with all potential RBE sites. Moreover, Rep expression in the absence of AAV cis-acting substrate resulted in Rep-dependent amplification and rearrangement of the target sequence in ch-19. This result suggests that this locus is a hot spot for Rep-dependent recombination. Finally, we engineered mice to carry a single 2.7-kb human ch-19 insertion containing the AAV ch-19 target locus. Using cells derived from these mice, we demonstrated that this sequence was sufficient for site-specific recombination after infection with transducing vectors expressing Rep. This result indicates that any host factors required for targeting are conserved between human and mouse. Furthermore, the human ch-19 cis sequences and chromatin structure required for site-specific recombination are contained within this fragment. Overall, these results indicate that the specificity of targeted recombination to human ch-19 is not dictated by differential Rep affinities for RBE sites. Instead, specificity is likely dictated by human ch-19 sequences that serve as a Rep protein-mediated origin of replication, thus facilitating viral targeting through Rep-Rep interactions and host enzymes, resulting in site-specific recombination. Control of specificity is clearly dictated by the ch-19 sequences, since transfer of these sequences into the mouse genome are sufficient to achieve Rep-dependent site-specific integration.Adeno-associated virus type 2 (AAV) contains a single-stranded DNA genome of approximately 4.7 kb (50) and is a member of the Parvoviridae family (3). AAV is unique among other eucaryotic DNA viruses in that it utilizes a biphasic lifecycle to persist in nature. In the presence of a helper virus, adenovirus (Ad) or herpesvirus, AAV will undergo a productive infection. In the absence of a helper virus, AAV will integrate preferentially (>70%) into chromosome (ch) 19q13.3qter (3, 35). The ability of this nonpathogenic DNA virus, or virus-derived vector systems, to integrate site specifically have made it an attractive candidate vector for human gene therapy (45).The AAV genome consists of two open reading frames (ORFs), which comprise the rep and cap genes, and 145-bp inverted terminal repeats (ITRs), which serve as the origins of replication (3, 35). The left ORF of AAV encodes four nonstructural proteins, Rep78, Rep68, Rep52, and Rep40. Extensive characterization of Rep78 and Rep68 in vitro has identified the following biochemical activities, DNA binding (18, 19), site-specific and strand-specific endonuclease activities (17, 19), and DNA-RNA and DNA-DNA helicase activities (17, 19, 59), all of which appear to be necessary for viral replication (15, 53). More importantly, Rep78 and Rep68 are required for mediating targeted integration (2, 43, 47, 51, 60).Though site-specific integration is dependent upon either of the two large Rep proteins, the AAV ITRs are the only cis elements required for integration (34, 44, 61). In the absence of Rep proteins, the virus will still integrate through the ITR sequence but randomly into the host genome (21, 56, 61). Although integration in the absence of the Rep proteins is random, virus-cell junctions are nearly identical to junctions formed during targeted integration (DNA microhomology at junctions, specific deletions of the ITR sequences, rearrangement of the chromosome locus, and head-to-tail virus concatemers) (41, 62). In fact, in vitro integration products generated using cellular extracts produced identical type junctions, demonstrating the essential role the ITRs play in viral integration (62). From this analysis, Yang et al. (62) concluded that both random and targeted integration are dependent upon a cellular recombination pathway, with the role of Rep facilitating integration at ch-19. To help account for AAV targeting, a nearly identical Rep binding element (RBE) and a nicking site (trs) to that present on the AAV ITR was identified on the ch19.13.3qter AAV integration sequence (23–25, 43, 46, 54, 57). It was also demonstrated that Rep68 could mediate complex formation between the AAV ITR and the ch-19 integration site in vitro (57). This led to a hypothesis that AAV may target integration by Rep-mediated complex formation between the AAV ITR and the ch19 integration site. However, since this observation subsequent data has demonstrated that Rep can bind to degenerate RBE sequences, (5, 32). In fact, computer analysis identified at least 15 genomic genes which contained RBE sites that bound to AAV Rep protein in vitro, all more efficient than the ch-19 sequence (58). These data raise the question as to how Rep can target ch-19 among other RBE sequences. Using an Epstein-Barr virus (EBV)-based shuttle vector system carrying sequences from ch-19, Linden et al. demonstrated that the trs site was also critical for AAV site-specific integration (29, 30). When the trs site was not present, targeting was lost, even though the RBE was present. The present study suggested that both sequences were essential for site-specific integration (the RBE and the trs sequences). The probability of identifying a RBE with the correct proximity of a trs site would suggest a frequency of <6 × 10−11/genome, thereby defining a unique sequence in the human genome (54). While these studies identify ch-19 cis elements required for AAV targeted integration and suggest why this reaction is specific, how Rep carries out this reaction remains unclear.Critical to any model of AAV Rep-mediated targeted integration is the ability to recognize the ch-19 target sequence among other potential RBE sequences. Though Rep can bind many degenerate sequences, the actual definition of what constitutes an RBE is somewhat unclear. Random oligonucleotide selection demonstrated that the RBE could be defined as an 8-bp sequence: 5′-GAGYGAGC-3′ (5). However, it was shown by methylation interference assays that the RBE was an 18-bp core sequence and that any mutation within this sequence would significantly affect Rep binding (42). Also, the report by Wonderling and Owens (58) demonstrated that the RBE oligonucleotides derived from the BLAST search contained mutations in this 18-bp core sequence but still bound better to the MBP-Rep68 than to the ch-19 RBE. Depending on the definition of an AAV RBE, the copy number present in the human genome (GAGYGAGC = 200,000 copies/genome, whereas 18-bp core = 1 copy/genome) could significantly impact the ability of Rep to identify its target locus.Based on the above information, the number of RBE sequences in the human genome, how Rep discriminates between these and the ch-19 target locus RBE sequence, and how Rep interacts with all sites and still facilitates targeted integration within a fixed time frame become of significant importance. In this study, we evaluated the role of alternative RBEs in the human genome and how these sequences might impact the ability of Rep to target the locus on ch-19. Using a filter-binding assay and a highly purified source of Rep68 protein, we established that genomic DNA will compete efficiently against a ch-19 target sequences. In this assay, a minimum Rep binding site of 8-bp in the context of large DNA fragments demonstrated competition, suggesting that as many as 200,000 potential binding sites may exist in the human genome. Filter-binding analysis of genomic DNA successfully retained ch-19 target sequences, as well as a cellular RBE identified by BLAST analysis, corroborating the competition results. Electron microscopy (EM) analysis was utilized to distinguish possible differences between Rep protein DNA interaction with ch-19 RBE compared to a minimum 8-bp RBE sequence. Identical multimeric Rep protein DNA complexes, which spanned about 60 bp, assembled on ch-19 target DNA, as well as a minimum RBE site, but never on heterologous DNA lacking these sequences. At a high Rep concentration, protein DNA looping structures were detected, but no evidence for paranemic structures were observed. In vivo analysis of Rep protein levels in a latent infection demonstrated approximately 1 to 4,000 copies/cell. Analysis of Rep expression in non-virus-infected cells demonstrated DNA rearrangement of the ch-19 target sequence, suggesting that this locus is a hot spot for Rep-induced DNA amplification and rearrangement that most likely influences AAV targeted integration. Finally, generation of an animal model carrying the human ch-19 sequence at the mouse hypoxanthine phosphoribosyltransferase (HPRT) locus facilitated AAV Rep-mediated targeted integration and corroborates the importance of the ch-19 RBE-trs sequence. 相似文献
16.
Distance-dependent processing of adeno-associated virus type 5 RNA is controlled by 5' exon definition 下载免费PDF全文
Adeno-associated virus type 5 (AAV5) is unique among human AAV serotypes in that it uses a polyadenylation site [(pA)p] within the single small intron in the center of the genome. We previously reported that inhibition of polyadenylation at (pA)p, necessary for read-through of P41-generated capsid gene pre-mRNAs which are subsequently spliced, requires binding of U1 snRNP to the upstream donor. Inhibition was reduced as the distance between the cap site and the donor was increased (increasing the size of the 5' exon). Here, we have demonstrated that U1-70K is a key component of U1 snRNP that mediates inhibition of polyadenylation at (pA)p. Furthermore, introduction of a U-rich stretch, predicted to target TIA-1 and thus increase the affinity of U1 snRNP binding to the intervening donor site, significantly augmented inhibition of (pA)p, while depletion of TIA-1 by siRNA increased (pA)p read-through. Finally, artificially tethering the cap binding complex (CBC) components CBP80 and CBP20 upstream of the intron donor increased inhibition of polyadenylation at (pA)p. Our results suggest that interaction with the CBC strengthens U1 snRNP binding to the downstream intron donor in a manner inversely proportional to the size of the 5' exon, thus governing the competition between intron splicing and polyadenylation at (pA)p. This competition must be optimized to program both the levels of polyadenylation of P7- and P19-generated RNA at (pA)p required to produce proper levels of the essential Rep proteins and the splicing of P41-generated RNAs to produce the proper ratio of capsid proteins during AAV5 infection. 相似文献
17.
18.
Collaco RF Kalman-Maltese V Smith AD Dignam JD Trempe JP 《The Journal of biological chemistry》2003,278(36):34011-34017
The human adeno-associated virus (AAV) has generated much enthusiasm as a transfer vector for human gene therapy. Although clinical gene therapy trials have been initiated using AAV vectors, much remains to be learned regarding the basic mechanisms of virus replication, gene expression, and virion assembly. AAV encodes four nonstructural, or replication (Rep), proteins. The Rep78 and Rep68 proteins regulate viral DNA replication, chromosomal integration, and gene expression. The Rep52 and Rep40 proteins mediate virus assembly. To better understand Rep protein function, we have expressed the Rep40 protein in Escherichia coli and purified it to near homogeneity. Like the other Rep proteins, Rep40 possesses helicase and ATPase activity. ATP is the best substrate, and Mg2+ is the most efficient divalent metal ion for helicase activity. A Lys to His mutation in the purine nucleotide-binding site results in a protein that inhibits helicase activity in a dominant negative manner. Rep40 unwinds double-stranded DNA containing a 3' single-stranded end, or blunt end, unlike the Rep68 and Rep52 enzymes, which have a strict requirement for DNA duplexes containing a 3' single-stranded end. Values for KATP in the ATPase assay are 1.1 +/- 0.2 mM and 1.2 +/- 0.2 mM in the absence and presence, respectively, of single-stranded DNA. Values for Vmax are 220 +/- 10 and 1,500 +/- 90 nmol/min/mg in the absence and presence, respectively, of single-stranded DNA. These studies provide the first enzymatic characterization of the AAV Rep40 protein and elucidate important functional differences between the AAV helicases. 相似文献
19.
20.
Intermediates of adeno-associated virus type 2 assembly: identification of soluble complexes containing Rep and Cap proteins. 总被引:2,自引:13,他引:2 下载免费PDF全文
The proteins encoded by the adeno-associated virus type 2 (AAV-2) rep and cap genes obtained during a productive infection of HeLa cells with AAV-2 and adenovirus type 2 were fractionated according to solubility, cellular localization, and sedimentation properties. The majority of Rep and Cap proteins accumulated in the nucleus, where they distributed into a soluble and an insoluble fraction. Analysis of the soluble nuclear fraction of capsid proteins by sucrose density gradients showed that they formed at least three steady-state pools: a monomer pool sedimenting at about 6S, a pool of oligomeric intermediates sedimenting between 10 and 15S, and a broad pool of assembly products with a peak between 60 and 110S, the known sedimentation positions of empty and full capsids. While the soluble nuclear monomer and oligomer pool contained predominantly only two capsid proteins, the 30 to 180S assembly products contained VP1, VP2, and VP3 in a stoichiometry similar to that of purified virions. They probably represent different intermediates in capsid assembly, DNA encapsidation, and capsid maturation. In contrast, the cytoplasmic fraction of capsid proteins showed a pattern of oligomers continuously increasing in size without a defined peak, suggesting that assembly of 60S particles occurs in the nucleus. Soluble nuclear Rep proteins were distributed over the whole sedimentation range, probably as a result of association with AAV DNA. Subfractions of the Rep proteins with defined sedimentation values were obtained in the soluble nuclear and cytoplasmic fractions. We were able to coimmunoprecipitate capsid proteins sedimenting between 60 and 110S with antibodies against Rep proteins, suggesting that they exist in common complexes possibly involved in AAV DNA packaging. Antibodies against the capsid proteins, however, precipitated Rep78 and Rep68 predominantly with a peak around 30S representing a second complex containing Rep and Cap proteins. 相似文献