首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Clones encoding a thiolprotease (tpp) have been isolated from a cDNA library of unpollinated, senescent pea ovaries and its pattern of expression during both ovary senescence and parthenocarpic development have been studied. The sequence of the tpp cDNA displays a high similarity with other plant and animal thiolproteases of the papain group. The homology is highest around the Cys-His of the active centre; a 109 amino acid sequence at the carboxy terminus was found to be homologous only to thiolproteases of plant origin; this part of the mRNA is also present in another pea mRNA that exhibits similar patterns of induction. tpp mRNA shows a temporal pattern of accumulation that precedes that observed for proteolytic activity. Such accumulation did not occur when ovaries were induced to grow parthenocarpically by gibberellic acid (GA) treatment; furthermore the initial low level of expression present in ovaries decreased after GA treatment, indicating that the gene is down-regulated by gibberellins. Spatially, tpp mRNA is localized mainly within the ovule and ovary vascular elements, and transiently within the endocarp of senescent ovaries. This pattern of expression precedes the development of the cytopathogenic effects observed as unpollinated ovaries undergo senescence.  相似文献   

2.
Asparaginyl endopeptidase is a cysteine endopeptidase that has strict substrate specificity toward the carboxyl side of asparagine residues, and is possibly involved in the post-translational processing of proproteins. In this report one full-length cDNA, SPAE, was isolated from senescent leaves of sweet potato (Ipomoea batatas (L.) Lam). SPAE contained 1479 nucleotides (492 amino acids) in the open reading frame, and exhibited high amino acid sequence homologies (c. 61-68%) with asparaginyl endopeptidases of Vicia sativa, Phaseolus vulgaris, Canavalia ensiformis, and Vigna mungo. SPAE probably encoded a putative precursor protein. Via cleavage of the N- and C-termini, it produced a mature protein containing 325 amino acids (from the 51st to the 375th amino acid residues), the conserved catalytic residues (the 173rd His and 215th Cys amino acid residues), and the putative N-glycosylation site (the 332nd Asn amino acid residue). Semi-quantitative RT-PCR and western blot hybridization showed that SPAE gene expression was enhanced significantly in natural senescent leaves and in dark- and ethephon-induced senescent leaves, but was much less in mature green leaves, stems, and roots. Phylogenic analysis showed that SPAE displayed close association with vacuolar processing enzymes (legumains/asparaginyl endopeptidases), which function via cleavage for proprotein maturation in the protein bodies during seed maturation and germination. In conclusion, sweet potato SPAE is probably a functional, senescence-associated gene and its mRNA and protein levels were significantly enhanced in natural and induced senescent leaves. The possible role and function of SPAE associated with bulk protein degradation and mobilization during leaf senescence were also discussed.  相似文献   

3.
A senescence-specific protease has been purified from senescent unpollinated ovaries of Pisum sativum L. cv. Alaska by acidic extraction. (NH4)2SO4 fractionation, ion exchange chromatography on CM-Sephadex, and affinity chromatography on ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-Sepharose. Characterization of the purified protease indicated that it is a thiol-endoprotease (EC 3. 4. 22 class) active over a wide pH range. Purified antibodies against this protease inhibit the degradation of Rubisco in autodigested extracts of senescent ovaries, suggesting that Rubisco might be a substrate for the protease in senescent pea ovaries. The relative levels of the protease were determined by an enzyme-linked immunosorbent assay (ELISA) along the processes of ovary senescence and gibberellic acid (GA)-induced fruit development, indicating its induction at the beginning of senescence and the suppression of its synthesis by GA treatment.  相似文献   

4.
5.
Enzymatic activities involved in putrescine metabolism in ovaries of Pisum sativum L. during ovary senescence and fruit set were investigated. Accumulation of putrescine was observed during incubation of extracts from gibberellic acid-treated unpollinated ovaries (young developing fruits) but not in extracts from untreated ovaries (senescent ovaries). Extracts from pea ovaries showed arginine decarboxylase (ADC) activity, but ornithine decarboxylase and arginase activity were not detected. ADC activity decreased in presenescent ovaries and increased markedly after induction of fruit set with gibberellic acid. Increases in ADC activity were also observed with application of other plant growth substances (benzy-ladenine and 2,4-dichlorophenoxyacetic acid), after pollination, and in the slender (la crys) pea mutant. By contrast, putrescine oxidase activity increased in presenescent ovaries but did not increase during early fruit development. All of these results suggest that ADC and putrescine oxidase are involved in the control of putrescine metabolism. Ovary senescence is characterized by the absence of putrescine biosynthesis enzymes and increased levels of putrescine oxidase and fruit development by an increase in ADC and a constant level of putrescine oxidase.  相似文献   

6.
7.
A thiol-endoprotease induced during the senescence of unpollinated ovaries of Pisum sativum L. cv. Alaska has been localized at both cellular and subcellular levels using purified antibodies. Immunoblot analysis showed a single band of 30 kDa in extracts from senescent ovaries 3 and 4 days post-anthesis. Immunolocalization showed the accumulation of the protease within the exocarp and in the outer cell layers of the mesocarp of the senescent ovaries, although with an asymmetric distribution as illustrated in transverse sections. Ultrastructural localization indicates that the protease is associated with the tonoplast and with electron dense materials within the vacuole, where lysis of cell components occurs in senescent ovaries.  相似文献   

8.
The activities and changes in the levels of exopeptidase and endopeptidase activities were characterized in unpollinated ovaries of Pisum sativum L. cv Alaska during senescence and early fruit development induced by gibberellic acid (GA3). Two aminopeptidases and one iminopeptidase were electrophoretically separated. These peptidases were sensitive to inhibitors of sulfhydryl proteases. Carboxypeptidase activity was inhibited by phenylmethyl sulfonyl fluoride. An azocasein-degrading endopeptidase, sensitive to thiol protease inhibitors, was also found. An increase in the specific activity of aminopeptidase during both fruit development and ovary senescence was observed. In contrast, the specific activity of carboxypeptidase and endopeptidase increased only during senescence of the ovary. Changes in exopeptidase activity in senescing ovaries could be mainly the consequence of a greater stability to proteolysis while the rise in endopeptidase activity appeared to be due to new or increased synthesis of the enzyme. These results suggest that endopeptidase, and not amino or carboxypeptidase, plays a key role in the senescence of pea ovaries and that the changes in unpollinated ovaries leading to ovary senescence or fruit development can be controlled by gibberellins.  相似文献   

9.
10.
11.
12.
13.
Granulins are a family of evolutionarily ancient proteins that are involved in regulating cell growth and division in animals. In this report a full-length cDNA, SPCP3, was isolated from senescent leaves of sweet potato (Ipomoea batatas). SPCP3 contains 1389 nucleotides (462 amino acids) in its open reading frame, and exhibits high amino acid sequence homologies (ca. 64-73.6%) with several plant granulin-containing cysteine proteases, including potato, tomato, soybean, kidney bean, pea, maize, rice, cabbage, and Arabidopsis. Gene structural analysis shows that SPCP3 encodes a putative precursor protein. Via cleavage of the N-terminal propeptide, it generates a protein with 324 amino acids (from the 139th to the 462nd amino acid residues), which contains two main domains: the conserved catalytic domain with the putative catalytic residues (the 163rd Cys, 299th His and 319th Asn) and the C-terminal granulin domain (from the 375th to the 462nd amino acid residues). Semi-quantitative RT-PCR and protein gel blot hybridization showed that SPCP3 gene expression was enhanced significantly in natural senescent leaves and in dark- and ethephon-induced senescent leaves, but was almost undetectable in mature green leaves, veins, and roots. Phylogenic analysis showed that SPCP3 displayed close association with a group of plant granulin-containing cysteine proteases which have been implied to be involved in programmed cell death. In conclusion, sweet potato SPCP3 is a functional, senescence-associated gene. Its mRNA and protein levels were significantly enhanced in natural and induced senescing leaves. The physiological role and/or function of SPCP3 associated with programmed cell death during leaf senescence were also discussed.  相似文献   

14.
Separation and quantitation of polyamines from unpollinated pea (Pisum sativum L.) ovaries and young fruits induced by application of gibberellic acid to unpollinated ovaries showed, in both cases, a decrease in putrescine and spermidine levels between anthesis and 4 d later. By contrast, spermine levels increased prior to the onset of senescence of the unpollinated ovaries (3 d post anthesis) and decreased during fruit development. Low levels of putrescine, spermidine and spermine were also observed in young fruits obtained by self-pollination and by treatment of unpollinated ovaries with 2,4-dichlorophenoxyacetic acid. In-vitro culture of ovary explants in a medium containing spermine showed that a reduction of the growth of gibberellic acid-treated unpollinated ovaries was associated with a rise in the level of spermine in the fruits. The results obtained indicate that changes in spermine levels are involved in the control of ovary senescence and of fruit set and development.Abbreviations BA benzyladenine - 2,4-D 2,4-dichlorophen-oxyacetic acid - GA3 gibberellic acid - HPLC high-performance liquid chromatography  相似文献   

15.
D. Orzáez  R. Blay  A. Granell 《Planta》1999,208(2):220-226
The role of ethylene in the control of senescence of both petals and unpollinated carpels of pea was investigated. An increase in ethylene production accompanied senescence, and the inhibitors of ethylene action were effective in delaying senescence symptoms in different flower verticils. Pollination did not seem to trigger the senescence syndrome in the corolla as deduced from the observation that petals from pollinated and unpollinated flowers and from flowers whose carpels had been removed senesced at the same time. A cDNA clone encoding a putative ethylene-response sensor (psERS) was isolated from pea flowers, and the pattern of expression of its mRNA was studied during development and senescence of different flower tissues. The levels of psERS mRNA paralleled ethylene production (and also levels of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) mRNA) in both petals and styles. Silver thiosulfate treatments were efficient at preventing ACO and psERS mRNA induction in petals. However, the same inhibitor showed no ability to modify expression patterns in pea carpels around the anthesis stage, suggesting different controls for ethylene synthesis and sensitivity in different flower organs. Received: 18 June 1998 / Accepted: 22 December 1998  相似文献   

16.
The appearance of endoproteolytic activities related to the senescence of unpollinated pea ( Pisum sativum L. cv. Alaska) ovaries, or with fruit development induced by gibberellic acid (GA3), was examined simultaneously by biochemical and histochemical techniques using gelatin as substrate. Biochemical detection was carried out by gelatin-containing sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Histochemical detection was performed using a gelatin film technique. No differences in endopeptidase activity were found in extracts from non-treated or developing ovaries during the two first days post-anthesis. After day 3 non-treated ovaries showed a marked increase in activity as well as two new bands with proteolytic activity, associated with the beginning of the senescence. At the same time a new activity was also located at the endocarp. In developing ovaries activity was only observed around vascular cells of the mesocarp at the end of the period studied (4–5 days post-anthesis). Activity detected in the ovules was essentially the same in both GA3-treated and non-treated ovaries.  相似文献   

17.
18.
Carrasco, P. and Carbonell, J. 1988. Involvement of a neutral proteolytic activity in the senescence of unpollinated ovaries of Pisum sativum . - Physiol. Plant. 72: 610–616.
The study of proteolysis by autodigestion in extracts from developing (gibberellic acid-treated) or senescing (non-treated) unpollinated ovaries of Pisum sativum L. cv. Alaska indicated the presence of two main proteolytic activities sensitive to inhibitors of sulfhydryl proteases. One of them was active at acidic pH and was present both in developing and senescent ovaries. The other one, active at neutral pH, was only detected in non-treated ovaries and was identified by the hydrolysis of the large subunit of ribulose-l,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39). Senescence of non-treated ovaries was also associated with an increase in proteolytic activity measured with a Coomassie Blue reagent and by determination with ninhydrin of a-NH2 groups released after autodigestion of the extracts. The presence of the neutral proteolytic activity only in senescing ovaries, but not in developing ones, suggests that it plays a key role in the senescence of pea ovaries and that its appearance is prevented by gibberellic acid.  相似文献   

19.
A cDNA clone for 3-ketoacyl-CoA thiolase (EC 2.3.1.16) was isolated from a gt11 cDNA library constructed from the poly(A)+ RNA of etiolated pumpkin cotyledons. The cDNA insert contained 1682 nucleotides and encoded 461 amino acid residues. A study of the expression in vitro of the cDNA and analysis of the amino-terminal sequence of the protein indicated that pumpkin thiolase is synthesized as a precursor which has a cleavable amino-terminal presequence of 33 amino acids. The amino-terminal presequence was highly homologous to typical amino-terminal signals that target proteins to microbodies. Immunoblot analysis showed that the amount of thiolase increased markedly during germination but decreased dramatically during the light-inducible transition of microbodies from glyoxysomes to leaf peroxisomes. By contrast, the amount of mRNA increased temporarily during the early stage of germination. In senescing cotyledons, the levels of the thiolase mRNA and protein increased again with the reverse transition of microbodies from leaf peroxisomes to glyoxysomes, but the pattern of accumulation of the protein was slightly different from that of malate synthase. These results indicate that expression of the thiolase is regulated in a similar manner to that of other glyoxysomal enzymes, such as malate synthase and citrate synthase, during seed germination and post-germination growth. By contrast, during senescence, expression of the thiolase is regulated in a different manner from that of other glyoxysomal enzymes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号