首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nonelectrogenic H+ pump in plasma membranes of hog stomach.   总被引:12,自引:0,他引:12  
Differential and density gradient centrifugation were used to prepare a vesicular membrane fraction from hog gastric mucosa enriched 17-fold with respect to cation-activated ATPase and 5'-AMPase. Fractionation of the gradient material by free flow electrophoresis resulted in a fraction 35-fold enriched in cation-activated ATPase and essentially free of 5'-AMPase and Mg2+ATPase. The addition of ATP to either fraction resulted in H+ uptake and Rb+ efflux. The ionophoric and osmotic sensitivity showed that these ion movements were due to transport rather than binding. The cation selectivity sequences, substrate specificities and action of inhibitors indicated that the transport was a function of K+ATPase activity. The characteristics of the ATP-dependent enhancement of SCN- uptake and 8-anilinonapthalene-1-sulfonate fluorescence in the presence of valinomycin and the action of ionophores and lipid-permeable ions suggested that the energy dependent K+:H+ exchange was effectively nonelectrogenic. Thus these vesicles contain a nonelectrogenic (H+ + K+)-ATPase, hence acid secretion by the stomach is probably due to an ATP-dependent H+ + K+ exchange.  相似文献   

2.
The Mg2+-dependent, K+-stimulated ATPase of microsomes from pig gastric mucosa has been studied in relation to observed active H+ transport into vesicular space. Uptake of fluorescent dyes (acridine orange and 9-aminoacridine) was used to monitor the generated pH gradient. Freeze-fracture electron microscopy showed that the vesicular gastric microsomes have an asymmetric distribution of intramembraneous particles (P-face was particulate; E-face was relatively smooth. Valinomycin stimulated both dye uptake and K+-ATPase (valinomycin-stimulated K+-ATPase); stimulation by valinomycin was due to increased K+ entry to some intravesicular activating site, which in turn depends upon the accompanying anion. Using the valinomycin-stimulated K+-ATPase and H+ accumulation as an index, the sequence for anion permeation was NO-3 greater than Br- greater than Cl- greater than I- greater than acetate approximately isethionate. When permeability to both K+ and H+ was increased (e.g using valinomycin plus a protonophore or nigericin), stimulation of K+-ATPase was much less dependent on the anion and the observed dissipation of the vesicular pH gradient was consistent with an 'uncoupling' of ATP hydrolysis from H+ accumulation. Thiocyanate interacts with valinomycin inhibiting the typical action of the K+ ionophore. But stimulation of ATPase activity was seen by adding 10 mM SCN- to membranes preincubated with valinomycin. From the relative activation of the valinomycin-stimulated K+-ATPase, it appears that SCN- is a very permeant anion which can be placed before NO-3 in the sequence of permeation. Valinomycin-stimulated ATPase and H+ uptake showed similar dependent correlations, including: dependence on [ATP] and [K+], pH optima, temperature activation, and selective inhibition by SH- or NH2-group reagents. These results are consistent with a pump-leak model for the gastric microsomal K+-ATPase which was simulated using Nernst-Planck conditions for passive pathways and simple kinetics for the pump. The pump is a K+/H+ exchange pump requiring K+ at an internal site. Rate of K+ entry would depend on permeability to K+ as well as the counterion, either (1) the anion to accompany K+ or (2) the H+ efflux path as an exchange ion. The former leads to net accumulation of H+ and anion, while the latter results in non-productive stimulation of ATP hydrolysis.  相似文献   

3.
Fluorescent amines, 9-aminoacridine, acridine orange and quinacrine, were used as probes for a pH gradient (deltapH) across gastric microsomal vesicles. Analysis of probe uptake data indicates that 9-aminoacridine distributes across the membrane as a weak base in accordance with the deltapH. On the other hand, acridine orange and quinacrine show characteristics of binding to membrane sites in addition to the accumulation in response to deltapH. A discussion of the advantages and limitations of the probes is presented. Application of these probes to pig gastric microsomal vesicles indicates that that K+-stimulated ATPase is responsible for the transport of H+ into the vesicles and thus develops a deltapH across the membrane. The deltapH generated by the K+-ATPase has a definite requirement for internal K+. The proton gradient can be discharged slowly after ATP depletion or rapidly either by detergent disruption of the vesicles or by increasing their leakiness using both H+ and K+ ionophores. On the other hand, the sole use of the K+ ionophore, valinomycin, stimulates the ATP-induced formation of deltapH by increasing the availability of K+ to internal sites. This stimulation by valinomycin requires the presence of permeable anions like Cl-. Analysis of the Cl- requirement indicates that in the presence of valinomycin the net effect is the accumulation of HCl inside the gastric vesicles. With an external pH of 7.0, the ATP-generated deltapH was calculated to be from 4 to 4.5 pH units. The results are consistent with the hypothesis that the K+-stimulated ATPase drives a K+/H+ exchange across the gastric vesicles. Since other lines of evidence suggest that these gastric microsomes are derived from the tubulovesicular system of the oxyntic cell, the participation of the ATP-driven transport processes in gastric HCl secretion is of interest.  相似文献   

4.
A highly purified membrane fraction was derived from hog gastric mucosa by a combination of differential and density gradient centrifugation and free flow electrophoresis. This final fraction was 35-fold enriched with respect to cation activated ouabain-insensitive ATPase. Antibody against this fraction was shown to be bound to the luminal surface of the gastric glands. The addition of ATP to this fraction or the density gradient fraction resulted in H+ uptake into an osmotically sensitive space. The apparent Km for ATP was 1.7 · 10?4 M in the absence of a K+ gradient similar to that found for ATPase activity. The reaction is specific for ATP and requires cation in the sequence K+ > Rb+ > Cs+ > Na+ > Li+ and is inhibited by ATPase inhibitors such as N,N′-dicylclohexylcarbodiimide. Maximal H+ uptake occurs with an outward K+ gradient but the minimal apparent KA is found in the absence of a K+ gradient. The pH optimum for H+ uptake is between 5.8 and 6.2 which corresponds to the pH range for phosphorylation of the enzyme, but is considerably less than the pH maximum of the K+ dependent dephosphorylation. In the presence of an inward K? gradient, protonophores such as tetrachlorsalicylanilide only partially abolish the H+ gradient but valinomycin dissipates 75% of the gradient, and nigericin abolishes the gradient. The vesicles therefore have a low K+ conductance but a measurable H+ conductance, hence a K+ gradient can produce an H+ gradient in the presence of valinomycin. The uptake and spontaneous leak of H+ are temperature sensitive skin with a similar transition temperature. Ultraviolet irradiation inactivates ATPase and proton transport at the same rate, approximately at twice the rate of p-nitrophenylphosphatase inactivation. It is concluded that H+ uptake by these vesicles is probably due to a dimeric (H+ + K+)-ATPase and is probably non-electrogenic.  相似文献   

5.
The presence of a cation inhibitory site on the dephosphoform of the H+, K+ -ATPase was confirmed by comparing the effects of K+ and NH4+ on overall activity and on phosphorylation and dephosphorylation. Inhibition of ATPase activity was pronounced at high cation/ATP ratios, but NH4+ was much less effective. At 60 mM cation, although the ATPase activity was greater in the presence of NH4+ (17.1 mumol/mg.h) as compared to K+ (5.1 mumol/mg.h), dephosphorylation of preformed phosphoenzyme was faster with K+ (2101 min-1) than with NH4+ (1401 min-1). Increasing K+ concentrations at the cytosolic face of the enzyme, at constant ATP, decreased the rate of phosphorylation from 1343 to 360 min-1 at 25 mM K+. Increasing ATP concentrations in the presence of constant K+ concentrations accelerated ATPase activity and increased the steady-state phosphoenzyme level. Therefore, inhibition by cations was due to cation stabilization of a dephospho form of the enzyme at a cytosolically accessible cation-binding site. ATP promoted cation dissociation from this site. In ion-permeable vesicles, increasing K+ concentrations, at constant ATP, activated and then inhibited ATPase activity, with a K0.5(I) of 22 mM. In intact, ion-impermeable inside-out vesicles, in the presence of valinomycin, ATPase activity increased up to 175 mM K+. Collapse of this potential by the addition of the electrogenic protonophore 3,3',4', 5-tetrachlorosalicylanilide restored the K+ inhibition of ATPase activity. Thus, the cation inhibition of the ATPase activity appears to be voltage-sensitive; and hence, its connection to the voltage sensitivity of acid secretion demonstrated in intact gastric mucosa is discussed.  相似文献   

6.
When gastric microsomes were purified from resting and stimulated rabbit mucosae, they were found to be generally similar in (H+ + K+)-ATPase activity, peptide composition in single-dimension sodium dodecyl sulfate-gel electrophoresis, and in size. In the stimulated vesicles, optimal proton transport activity was found at pH 7.4, 20-50 mM KCl, and 1 mM ATP-Mg. However, in the case of resting vesicles, the presence of valinomycin and an inward Cl-gradient was also necessary for Mg-ATP-dependent proton transport. Measurement of K+ and Cl-diffusion potentials using 3,3-dipropylthiadicarboxocyanine iodide as a potential sensitive dye showed that both resting and stimulated vesicles developed K+ gradient-dependent potentials in the presence of an impermeant anion, but that Cl- gradient-dependent potentials were observed only in the stimulated preparation. 86Rb+ self-exchange was found in both types of vesicles, but Cl- self-exchange was confined to vesicles derived from stimulated mucosae. Putative inhibitors of anion conductance such as furosemide and anthracene 9-carboxylic acid blocked proton transport, Cl- conductance, 36Cl- uptake, and Cl- exchange. The inhibition of proton transport was overcome by valinomycin. ATPase activity in the presence of nigericin, an H+:K+ exchanger, was unaffected by these inhibitors. K+ conductance, Rb+ uptake, and Rb+ exchange were insensitive to these inhibitors. Thus, activation of acid secretion by the stimulated parietal cell appears to involve at least the appearance of a discrete Cl- conductance in the pump-associated membrane.  相似文献   

7.
Rat liver Golgi vesicles were isolated by differential and density gradient centrifugation. A fraction enriched in galactosyl transferase and depleted in plasma membrane, mitochondrial, endoplasmic reticulum, and lysosomal markers was found to contain an ATP-dependent H+ pump. This proton pump was not inhibited by oligomycin but was sensitive to N-ethyl maleimide, which distinguishes it from the F0-F1 ATPase of mitochondria. GTP did not induce transport, unlike the lysosomal H+ pump. The pump was not dependent on the presence of potassium nor was it inhibited by vanadate, two of the characteristics of the gastric H+ ATPase. Addition of ATP generated a membrane potential that drove chloride uptake into the vesicles, suggesting that Golgi membranes contain a chloride conductance in parallel to an electrogenic proton pump. These results demonstrate that Golgi vesicles can form a pH difference and a membrane potential through the action of an electrogenic proton translocating ATPase.  相似文献   

8.
The distribution of free thiol groups associated with the membrane proteins of the purified pig gastric microsomal vesicles was quantified, and the relation of thiol groups to the function of the gastric (H+ + K+)-transporting ATPase system was investigated. Two different thiol-specific agents, carboxypyridine disulphide (CPDS) and N-(1-naphthyl)maleimide (NNM) were used for the study. The structure-function relationship of the membrane thiol groups was studied after modification by the probes under various conditions, relating the inhibition of the (H+ + K+)-transporting ATPase to the ATP-dependent H+ accumulation by the gastric microsomal vesicles. On the basis of the extent of stimulation of the microsomal (H+ + K+)-transporting ATPase in the presence and absence of valinomycin (val) about 85% of the vesicles were found to be intact. CPDS at 1 mM completely inhibits the valinomycin-stimulated ATPase and the associated p-nitrophenyl phosphatase with a concomitant inhibition of vesicular H+ uptake. Both the enzyme and dye-uptake activities were fully protected against CPDS inhibition when the treatment with CPDS was carried out in the presence of ATP. ATP also offered protection (about 65%) against NNM inhibition of the (H+ + K+)-transporting ATPase system and vesicular H+ uptake. Under similar conditions ATP also protected about 10 and 6 nmol of thiol groups/mg of protein respectively from CPDS and NNM reaction. Our data suggest that the thiol groups on the outer surface of the vesicles are primarily involved in gastric (H+ + K+)-transporting ATPase function. Furthermore, at least about 15% of the total microsomal thiol groups appear to be associated with the ATPase system. The data have been discussed in terms of the structure-function relationship of gastric microsomes.  相似文献   

9.
Lysosomes (tritosomes) were purified from the livers of rats injected with Triton WR 1339. The lysosomes developed an Mg2+-ATP-dependent pH gradient as measured by Acridine orange accumulation. H+ transport was supported by chloride, but not sulfate, and was independent of the cation used. H+ transport and Mg2+-stimulated ATPase was inhibited by diethylstilbesterol (K0.5 = 2 microM). N-Ethylmaleimide inhibited H+ transport (K0.5 = 30 microM). At low concentrations of N-ethylmaleimide, ATP partially protected H+ transport from inhibition with N-ethylmaleimide. Photolysis with 8-azido-ATP inhibited H+ transport and Mg2+-stimulated ATPase activity. Under these same conditions, 8-azido-[alpha-32P]ATP reacted with a number of polypeptides of the intact lysosome and lysosomal membranes. Pump-dependent potentials were measured using the fluorescent potential-sensitive dye, DiSC3(5) (3,3'-dipropylthiocarbocyanine) and ATP-dependent potential generation was inhibited by diethylstilbesterol. Chloride, but not sulfate reduced the magnitude of the ATP-dependent membrane potential, as measured using merocyanine 540. The chloride conductance, independent of ATP, was of sufficient magnitude to generate a H+ gradient driven by external chloride in the presence of tetrachlorosalicylanilide. In Cl- free media, ATP-dependent H+ transport was restored to control levels by outwardly directed K+ gradients in the presence of valinomycin. The role of cell Cl- is to provide the necessary conductance for supporting lysosomal acidification by the electrogenic proton pump.  相似文献   

10.
The mechanism of gastric antisecretory action for trifluoperazine, verapamil and 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8) has been studied utilizing isolated hog gastric membranes enriched with (H+ + K+)-ATPase. The drugs inhibited the gastric ATPase due to their apparent competition with K+ for the luminal high-affinity K+-site of the ATPase. The dose to inhibit 50% (ID50) of the ATPase in the membranes rendered freely permeable to K+ (20 mM) was 50 microM for trifluoperazine and 1.5 mM for verapamil and TMB-8. In intact hog gastric membranes which develop a pH gradient in the presence of valinomycin, ATP and KCl, however, trifluoperazine at 4 microM, verapamil and TMB-8 at 15 microM inhibited 40 and 30% of the valinomycin-stimulated ATPase activity, respectively, and also blocked the ionophore-dependent intravesicular acidification as measured by aminopyrine accumulation. The enhanced potency of the drugs to inhibit the ATPase in the intact membrane vesicles may be attributed to the accumulation of the drugs as a weak base within the vesicles, where the luminal K+-site of the ATPase is accessible. Calmodulin and Ca2+ had no effect on the extent of H+-accumulation as measured by aminopyrine accumulation in the membrane vesicles which were prepared in the presence of 1 mM EGTA. Since the drugs showed similar potency in interfering with H+ movements either in the membrane vesicles or isolated rabbit gastric glands stimulated by dibutyryl cAMP, it is reasonable to suggest the inhibitory effect of the drugs on (H+ + K+)-ATPase as a primary cause for such interferences in both cases. A trifluoperazine analog and other lipophilic amine drugs similarly inhibited (H+ + K+)-ATPase and H+ accumulation in the membrane vesicles or in the glands. We have concluded that a tertiary amine, the only common functional group among these drugs, is primarily responsible for their ability to interact with the high-affinity K+ site of the gastric ATPase.  相似文献   

11.
1. Thermostable membrane vesicles which were capable of active transport of alanine dependent on either respiration or an artificial membrane potential were isolated from the thermophilic aerobic bacterium PS3. 2. Uptake of alanine was dependent on the oxidation of ascorbate-phenazine methosulfate or on generated or exogenous NADH, but succinate and malate failed to drive the uptake. The optimum temperature for respiration-driven uptake of alanine was 45 to 60 degrees. 3. Potassium ion-loaded vesicles were prepared by incubating vesicles at 55 degrees in 0.5 M potassium phosphate. The addition of valinomycin elicited rapid and transient uptake of alanine under the test conditions. Uptake of alanine in response to valinomycin was progressively enhanced by the addition of dicylohexylcarbodiimide, but was completely abolished in the presence of a proton conductor or synthetic permeable cation. The effect of dicyclohexylcarbodiimide was dependent on its concentration and was maximal at a concentration of 0.4 mM. 4. The proton permeability of membrane vesicles was reduced by the addition of dicyclohexylcarbodiimide. A small but significant difference was found in the initial rates of proton uptake in the presence of dicyclohexylcarbodiimide with and without alanine. The results suggest that protons alanine are transported simultaneously in a stoichiometric ratio of 1 : 1. 5. The uptake of alanine was also driven by a pH gradient induced by an instantaneous pH drop in a suspension of alkali-loaded vesicles. Thus, alanine accumulation was driven not only by an electrical potential but also by a pH gradient. 6. Addition of ATP resulted in the inhibition of alanine uptake dependent on artificial membrane potential. ATP hydrolysis by membrane ATPase created a membrane potential which was inside-positive, and this might decrease the effective membrane potential (generated by K+ efflux mediated by valinomycin) available to drive alanine uptake.  相似文献   

12.
Cation transport in vesicles from secreting rabbit stomach   总被引:1,自引:0,他引:1  
K+ gradient-dependent rubidium flux in vesicles obtained from stimulated rabbit stomach distinguishes two cation pathways. Selective inhibition by vanadate and the (1,2-alpha)-imidazopyridine, SCH 28080 identifies one pathway as H,K-ATPase-mediated passive cation exchange. A second pathway, additive to the first, is inhibited by the protonophore, tetrachlorosalicylanilide and is identified as a K+ conductance pathway present in these vesicles. The conductance was limited to vesicle populations obtained from the stimulated rabbit gastric mucosa and was distributed into both a light microsomal fraction and a heavier membrane fraction. 86Rb+ transport through the cation conductance exhibited a trans-stimulated cation selectivity sequence of K+ greater than Rb+ = Cs+ much greater than Li+. Potential sensitive flux was inhibited by the cyanine dye 3,3'-dipropyl-2,2'-thiodicarbo cyanine iodide, Ba2+, quinine, and the guanidinium compound 1,8-bis-guanidinium-n-octane. The presence of the conductance was correlated with K+-dependent H+ transport which did not require prolonged equilibration in K+ medium for activation. A role for the stimulus-dependent K+ conductance in gastric acid secretion could be its provision of a pathway for net K+ movement to the luminal site of the H,K-ATPase.  相似文献   

13.
The gastric [H,K]ATPase:H+/ATP stoichiometry   总被引:2,自引:0,他引:2  
An H+/ATP ratio of 2 for H+ transport was determined from initial rate measurements at pH 6.1 in a purified gastric microsomal fraction containing the [H,K]ATPase. This ratio was independent of external KCl, though the apparent K0.5 for ATP was increased from 10.78 +/- 0.51 (n = 3) to 64.6 +/- 11.9 (n = 3) microM ATP and from 5.13 +/- 0.64 (n = 3) to 65.2 +/- 0.64 (n = 3) microM ATP for H+ transport and the K+-stimulated ATPase, respectively, as K+external was increased from 12 to 150 mM. The H+/ATP ratio was also relatively independent of ATP concentration. Maximum initial rates obtained in KCl-equilibrated vesicles were independent of added valinomycin, though net H+ transport was increased 29.3 +/- 1.03% (n = 6) by the addition of ionophore. Maximum net H+ transport in this vesicle preparation was 185 +/- 2.1 (n = 14) nmol mg-1 of protein. Initial rate measurements of ATPase represent a burst of K+-dependent activity of approximately 10-15 s duration. The H+/ATP stoichiometry was calculated based on the K+-stimulated component of hydrolysis. Under most conditions, the Mg2+-dependent component of hydrolysis was less than 10% of the (Mg2+ + K+) component of hydrolysis.  相似文献   

14.
Uptake of guanidine, an endogenous organic cation, into brush-border membrane vesicles isolated from human term placentas was investigated. Initial uptake rates were manyfold greater in the presence of an outward-directed H+ gradient ([pH]o greater than [pH]i) than in the absence of a H+ gradient ([pH]o = [pH]i). Guanidine was transiently accumulated inside the vesicles against a concentration gradient in the presence of the H+ gradient. The H+ gradient-dependent stimulation of guanidine uptake was not due to a H+-diffusion potential because an ionophore (valinomycin or carbonylcyanide p-trifluoromethoxyphenylhydrazone)-induced inside-negative membrane potential failed to stimulate the uptake. In addition, uphill transport of guanidine could be demonstrated even in voltage-clamped membrane vesicles. The H+ gradient-dependent uptake of guanidine was inhibited by many exogenous as well as endogenous organic cations (cis-inhibition) but not by cationic amino acids. The presence of unlabeled guanidine inside the vesicles stimulated the uptake of labeled guanidine (trans-stimulation). These data provide evidence for the presence of an organic cation-proton antiporter in human placental brush-border membranes. Kinetic analysis of guanidine uptake demonstrated that the uptake occurred via two saturable, carrier-mediated transport systems, one being a high affinity, low capacity type and the other a low affinity, high capacity type. Studies on the effects of various cations on the organic cation-proton antiporter and the Na+-H+ exchanger revealed that these two transport systems are distinct.  相似文献   

15.
A vesicular microsomal fraction isolated from hog fundic mucosa demonstrates the capacity to take up equal amounts of RB+ and Cl-. The amount of the Rb+ uptake is sensitive to the extravesicular osmolarity, and rate of uptake is sensitive to temperature. 86Rb+ efflux is dependent upon the cation composition of the diluting solution. ATP, but not beta-gamma methylene ATP, induces a reversible efflux of 86Rb+ from loaded vesicles, and this is dependent upon a functional K+-ATPase. The ATP induced efflux is not affected by CCCP (carbonyl cyanide m-chlorophenylhydrazone) or TCS (tetrachlorosalicylanilide) nor by lipid soluble ions or valinomycin. Nigericin inhibits the efflux by 40%. Uptake of the lipid soluble ion 14C-SCN- has been demonstrated and is enhanced by ATP only in the presence of valinomycin. The results are consistent with a neutral or isopotential exchange of H+ for Rb+ mediated by K+-ATPase.  相似文献   

16.
J W Hell  L Edelmann  J Hartinger  R Jahn 《Biochemistry》1991,30(51):11795-11800
The gamma-aminobutyric acid transporter of rat brain synaptic vesicles was reconstituted in proteoliposomes, and its activity was studied in response to artificially created membrane potentials or proton gradients. Changes of the membrane potential were monitored using the dyes oxonol VI and 3,3'-diisopropylthiodicarbocyanine iodide, and changes of the H+ gradient were followed using acridine orange. An inside positive membrane potential was generated by the creation of an inwardly directed K+ gradient and the subsequent addition of valinomycin. Under these conditions, valinomycin evoked uptake of [3H]GABA which was saturable. Similarly, [3H]glutamate uptake was stimulated by valinomycin, indicating that both transporters can be driven by the membrane potential. Proton gradients were generated by the incubation of K(+)-loaded proteoliposomes in a buffer free of K+ or Na+ ions and the subsequent addition of nigericin. Proton gradients were also generated via the endogenous H+ ATPase by incubation of K(+)-loaded proteoliposomes in equimolar K+ buffer in the presence of valinomycin. These proton gradients evoked nonspecific, nonsaturable uptake of GABA and beta-alanine but not of glycine in proteoliposomes as well as protein-free liposomes. Therefore, transporter activity was monitored using glycine as an alternative substrate. Proton gradients generated by both methods elicited saturable glycine uptake in proteoliposomes. Together, our data confirm that the vesicular GABA transporter can be energized by both the membrane potential and the pH gradient and show that transport can be achieved by artificial gradients independently of the endogenous proton ATPase.  相似文献   

17.
Membrane vesicles were purified from resting corpus mucosa of pig stomachs by velocity-sedimentation on a sucrose-Ficoll step gradient. Two vesicular fractions containing the (H+ + K+)-ATPase were obtained. One fraction was tight towards KCl, the other was leaky. At 21 degrees C maximal (H+ + K+)-ATPase activities of 0.8 and 0.4 mumol X mg-1 X min-1, respectively, were observed in lyophilized vesicles. The vesicles contained a membrane-associated carbonic anhydrase, the activity of which was in 100-fold excess of the maximal ATPase activity. Both vesicular fractions were rich in phosphatidylcholine, phosphatidylethanolamine, sphingomyelin and cholesterol. The characteristics of ion permeability and transport in the tight vesicles were in agreement with corresponding data for vesicles of a tubulovesicular origin in the parietal cell. Measurement of the rate of K+ uptake into the vesicles was based on the ability of K+ to promote H+ transport. The uptake was slow and dependent on the type of anion present. The effectiveness in promoting uptake of K+ by anions was SCN- greater than NO3- greater than Cl- much greater than HCO3- greater than SO4(2-). Uptake of K+ was much more rapid at alkaline pH than at neutral or at acidic pH. Addition of CO2 at alkaline pH strongly stimulated the rate of H+ accumulation in the vesicles. The initial part of this stimulation was sensitive to acetazolamide, an inhibitor of carbonic anhydrase. A model how the (H+ + K+)-ATPase and the carbonic anhydrase may co-operate is presented. It is concluded that membrane vesicles of a tubulovesicular origin can produce acid.  相似文献   

18.
Studies on K+ permeability of rat gastric microsomes   总被引:2,自引:0,他引:2  
A population of gastric membrane vesicles of high K+ permeability and of lower density than endoplasmic tubulovesicles containing (H+-K+)-ATPase was detected in gastric mucosal microsomes from the rat fasted overnight. The K+-transport activity as measured with 86RbCl uptake had a Km for Rb+ of 0.58 +/- 0.11 mM and a Vmax of 13.7 +/- 1.9 nmol/min X mg of protein. The 86Rb uptake was reduced by 40% upon substituting Cl- with SO2-4 and inhibited noncompetitively by ATP and vanadate with a Ki of 3 and 30 microM, respectively; vanadate also inhibited rat gastric (H+-K+)-ATPase but with a Ki of 0.03 microM. Carbachol or histamine stimulation decreased the population of the K+-permeable light membrane vesicles, at the same time increased K+-transport activity in the heavy, presumably apical membranes of gastric parietal cells, and enabled the heavy microsomes to accumulate H+ ions in the presence of ATP and KCl without valinomycin. The secretagogue-induced shift of K+ permeability was blocked by cimetidine, a H2-receptor antagonist. Four characteristics of the K+ permeability as measured with 86RbCl were common in the resting light and the carbachol-stimulated heavy microsomes; (a) Km for +Rb, (b) anion sensitivity (Cl- greater than SO2-4), (c) potency of various divalent cations (Hg2+, Cu2+, Cd2+, and Zn2+) to inhibit Rb+ uptake, and (d) inhibitory effect of ATP, although the nucleotide sensitivity was latent in the stimulated heavy microsomes. The Vmax for 86RbCl uptake was about 10 times greater in the resting light than the stimulated heavy microsomes. These observations led us to propose that secretagogue stimulation induces the insertion of not only the tubulovesicles containing (H+-K+)-ATPase, but also the light membrane vesicles containing KCl transporter into the heavy apical membranes of gastric parietal cells.  相似文献   

19.
Proton ATPase in rat renal cortical endocytotic vesicles   总被引:3,自引:0,他引:3  
To relate ATPase activity to the ATP-driven H+-pump in rat renal endocytotic vesicles we applied an in vitro coupled optical test and a Pi-liberation assay. Endocytotic vesicles contain an ouabain-, vanadate- and oligomycin-insensitive ATPase. The ionophores for K+ and H+, valinomycin and carbonylcyanide p-chloro-methoxyphenylhydrazone (CCCP), respectively, stimulated ATPase activity, indicating its relation to the electrogenic H+-pump. This conclusion is supported by a similar distribution on a Percoll gradient of ATP-driven H+ uptake into endosomes and ionophore-stimulated ATPase activity. Coupled optical and Pi-liberation assays were then used to characterize the H+-ATPase with respect to the requirement for pH, nucleotides, anions, and mono- and divalent cations. The H+-ATPase activity was decreased by widely used blockers: N-ethylmaleimide (NEM), dicyclohexylcarbodiimide (DCCD) and diethylstilbestrol (DES). Different sensitivities to these blockers proved that alkaline phosphatase and H+-ATPase are separate entities. To investigate whether the NEM-, DCCD- and DES-sensitive ATPase activity is confined to intact endocytotic vesicles, cellular membranes from rat kidney cortex were separated on a Percoll density gradient. Surprisingly, endocytotic vesicles contain only a small fraction of the total NEM-, DCCD- and DES-sensitive ATPase activity. The majority of the blocker-sensitive ATPases belongs to membranes of as yet undefined cellular origin.  相似文献   

20.
When isolated from resting parietal cells, the majority of the (H+ + K+)-ATPase activity was recovered in the microsomal fraction. These microsomal vesicles demonstrated a low K+ permeability, such that the addition of valinomycin resulted in marked stimulation of (H+ + K+)-ATPase activity, and proton accumulation. When isolated from stimulated parietal cells, the (H+ + K+)-ATPase was redistributed to larger, denser vesicles: stimulation-associated (s.a.) vesicles. S.a. vesicles showed an increased K+ permeability, such that maximal (H+ + K+)-ATPase and proton accumulation activities were observed in low K+ concentrations and no enhancement of activities occurred on the addition of valinomycin. The change in subcellular distribution of (H+ + K+)-ATPase correlated with morphological changes observed with stimulation of parietal cells, the microsomes and s.a. vesicles derived from the intracellular tubulovesicles and the apical plasma membrane, respectively. Total (H+ + K+)-ATPase activity recoverable from stimulated gastric mucosa was 64% of that from resting tissue. Therefore, we tested for latent activity in s.a. vesicles. Permeabilization of s.a. vesicles with octyl glucoside increased (H+ + K+)-ATPase activity by greater than 2-fold. Latent (H+ + K+)-ATPase activity was resistant to highly tryptic conditions (which inactivated all activity in gastric microsomes). About 20% of the non-latent (H+ + K+)-ATPase activity was also resistant to trypsin digestion. We interpret these results as indicating that, of the s.a. vesicles, approx. 55% have a right-side-out orientation and are impermeable to ATP, 10% right-side-out and permeable to ATP, and 35% have an inside-out orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号