首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ureides, allantoin and allantoic acid, are the major nitrogenous substances transported within the xylem of N2-fixing soybeans (Glycine max L. Merr. cv Amsoy 71). The ureides accumulated in the cotyledons, roots and shoots of soybean seedlings inoculated with Rhizobium or grown in the presence of 10 millimolar nitrate. The patterns of activity for uricase and allantoinase, enzymes involved in ureide synthesis, were positively correlated with the accumulation of ureides in the roots and cotyledons. Allopurinol and azaserine inhibited ureide production in 3-day-old cotyledons while no inhibition was observed in the roots. Incubation of 4-day-old seedlings with [14C]serine indicated that in the cotyledons ureides arose via de novo synthesis of purines. The source of ureides in both 3- and 4-day-old roots was probably the cotyledons. The inhibition of ureide accumulation by allopurinol but not azaserine in 8-day-old cotyledons suggested that ureides in these older cotyledons arose via nucleotide breakdown. Incubation of 8-day-old plants with [14C]serine suggested that the roots had acquired the capability to synthesize ureides via de novo synthesis of purines. These data indicate that both de novo purine synthesis and nucleotide breakdown are involved in the production of ureides in young soybean seedlings.  相似文献   

2.
The de novo synthesis of PAL is demonstrated to occur sometime between imbibition and the end of a 4-hr white light treatment. H2OD2O transfer experiments indicate that PAL synthesis may occur during the light period whilst D2O-H2O transfer experiments indicate that synthesis of inactive PAL may occur during dark growth followed by activation by light. Neither of these observations is conclusive. De novo synthesis of PAL occurs in excised hypocotyls of gherkin and tuber discs of potato either in darkness or in light. It is concluded that there is as yet no evidence which definitively shows that light controls PAL levels by regulating the rate of de novo synthesis.  相似文献   

3.
Isolated flower buds and flowers of Ipomoea tricolor went through the same stages of development as those attached to the plant. Ribonuclease activity increased sharply in both cases during the time of flower fading and aging. Affinity chromatography using guanosine diphosphate-Sepharose was employed for fast and efficient purification of ribonuclease. Flowers which were kept on D2O during the senescence phase incorporated deuterium into ribonuclease as shown by isopycnic density gradient centrifugation in CsCl, suggesting that ribonuclease was de novo synthesized during aging of the flower.  相似文献   

4.
R. -A. Walk  B. Hock 《Planta》1977,134(3):277-285
The development of glyoxysomal malate dehydrogenase (gMDH, EC 1.1.1.37) during early germination of watermelon seedlings (Citrullus vulgaris Schrad.) was determined in the cotyledons by means of radial immunodiffusion. The active isoenzyme was found to be absent in dry seeds. By density labelling with deuterium oxide and incorporation of [14C] amino acids it was shown that the marked increase of gMDH activity in the cotyledons during the first 4 days of germination was due to de novo synthesis of the isoenzyme. The effects of protein synthesis inhibitors (cycloheximide and chloramphenicol) on the synthesis of gMDH indicated that the glyoxysomal isoenzyme was synthesized on cytoplasmic ribosomes. Possible mechanisms by which the glyoxysomal malate dehydrogenase isoenzyme reaches its final location in the cell are discussed.Abbreviations mMDH mitochondrial malate dehydrogenase - gMDH glyoxysomal malate dehydrogenase - D2O deuterium oxide - EDTA ethylenediaminetetraacetic acid, disodium salt  相似文献   

5.
R.-A. Walk  B. Hock 《Planta》1976,129(1):27-32
Summary Specific antibodies were prepared against the purified mitochondrial malate dehydrogenase (EC 1.1.1.37) from cotyledons of watermelon seedlings (Citrullus vulgaris Schrad.). The isoenzyme was assayed by means of quantitative radial immunodiffusion. Cotyledons of ungerminated seeds were found to contain mitochondrial MDH. During the first 4 days of germination the enzyme activity increased threefold finally contributing 16% to the total MDH activity extracted from cotyledon tissue. Isopycnic CsCl density centrifugation was used to investigate the mode of activity increase. After a four-day period of labelling with deuterium oxide and purification of the mitochondrial isoenzyme, a density shift of 0.021kgx1-1, accompanied by considerable band broadening of the enzyme profile was observed. These findings are evidence for the de novo synthesis of mitochondrial MDH and its relatively slow turnover in germinating seeds.Abbreviations mMDH mitochondrial malate dehydrogenase - D2O deuterium oxide  相似文献   

6.
Longo CP 《Plant physiology》1968,43(4):660-664
Evidence for de novo synthesis of isocitratase and malate synthetase in cotyledons of germinating peanut (Arachis hypogaea L.) was obtained by the density labeling method. When dry peanut cotyledons were cultured in H218O, a 2.4% increase in the buoyant density of malate synthetase in a cesium chloride gradient was observed. In 100% D2O the buoyant density shift was 5.5% for isocitratase and 3.5% for malate synthetase in comparison to the water controls. These data suggest that isocitratase and malate synthetase do not pre-exist in some inactive form in the cotyledons, but are completely synthesized after onset of germination from a pool of amino acids which do not derive directly from hydrolysis of storage proteins.  相似文献   

7.
Phosphatidylcholine (PtdCho), the major phospholipid of animal membranes, is generated by its remodeling and de novo synthesis. Overexpression of the remodeling enzyme, LPCAT1 (acyl-CoA:lysophosphatidylcholine acyltransferase) in epithelia decreased de novo PtdCho synthesis without significantly altering cellular PtdCho mass. Overexpression of LPCAT1 increased degradation of CPT1 (cholinephosphotransferase), a resident Golgi enzyme that catalyzes the terminal step for de novo PtdCho synthesis. CPT1 degradation involved its multiubiquitination and processing via the lysosomal pathway. CPT1 mutants harboring arginine substitutions at multiple carboxyl-terminal lysines exhibited proteolytic resistance to effects of LPCAT1 overexpression in cells and restored de novo PtdCho synthesis. Thus, cross-talk between phospholipid remodeling and de novo pathways involves ubiquitin-lysosomal processing of a key molecular target that mechanistically provides homeostatic control of cellular PtdCho content.  相似文献   

8.

Purpose of work

Plants synthesize and accumulate secondary metabolites as defensive volatiles against diverse stresses. We aim to unravel the jasmonate-inducible volatile de novo synthetic metabolites in plants using a deuterium-labeling technique. Jasmonic acid and its methyl ester (MeJA) are well-documented for inducing defensive volatiles. Here, we have developed an efficient deuterium oxide (D2O)-based labeling approach to determine the extent of de novo synthetic metabolites in a model plant A. bidentata bidentata. The labeling approach was demonstrated on quantitative profiling of terpene volatile organic compounds (VOCs) elicited by airborne MeJA in Achyranthes plants. We show, for the first time that airborne MeJA-elicited terpene VOCs are predominantly and differentially de novo synthesized except for a homoterpene, (3E)-4,8-dimethyl-1,3,7-nonatriene, which is weakly and least labelled with deuterium. D2O is therefore an efficient labeling source for investigating de novo synthetic metabolites of terpene VOCs in planta.  相似文献   

9.
Germination of peanut seed is accompanied by a rapid increase in isocitritase (isocitrate lyase, EC 4.1.3.1) during the first 4 days. The presence of cycloheximide (50 μg/ml) during water imbibition inhibited the increase in isocitritase activity. Actinomycin D conversely did not inhibit isocitritase activity until the second day of imbibition while RNA synthesis was inhibited. Germination of peanut seed in 14C-reconstituted amino acids followed by fractionation of a 20 to 35% ammonium sulfate preparation on a Sephadex G-200 column (57-fold purification) showed that the active enzymic fraction coincided with a large peak of radioactivity. Germination of peanut seed in 45% D2O followed by enzyme purification and CsCl equilibrium centrifugation revealed that all the enzyme from D2O seed had a higher density than normal isocitritase. These data indicate that isocitritase in peanut seed is synthesized de novo.  相似文献   

10.
2,4-Dichlorophenoxyacetic acid (2,4-D) promotes the accumulation of tryptophan-derived indole-3-acetic acid (IAA) in carrot cell cultures during callus proliferation by a biosynthetic pathway that is apparently not active during somatic embryo formation. The effects of 2,4-D were examined by measuring the isotopic enrichment of IAA due to the incorporation of stable isotope-labeled precursors (deuterium oxide, [15N]indole, and 2H5-l-tryptophan). Enrichment of IAA from deuterium oxide is similar in both cultured hypocotyls and cell suspension cultures in the presence and absence of 2,4-D, despite the large differences in absolute IAA concentrations. The enrichment of IAA due to the incorporation of [15N]indole is also similar in callus proliferating in the presence of 2,4-D and in embryos developing in the absence of 2,4-D. The incorporation of 2H5-l-tryptophan into IAA, however, is at least 7-fold higher in carrot callus cultures proliferating in the presence of 2,4-D than in embryos developing in the absence of 2,4-D. Other experiments demonstrated that this differential incorporation of 2H5-l-tryptophan into IAA does not result from differential tryptophan uptake or its subsequent compartmentation. Thus, it appears that differential pathways for IAA synthesis operate in callus cultures and in developing embryos, which may suggest that a relationship exists between the route of IAA biosynthesis and development.  相似文献   

11.
De Novo Purine Biosynthesis in Intact Cells of Cucurbita pepo   总被引:1,自引:1,他引:0       下载免费PDF全文
Lovatt CJ 《Plant physiology》1983,73(3):766-772
The capacity of intact cells of roots excised from summer squash plants (Cucurbita pepo L. cv Early Prolific Straightneck) to synthesize purine nucleotides de novo was investigated. Evidence that purine nucleotides are synthesized de novo included: (a) demonstration of the incorporation of [1-14C]glycine, [2-14C]glycine, NaH14CO3, and H14COONa into total adenine nucleotides; (b) observation that the addition of azaserine or aminopterin, known inhibitors of de novo purine synthesis in other organisms, blocked the incorporation of these precursors into adenine nucleotides; and (c) demonstration that the purine ring synthesized from these precursors was labeled in a manner consistent with the pathway for de novo purine biosynthesis found in microorganisms and animal tissues. Under optimal conditions, the activity of this pathway in roots excised from 2-day-old squash plants was 244 ± 13 nanomoles (mean ± standard error, n = 17) NaH14CO3 incorporated into ∑Ade (the sum of the adenine nucleotides, nucleoside and free base) per gram tissue during the 3-hour incubation period.

The possible occurrence of alternative enzymic reactions for the first steps of de novo purine biosynthesis was also investigated. No conclusive evidence was obtained to support the operation of alternative enzymic reactions in the intact cell of C. pepo.

  相似文献   

12.
Currently, [3H]uridine is most often used to monitor rRNA synthesis in cultured cells. We show here that radiolabeled ribonucleoside triphosphates, such as [α-33P]UTP, in culture medium were also incorporated efficiently not only into cells but also into de novo RNA, particularly rRNA. Using this method, we first revealed that endoplasmic reticulum (ER) stress inducers such as tunicamycin and thapsigargin suppressed de novo rRNA synthesis, and that PERK, but not IRE1α or ATF6, mediated the suppression. PERK is known to mediate the suppression of de novo protein synthesis via phosphorylation of eIF2α. Consistently, other translational inhibitors such as PSI, proteasomal inhibitor, and cycloheximide suppressed de novo rRNA synthesis. eIF2α knockdown also suppressed both de novo protein and rRNA syntheses. Furthermore, ER stress reduced cellular ATP levels, and the suppression of rRNA synthesis apparently mitigated their reduction. These observations provided a close link between ATP levels and suppression of de novo rRNA synthesis at ER stress, and we proposed a novel feedback mechanism, in which ATP levels were maintained via suppression of de novo rRNA synthesis in ATP-demanding stresses, such as ER stress.  相似文献   

13.
The association of water (D2O) with phospholipid membranes was studied by using pulsed-electron spin resonance techniques. We measured the deuterium electron spin echo modulation of spin-labeled phospholipids by D2O in membranes of dipalmitoyl phosphatidylcholine with and without 50 mol% of cholesterol. The Fourier transform of the relaxation-corrected two-pulse echo decay curve reveals peaks, at one and two times the deuterium NMR frequency, that arise from the dipolar hyperfine interaction of the deuterium nucleus with the unpaired electron spin of the nitroxide-labeled lipid. For phosphatidylcholine spin-labeled at different positions down the sn-2 chain, the amplitude of the deuterium signal decreases toward the center of the membrane, and is reduced to zero from the C-12 atom position onward. At chain positions C-5 and C-7 closer to the phospholipid headgroups, the amplitude of the deuterium signal is greater in the presence of cholesterol than in its absence. These results are in good agreement with more indirect measurements of the transmembrane polarity profile that are based on the 14N-hyperfine splittings in the conventional continuous-wave electron spin resonance spectrum.  相似文献   

14.
S P Sutton  R Dam  M K Nielsen 《Life sciences》1974,15(12):2097-2108
Levels of 7.8, 18.5 and 26 mole % deuterium oxide were administered sequentially to Coturnix japonica (Japanese quail) via the drinking water. The primary effect observed was on egg frequency, which decreased from a normal level of 0.89 for 7.8 mole % D2O to a low of 0.38 during the administration of 26 mole % D2O. Adverse symptoms, such as hyperexcitability, convulsions, skin ulcerations, comatosity, weight loss, or death, which have been associated with deuterium toxicity in other animals, were not observed in these experiments. The amount of deuterium deposited in the water of the egg was 6.9, 13.98, and 19.83 mole % when 7.8, 18.5 and 26 mole % deuterium respectively was administered. For each period, the deuterium content of egg water rapidly reached a maximum concentration after which the concentration decreased slightly. This dilution effect has not been noted previously in body fluids from other animals.  相似文献   

15.
Helga Dahlhelm 《Planta》1969,86(3):224-234
Summary The auxin-induced cell elongation and the formation of indoleacetyl-aspartic acid (IAAsp) of pea epicotyl sections and Agrostemma hypocotyl sections are inhibited by heavy water. The formation of IAAsp requires a specific enzyme. The lack of IAAsp in D2O-treated plant tissues may be due to an influence of D2O on the induction or on the synthesis of that enzyme. Treatment of plant sections with synthetic IAAsp has no effect on the growth of the sections in D2O. Indole-3-acetic acid (IAA) increases the incorporation of 32P-orthophosphate into ribosomal and soluble RNA of pea epicotyl sections in H2O but not in D2O. The synthesis of ribosomal RNA is decreased by heavy water.The effects of IAA and D2O on the soluble proteins of pea sections have been studied by PAA-gel electrophoresis. D2O does not change the pattern of protein bands in comparison with the H2O-control, but prevents the probably IAA-induced alteration of the Rf-value of one protein band on the pherogram. It is assumed that the inhibition of auxin-induced reactions in the D2O-medium is due to the stabilizing effect of heavy water on allosteric proteins. The results of this work support the hypothesis that IAA acts as allosteric effector.  相似文献   

16.
Summary Using the in vivo density labeling technique with deuterium oxide it is confirmed that during phytochrome mediated photomorphogenesis in mustard seedlings a true de novo synthesis of phenylalanine ammonia-lyase is induced by active phytochrome (P fr).  相似文献   

17.
Administration of methionine to growing Lemna had essentially no effect on accumulation of sulfate sulfur in protein cysteine, but decreased accumulation into cystathionine and its products (homocysteine, methionine, S-methylmethioninesulfonium salt, S-adenosylmethionine, and S-adenosylhomocysteine) to as low as 21% that of control plants, suggesting that methionine regulates its own de novo synthesis at cystathionine synthesis. Methionine caused only a slight reduction (to 80% that of control plants) in the accumulation of sucrose carbon into the 4-carbon moieties of cystathionine and products. This observation was puzzling since cystathionine synthesis proceeds by incorporation of equivalent amounts of sulfur (from cysteine) and 4-carbon moieties (from O-phosphohomoserine). The apparent inconsistency was resolved by the demonstration in Lemna (Giovanelli, Datko, Mudd, Thompson 1983 Plant Physiol 71: 319-326) that de novo synthesis of the methionine 4-carbon moiety occurs not only via the established transsulfuration route from O-phosphohomoserine, but also via the ribose moiety of 5′-methylthioadenosine. It is now clear that the more accurate assessment of the flux of sulfur (and 4-carbon moieties) through transsulfuration is provided by the amount of 35S from 35SO42− that accumulates in cystathionine and its products, rather than by the corresponding measurements with 14C. These studies therefore unequivocally demonstrate in higher plants that methionine does indeed feedback regulate it own de novo synthesis in vivo, and that cystathionine synthesis is a locus for this regulation.  相似文献   

18.
Bertold Hock 《Planta》1970,93(1):26-38
Summary Previously, it was deduced from inhibitor experiments that isocitrate lyase (EC 4.1.3.1.) is synthesized de novo in watermelon cotyledons during the first 3 days of germination, which explains the sharp increase of activity during this period. The following decrease of activity was interpreted as the result of a limited half life of the enzyme molecule (Hock and Beevers, 1966).This hypothesis has been confirmed now by density labeling experiments of isocitrate lyase with deuterium. Seedlings grown from day 0 on D2O (80 vol. %) contained a heavier enzyme at the time of maximum activity than control seedlings grown on H2O (Fig. 6). No incorporation of deuterium into isocitrate lyase, however, was detectable when the cotyledons were labeled only from day 3 1/2 on, i.e. after the stage of maximum activity had been passed (Fig. 10), in spite of the fact that D2O was taken up from the cotyledons in considerable quantities. —These results prove at the same time that density labeling of the isocitrate lyase during early stages of germination was a result of de novo synthesis rather than a mere artifact produced by isotopic exchange.An improved method for the purification of isocitrate lyase from higher plants is introduced.  相似文献   

19.
20.
Parasitism by Cuscuta and Orobanche on Petunia hybrida resulted in decreased choline kinase activity and phospholipids in the host shoots. The Cuscuta-infected host roots suffered a decline in phospholipid concentration with no appreciable change in enzyme activity, whereas the roots of the Orobanche-infected plants exhibited a substantial increase in phospholipid concentration despite a marked lowering in enzymic activity. Superimposition of infection by Cuscuta on Orobanche-infected plants resulted in an increase in both enzyme activity and phospholipid in host shoots; the host roots recorded a decline in phospholipid, although enzyme activity was increased. As compared to the filaments infecting singly, Cuscuta, in sequential infection, registered an increase in phospholipid concomitant with a fall in enzyme activity, whereas the root parasite revealed a lowered enzyme activity and a slight decrease in phospholipid. It is hypothesized that a physiological response to infection by root parasite was an accumulation of phospholipids at the region under infection, and to that by shoot parasite was an uptake of phospholipids by the parasite from the host; this was effected not by de novo synthesis but rather by mobilization from distal regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号