首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin (IL)-6-type cytokines stimulate osteoclastogenesis by activating gp130 in stromal/osteoblastic cells and may mediate some of the osteoclastogenic effects of other cytokines and hormones. To determine whether STAT3 is a downstream effector of gp130 in the osteoclast support function of stromal/osteoblastic cells and whether the gp130/STAT3 pathway is utilized by other osteoclastogenic agents, we conditionally expressed dominant negative (dn)-STAT3 or dn-gp130 in a stromal/osteoblastic cell line (UAMS-32) that supports osteoclast formation. Expression of either dominant negative protein abolished osteoclast formation stimulated by IL-6 + soluble IL-6 receptor, oncostatin M, or IL-1 but not by parathyroid hormone or 1,25-dihydroxyvitamin D3. Because previous studies suggested that IL-6-type cytokines may stimulate osteoclastogenesis by inducing expression of the tumor necrosis factor-related protein, receptor activator of NF-kappaB ligand (RANKL), we conditionally expressed RANKL in UAMS-32 cells and found that this was sufficient to stimulate osteoclastogenesis. Moreover, dn-STAT3 blocked the ability of either IL-6 + soluble IL-6 receptor or oncostatin M to induce RANKL. These results establish that STAT3 is essential for gp130-mediated osteoclast formation and that the target of STAT3 during this process is induction of RANKL. In addition, this study demonstrates that activation of the gp130-STAT3 pathway in stromal/osteoblastic cells mediates the osteoclastogenic effects of IL-1, but not parathyroid hormone or 1, 25-dihydroxyvitamin D3.  相似文献   

2.
3.
Recently, we identified that regulation of leukocyte recruitment by IL-6 requires shedding of the IL-6R from infiltrating neutrophils. In this study, experiments have examined whether other IL-6-related cytokines possess similar properties. Levels of oncostatin M (OSM) and leukemia inhibitory factor were analyzed in patients with overt bacterial peritonitis during the first 5 days of infection. Although no change in leukemia inhibitory factor was observed throughout the duration of infection, OSM was significantly elevated on day 1 and rapidly returned to baseline by days 2-3. The source of OSM was identified as the infiltrating neutrophils, and OSM levels correlated both with leukocyte numbers and i.p. soluble IL-6R (sIL-6R) levels. FACS analysis revealed that OSM receptor beta expression was restricted to human peritoneal mesothelial cells. Stimulation of human peritoneal mesothelial cells with OSM induced phosphorylation of gp130 and OSM receptor beta, which was accompanied by activation of STAT3 and secretion of CC chemokine ligand 2/monocyte chemoattractant protein-1 and IL-6. Although OSM itself did not modulate CXC chemokine ligand 8/IL-8 release, it effectively suppressed IL-1beta-mediated expression of this neutrophil-activating CXC chemokine. Moreover, OSM synergistically blocked IL-1beta-induced CXC chemokine ligand 8 secretion in combination with the IL-6/sIL-6R complex. Thus suggesting that OSM and sIL-6R release from infiltrating neutrophils may contribute to the temporal switch between neutrophil influx and mononuclear cell recruitment seen during acute inflammation.  相似文献   

4.
Signal transduction in response to interleukin-6 (IL-6) requires binding of the cytokine to its receptor (IL-6R) and subsequent homodimerization of the signal transducer gp130. The complex of IL-6 and soluble IL-6R (sIL-6R) triggers dimerization of gp130 and induces responses on cells that do not express membrane bound IL-6R. Naturally occurring soluble gp130 (sgp130) can be found in a ternary complex with IL-6 and sIL-6R. We created recombinant sgp130 proteins that showed binding to IL-6 in complex with sIL-6R and inhibited IL-6/sIL-6R induced proliferation of BAF/3 cells expressing gp130. Surprisingly, sgp130 proteins did not affect IL-6 stimulated proliferation of BAF/3 cells expressing gp130 and membrane bound IL-6R, indicating that sgp130 did not interfere with IL-6 bound to IL-6R on the cell surface. Additionally, sgp130 partially inhibited proliferation induced by leukemia inhibitory factor (LIF) and oncostatin M (OSM) albeit at higher concentrations. Recombinant sgp130 protein could be used to block the anti-apoptotic effect of sIL-6R on lamina propria cells from Crohn disease patients. We conclude that sgp130 is the natural inhibitor of IL-6 responses dependent on sIL-6R. Furthermore, recombinant sgp130 is expected to be a valuable therapeutic tool to specifically block disease states in which sIL-6R transsignaling responses exist, e.g. in morbus Crohn disease.  相似文献   

5.
6.
The common use of the cytokine receptor gp130 has served as an explanation for the extremely redundant biological activities exerted by interleukin (IL)-6-type cytokines. Indeed, hardly any differences in signal transduction initiated by these cytokines are known. In the present study, we demonstrate that oncostatin M (OSM), but not IL-6 or leukemia inhibitory factor, induces tyrosine phosphorylation of the Shc isoforms p52 and p66 and their association with Grb2. Concomitantly, OSM turns out to be a stronger activator of ERK1/2 MAPKs. Shc is recruited to the OSM receptor (OSMR), but not to gp130. Binding involves Tyr(861) of the OSMR, located within a consensus binding sequence for the Shc PTB domain. Moreover, Tyr(861) is essential for activation of ERK1/2 and for full activation of the alpha(2)-macroglobulin promoter, but not for an exclusively STAT-responsive promoter. This study therefore provides evidence for qualitative differential signaling mechanisms exerted by IL-6-type cytokines.  相似文献   

7.
Secretion of IL-6, IL-11 and LIF by human cardiomyocytes in primary culture   总被引:9,自引:0,他引:9  
Interleukin (IL)-6-type cytokines are multifunctional proteins involved in cardiac hypertrophy and myocardial protection. Recent studies, performed on animal models, report the production of these cytokines by heart. The aim of this study was to analyse the capacity of myocytes and fibroblasts isolated from human atrium to secrete IL-6, leukaemia inhibitory factor (LIF), cardiotrophin-1 (CT-1), IL-11, oncostatin M (OSM), ciliary neurotrophic factor (CNTF) and the soluble receptor subunits sIL-6R and sgp130 during primary culture. We detected LIF, IL-11, sgp130 and a large amount of IL-6, but not OSM, CT-1, CNTF nor IL-6R in these culture supernatants. Both cardiomyocytes and fibroblasts are able to spontaneously produce IL-6. The increase of IL-6 production all along the culture period appears to be the consequence of fibroblast proliferation and gp130 stimulation. This is the first demonstration that human cardiac cells are able to secrete IL-6, but also LIF and IL-11 in vitro. These cytokines could be involved in an autocrine and/or a paracrine networks regulating myocardial cyto-protection, hypertrophy and fibrosis.  相似文献   

8.
The related cytokines, interleukin-6 (IL-6), oncostatin M (OSM), and leukemia inhibitory factor (LIF) direct the formation of specific heteromeric receptor complexes to achieve signaling. Each complex includes the common signal-transducing subunit gp130. OSM and LIF also recruit the signaling competent, but structurally distinct OSMRbeta and LIFRalpha subunits, respectively. To test the hypothesis that the particularly prominent cell regulation by OSM is due to signals contributed by OSMRbeta, we introduced stable expression of human or mouse OSMRbeta in rat hepatoma cells which have endogenous receptors for IL-6 and LIF, but not OSM. Both mouse and human OSM engaged gp130 with their respective OSMRbeta subunits, but only human OSM also acted through LIFR. Signaling by OSMRbeta-containing receptors was characterized by highest activation of STAT5 and ERK, recruitment of the insulin receptor substrate and Jun-N-terminal kinase pathways, and induction of a characteristic pattern of acute phase proteins. Since LIF together with LIFRalpha appear to form a more stable complex with gp130 than OSM with gp130 and OSMRbeta, co-activation of LIFR and OSMR resulted in a predominant LIF-like response. These results suggest that signaling by IL-6 cytokines is not identical, and that a hierarchical order of cytokine receptor action exists in which LIFR ranks as dominant member.  相似文献   

9.
Down-regulation of interleukin (IL)-6-type cytokine signaling has been shown to occur, among other mechanisms, via induction of the feedback inhibitor SOCS3 (suppressor of cytokine signaling 3). Binding of SOCS3 to the phosphorylated Tyr(759) in the cytoplasmic region of gp130, the common signal transducing receptor chain of all IL-6-type cytokines, is necessary for inhibition of Janus kinase-mediated signaling. In the present study, we analyzed the effect of SOCS3 on signal transduction by the proinflammatory cytokine oncostatin M (OSM), which signals through a receptor complex of gp130 and the OSM receptor (OSMR). OSM leads to a much stronger and prolonged induction of SOCS3 in HepG2 hepatoma cells and murine embryonal fibroblasts (MEF) compared with IL-6. A negative effect of SOCS3 on OSM signaling was confirmed using MEF cells lacking SOCS3. We can show that the OSMR-mediated signaling is inhibited by SOCS3 to a similar extent as previously described for gp130. However, the inhibition occurs independent of tyrosine motifs within the OSMR. Instead, SOCS3 interacts directly with JAK1 in a stimulation-dependent manner, a mechanism so far only known for SOCS1.  相似文献   

10.
BACKGROUND: The pleiotropic cytokine interleukin-6 mediates its multiple effects at the cell level through a multimeric receptor consisting of a binding protein (gp80) and a signal transducer (gp130). A soluble form of gp80 (sIL-6R or gp55) is found released from the surface of cells and appears to possess interleukin-6 (IL-6) agonist activity. Increases in circulating levels of sIL-6R have been reported in different pathological conditions but the precise role of this protein in vivo remains unknown. MATERIALS AND METHODS: The cDNA encoding the extracellular domain of the rat IL-6R (sIL-6R) with an appropriate leader sequence has been cloned into the E1 region of an adenovirus vector under the control of the hCMV promoter (Ad5.sIL-6R). RESULTS: Infection of different human or rodent cell lines with Ad5.sIL-6R leads to extended production of recombinant sIL-6R protein into the culture media. The kinetics of transgene expression depends both on the cell type and the species. sIL-6R produced in this manner is biologically active as it confers responsiveness of human hepatoma cells (HepG2) to rat IL-6 stimulation. Adenovirus vectors have been shown to be highly effective for transient delivery of cytokines in vivo. Antibodies against recombinant rat soluble IL-6R were generated and an ELISA developed that allowed us to quantify sIL-6R concentrations. The sIL-6R expressing adenovirus vector has been instilled intratracheally into rats and induced an increase in lung sIL-6R concentration from Day 1 up to Day 10. We demonstrate the potency of our system to deliver in vivo or in vitro soluble cytokine receptors in a prolonged but transient manner.  相似文献   

11.
IL-6, leukemia inhibitory factor (LIF), and oncostatin M (OSM) are IL-6-type cytokines that stimulate osteoclast formation and function. In the present study, the resorptive effects of these agents and their regulation of receptor activator of NF-kappaB ligand (RANKL), RANK, and osteoprotegerin (OPG) were studied in neonatal mouse calvaria. When tested separately, neither human (h) IL-6 nor the human soluble IL-6R (shIL-6R) stimulated bone resorption, but when hIL-6 and the shIL-6R were combined, significant stimulation of both mineral and matrix release from bone explants was noted. Semiquantitative RT-PCR showed that hIL-6 plus shIL-6R enhanced the expression of RANKL and OPG in calvarial bones, but decreased RANK expression. Human LIF, hOSM, and mouse OSM (mOSM) also stimulated 45Ca release and enhanced the mRNA expression of RANKL and OPG in mouse calvaria, but had no effect on the expression of RANK. In agreement with the RT-PCR analyses, ELISA measurements showed that both hIL-6 plus shIL-6R and mOSM increased RANKL and OPG proteins. 1,25-Dihydroxyvitamin D3 (D3) also increased the RANKL protein level, but decreased the protein level of OPG. OPG inhibited 45Ca release stimulated by RANKL, hIL-6 plus shIL-6R, hLIF, hOSM, mOSM, and D3. An Ab neutralizing mouse gp130 inhibited 45Ca release induced by hIL-6 plus shIL-6R. These experiments demonstrated stimulation of calvarial bone resorption and regulation of mRNA and protein expression of RANKL and OPG by D3 and IL-6 family cytokines as well as regulation of RANK expression in preosteoclasts/osteoclasts of mouse calvaria by D3 and hIL-6 plus shIL-6R.  相似文献   

12.
Leukemia inhibitory factor (LIF) and its receptor (LIFR) are "twins" of Oncostatin M (OSM) and OSMR, respectively, likely having arisen through gene duplications. We compared their effects in a bone nodule-forming model of in vitro osteogenesis, rat calvaria (RC) cell cultures. Using a dominant-negative LIF mutant (hLIF-05), we showed that in RC cell cultures mouse OSM (mOSM) activates exclusively glycoprotein 130 (gp130)/OSMR. In treatments starting at early nodule formation stage, LIF, mOSM, IL-11, and IL-6 + sIL-6R inhibit bone nodule formation, that is, osteoprogenitor differentiation. Treatment with mOSM, and no other cytokine of the family, in early cultures (day 1-3 or 1-4) increases bone colony numbers. hLIF-05 also dose dependently stimulates bone nodule formation, confirming the inhibitory action of gp130/LIFR on osteogenesis. In pulse treatments at successive stages of bone nodule formation and maturation, LIF blocks osteocalcin (OCN) expression by differentiated osteoblasts, but has no effect on bone sialoprotein (BSP) expression. Mouse OSM inhibits OCN and BSP expression in preconfluent cultures with no or progressively reduced effects at later stages, reflecting the disruption of early nodules, possibly due to the strong apoptotic action of mOSM in RC cell cultures. In summary, LIFR and OSMR display differential effects on differentiation and phenotypic expression of osteogenic cells, most likely through different signal transduction pathways. In particular, gp130/OSMR is the only receptor complex of the family to stimulate osteoprogenitor differentiation in the RC cell culture model.  相似文献   

13.
The cytokines IL-6, LIF, CNTF, OSM, IL-11, and CT-1 have been grouped into the family of IL-6-type cytokines, since they all require gp130 for signal transduction. Interestingly, gp130 binds directly to OSM, whereas complex formation with the other cytokines depends on additional receptor subunits. Only limited structural information on these cytokines and their receptors is available. X-ray structures have been solved for the cytokines LIF and CNTF, whose up-up-down-down four-helix bundle is common to all of these cytokines, and for the receptors of hGH and prolactin, which contain two domains with a fibronectin III-like fold. Since cocrystallization and x-ray analysis of the up to four different proteins forming the receptor complexes of the IL-6-type cytokines is unlikely to be achieved in the near future, model building based on the existing structural information is the only approach for the time being. Here we present model structures of the complexes of human and murine IL-6 with their receptors. Their validity can be deduced from the fact that published mutagenesis data and the different receptor specificity of human and murine IL-6 can be understood. It is now possible to predict the relative positions and contacts for all molecules in their respective complexes. Such information can be used for the rational design of cytokine and receptor antagonists, which may have a valuable therapeutic perspective. Proteins 27:96–109 © 1997 Wiley-Liss, Inc.  相似文献   

14.
15.
Classic IL-6 signaling is conditioned by the transmembrane receptor (IL-6R) and homodimerization of gp130. During trans-signaling, IL-6 binds to soluble IL-6R (sIL-6R), enabling activation of cells expressing solely gp130. Soluble gp130 (sgp130) selectively inhibits IL-6 trans-signaling. To characterize amniotic fluid (AF) IL-6 trans-signaling molecules (IL-6, sIL-6R, sgp130) in normal gestations and pregnancies complicated by intra-amniotic inflammation (IAI), we studied 301 women during second trimester (n = 39), third trimester (n = 40), and preterm labor with intact (n = 131, 85 negative IAI and 46 positive IAI) or preterm premature rupture of membranes (PPROM; n = 91, 61 negative IAI and 30 positive IAI). ELISA, Western blotting, and real-time RT-PCR were used to investigate AF, placenta, and amniochorion for protein and mRNA expression of sIL-6R, sgp130, IL-6R, and gp130. Tissues were immunostained for IL-6R, gp130, CD15(+) (polymorphonuclear), and CD3(+) (T cell) inflammatory cells. The ability of sIL-6R and sgp130 to modulate basal and LPS-stimulated release of amniochorion matrix metalloprotease-9 was tested ex vivo. We showed that in physiologic gestations, AF sgp130 decreases toward term. AF IL-6 and sIL-6R were increased in IAI, whereas sgp130 was decreased in PPROM. Our results suggested that fetal membranes are the probable source of AF sIL-6R and sgp130. Immunohistochemistry and RT-PCR revealed increased IL-6R and decreased gp130 expression in amniochorion of women with IAI. Ex vivo, sIL-6R and LPS augmented amniochorion matrix metalloprotease-9 release, whereas sgp130 opposed this effect. We conclude that IL-6 trans-signaling molecules are physiologic constituents of the AF regulated by gestational age and inflammation. PPROM likely involves functional loss of sgp130.  相似文献   

16.
Human osteoblasts produce interleukin-6 (IL-6) and respond to IL-6 in the presence of soluble IL-6 receptor (sIL-6R), but the cell surface expression of IL-6R and the mechanism of sIL-6R production are largely unknown. Three different human osteoblast-like cell lines (MG-63, HOS, and SaOS-2) and bone marrow-derived primary human osteoblasts expressed both IL-6R and gp130 as determined by flow cytometry and immunoprecipitation. However, the membrane-bound IL-6R was nonfunctional, as significant tyrosine phosphorylation of gp130 did not occur in the presence of IL-6. Phorbol myristate acetate induced a dramatic increase of both IL-6R shedding (i.e. the production of sIL-6R) and IL-6 release in osteoblast cultures, but the cell surface expression of gp130 remained unchanged. IL-6 complexed with sIL-6R, either exogenously introduced or derived from the nonfunctional cell surface form by shedding, induced rapid tyrosine phosphorylation of gp130. This effect was inhibited by neutralizing antibodies to either sIL-6R or gp130, indicating that the gp130 activation was induced by IL-6/sIL-6R/gp130 interaction. Protein kinase C inhibitors blocked phorbol myristate acetate-induced and spontaneous shedding of IL-6R resulting in the absence of sIL-6R in the culture medium, which in turn also prevented the activation of gp130. In conclusion, human osteoblasts express cell surface IL-6R, which is unable to transmit IL-6-induced signals until it is shed into its soluble form. This unique mechanism provides the flexibility for osteoblasts to control their own responsiveness to IL-6 via the activation of an IL-6R sheddase, resulting in an immediate production of functionally active osteoblast-derived sIL-6R.  相似文献   

17.
Oncostatin M: signal transduction and biological activity   总被引:12,自引:0,他引:12  
Gómez-Lechón MJ 《Life sciences》1999,65(20):2019-2030
Oncostatin M (OSM) is a multifunctional cytokine produced by activated T lymphocytes and monocytes that is structurally and functionally related to the subfamily of cytokines known as the IL-6-type cytokine family. OSM shares properties with all members of this family of cytokines, but is most closely related structurally and functionally to LIE OSM acts on a wide variety of cells and elicits diversified biological responses in vivo and in vitro which suggest potential roles in the regulation of gene activation, cell survival, proliferation and differentiation. OSM and LIF can bind to the same functional receptor complex (LIF-receptor beta and gp130 heteromultidimers) and thus mediate overlapping spectra of biological activities. There is a second specific beta receptor that binds OSM with high affinity and also involves the subunit gp130. The two receptors for OSM can be functionally different and be coupled to different signal transduction pathways. OSM-specific receptors are expressed in a wide variety of cell types and do not possess an intrinsic tyrosine kinase domain, but the JAK/STAT tyrosine kinase pathway mediates signal transduction.  相似文献   

18.
19.
20.
Cross-talk among gp130 cytokines in adipocytes   总被引:3,自引:0,他引:3  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号