首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to determine whether activation of central type II glucocorticoid receptors can blunt autonomic nervous system counterregulatory responses to subsequent hypoglycemia. Sixty conscious unrestrained Sprague-Dawley rats were studied during 2-day experiments. Day 1 consisted of either two episodes of clamped 2-h hyperinsulinemic (30 pmol x kg(-1) x min(-1)) hypoglycemia (2.8 +/- 0.1 mM; n = 12), hyperinsulinemic euglycemia (6.2 +/- 0.1 mM; n = 12), hyperinsulinemic euglycemia plus simultaneous lateral cerebroventricular infusion of saline (24 microl/h; n = 8), or hyperinsulinemic euglycemia plus either lateral cerebral ventricular infusion (n = 8; LV-DEX group), fourth cerebral ventricular (n = 10; 4V-DEX group), or peripheral (n = 10; P-DEX group) infusion of dexamethasone (5 microg/h), a specific type II glucocorticoid receptor analog. For all groups, day 2 consisted of a 2-h hyperinsulinemic (30 pmol x kg(-1) x min(-1)) or hypoglycemic (2.9 +/- 0.2 mM) clamp. The hypoglycemic group had blunted epinephrine, glucagon, and endogenous glucose production in response to subsequent hypoglycemia. Consequently, the glucose infusion rate to maintain the glucose levels was significantly greater in this group vs. all other groups. The LV-DEX group did not have blunted counterregulatory responses to subsequent hypoglycemia, but the P-DEX and 4V-DEX groups had significantly lower epinephrine and norepinephrine responses to hypoglycemia compared with all other groups. In summary, peripheral and fourth cerebral ventricular but not lateral cerebral ventricular infusion of dexamethasone led to significant blunting of autonomic counterregulatory responses to subsequent hypoglycemia. These data suggest that prior activation of type II glucocorticoid receptors within the hindbrain plays a major role in blunting autonomic nervous system counterregulatory responses to subsequent hypoglycemia in the conscious rat.  相似文献   

2.
The aims of this study were 1) to determine whether differential glycemic thresholds are the mechanism responsible for the sexual dimorphism present in neuroendocrine responses during hypoglycemia and 2) to define the differences in counterregulatory physiological responses that occur over a range of mild to moderate hypoglycemia in healthy men and women. Fifteen (8 male, 7 female) lean healthy adults underwent four separate randomized 2-h hyperinsulinemic (1.5 mU. kg(-1).min(-1)) glucose clamp studies at euglycemia (90 mg/dl) or hypoglycemia of 70, 60, or 50 mg/dl. Plasma insulin levels were similar during euglycemic and hypoglycemic studies (91-96 +/- 8 microU/ml) in men and women. Hypoglycemia of 70, 60, and 50 mg/dl all resulted in significant increases (P < 0.05, P < 0.01) in epinephrine, glucagon, growth hormone, cortisol, and pancreatic polypeptide levels compared with euglycemic studies in men and women. Plasma norepinephrine levels were increased (P < 0.05) only relative to euglycemic studies at a hypoglycemia of 50 mg/dl. Muscle sympathetic nerve activity (MSNA) increased significantly during hyperinsulinemic-euglycemic control studies. Further elevations of MSNA did not occur until hypoglycemia of 60 mg/dl in both men and women. Plasma epinephrine, glucagon, growth hormone, and pancreatic polypeptide were significantly increased in men compared with women during hypoglycemia of 70, 60, and 50 mg/dl. MSNA, heart rate, and systolic blood pressure responses were also significantly increased in men at hypoglycemia of 60 and 50 mg/dl. In summary, these studies have demonstrated that, in healthy men and women, the glycemic thresholds for activation of epinephrine, glucagon, growth hormone, cortisol, and pancreatic polypeptide occur between 70 and 79 mg/dl. Thresholds for activation of MSNA occur between 60 and 69 mg/dl, whereas norepinephrine is not activated until glycemia is between 50 and 59 mg/dl. We conclude that 1) differential glycemic thresholds are not the cause of the sexual dimorphism present in counterregulatory responses to hypoglycemia; 2) reduced central nervous system efferent input appears to be the mechanism responsible for lowered neuroendocrine responses to hypoglycemia in women; and 3) physiological counterregulatory responses (neuroendocrine, cardiovascular, and autonomic nervous system) are reduced across a broad range of hypoglycemia in healthy women compared with healthy men.  相似文献   

3.
Hypoglycemia-induced counterregulatory failure is a dangerous complication of insulin use in diabetes mellitus. Controlled hypoglycemia studies in gene knockout models, which require the use of mice, would aid in identifying causes of defective counterregulation. Because stress can influence counterregulatory hormones and glucose homeostasis, we developed glucose clamps with remote blood sampling in conscious, unrestrained mice. Male C57BL/6 mice implanted with indwelling carotid artery and jugular vein catheters were subjected to 2 h of hyperinsulinemic glucose clamps 24 h apart, with a 6-h fast before each clamp. On day 1, blood glucose was maintained (euglycemia, 178 +/- 4 mg/dl) or decreased to 62 +/- 1 mg/dl (hypoglycemia) by insulin (20 mU x kg(-1) x min(-1)) and variable glucose infusion. Donor blood was continuously infused to replace blood sample volume. Baseline plasma epinephrine (32 +/- 8 pg/ml), corticosterone (16.1 +/- 1.8 microg/dl), and glucagon (35 +/- 3 pg/ml) were unchanged during euglycemia but increased significantly during hypoglycemia, with a glycemic threshold of approximately 80 mg/dl. On day 2, all mice underwent a hypoglycemic clamp (blood glucose, 64 +/- 1 mg/dl). Compared with mice that were euglycemic on day 1, previously hypoglycemic mice had significantly higher glucose requirements and significantly lower plasma glucagon and corticosterone (n = 6/group) on day 2. Epinephrine tended to decrease, although not significantly, in repeatedly hypoglycemic mice. Pre- and post-clamp insulin levels were similar between groups. We conclude that counterregulatory responses to acute and repeated hypoglycemia in unrestrained, chronically cannulated mice reproduce aspects of counterregulation in humans, and that repeated hypoglycemia in mice is a useful model of counterregulatory failure.  相似文献   

4.
Glucocorticoids have been implicated in hypoglycemia-induced autonomic failure but also contribute to normal counterregulation. To determine the influence of normal and hypoglycemia-induced levels of glucocorticoids on counterregulatory responses to acute and repeated hypoglycemia, we compared plasma catecholamines, corticosterone, glucagon, and glucose requirements in male wild-type (WT) and glucocorticoid-deficient, corticotropin-releasing hormone knockout (CRH KO) mice. Conscious, chronically cannulated, unrestrained WT and CRH KO mice underwent a euglycemic (Prior Eu) or hypoglycemic clamp (Prior Hypo) on day 1 followed by a hypoglycemic clamp on day 2 (blood glucose both days, 65 +/- 1 mg/dl). Baseline epinephrine and glucagon were similar, and norepinephrine was elevated, in CRH KO vs. WT mice. CRH KO corticosterone was almost undetectable (<1.5 microg/dl) and unresponsive to hypoglycemia. CRH KO glucose requirements were significantly higher during day 1 hypoglycemia despite epinephrine and glucagon responses that were comparable to or greater than those in WT. Hyperinsulinemic euglycemia did not increase hormones or glucose requirements above baseline. On day 2, Prior Hypo WT had significantly higher glucose requirements and significantly lower corticosterone and glucagon responses. Prior Hypo and Prior Eu CRH KO mice had similar day 2 glucose requirements. However, Prior Hypo CRH KO mice had significantly lower day 2 epinephrine and norepinephrine vs. Prior Eu CRH KO and tended to have lower glucagon than on day 1. We conclude that glucocorticoid insufficiency in CRH KO mice correlates with 1) impaired counterregulation during acute hypoglycemia and 2) complex effects after repeated hypoglycemia, neither preventing decreased hormone responses nor worsening glucose requirements.  相似文献   

5.
6.
The mechanism(s) underlying hypoglycemia-associated autonomic failure (HAAF) are unknown. To test the hypothesis that the activation of brain regions involved in the counterregulatory response to hypoglycemia is blunted with HAAF, rats were studied in a 2-day protocol. Neuroendocrine responses and brain activation (c-Fos immunoreactivity) were measured during day 2 insulin-induced hypoglycemia (0.5 U insulin x 100 g body x wt(-1) x h(-1) iv for 2 h) after day 1 hypoglycemia (Hypo-Hypo) or vehicle. Hypo-Hypo animals demonstrated HAAF with blunted epinephrine, glucagon, and corticosterone (Cort) responses and decreased activation of the medial hypothalamus [the paraventricular (PVN), dorsomedial (DMH), and arcuate (Arc) nuclei]. To evaluate whether increases in day 1 Cort were responsible for the decreased hypothalamic activation, Cort was infused intracerebroventricularly (72 microg) on day 1 and the response to day 2 hypoglycemia was measured. Intracerebroventricular Cort infusion failed to alter the neuroendocrine response to day 2 hypoglycemia, despite elevating both central nervous system and peripheral Cort levels. However, day 1 Cort blunted responses in two of the same hypothalamic regions as Hypo-Hypo (the DMH and Arc) but not in the PVN. These results suggest that decreased activation of the PVN may be important in the development of HAAF and that antecedent exposure to elevated levels of Cort is not always sufficient to produce HAAF.  相似文献   

7.
8.
The effects of oral carbohydrate on modulating counterregulatory responses in humans remain undecided. This study's specific aim was to determine the effects of oral carbohydrate on autonomic nervous system (ANS) and neuroendocrine responses during hyperinsulinemic hypoglycemia and euglycemia. Nineteen healthy volunteers were studied during paired, single blind experiments. Nine subjects underwent two-step glucose clamps consisting of 60 min of euglycemia (5.0 mmol/l) followed by either 15 g of oral carbohydrate (cal) as orange juice or a noncaloric control (nocal) and subsequent 90 min of clamped hypoglycemia (2.9 mmol/l). Ten other subjects underwent two randomized 150-min hyperinsulinemic-euglycemic clamps with cal or nocal control administered at 60 min. Oral carbohydrate initially blunted (P < 0.05) epinephrine, norepinephrine, cortisol, glucagon, pancreatic polypeptide, muscle sympathetic nerve activity (MSNA), symptom, and systolic blood pressure responses during hypoglycemia. However, by the end of 90 min of hypoglycemia, plasma epinephrine and norepinephrine responses had rebounded and were increased (P < 0.05) compared with control. MSNA and cortisol levels remained suppressed during hypoglycemia (P < 0.05) after cal, whereas pancreatic polypeptide, glucagon, symptom, and blood pressure responses increased similar to control following initial suppression. Oral carbohydrate had no effects on neuroendocrine or ANS responses during hyperinsulinemic euglycemia. These results demonstrate that oral carbohydrate can have differential effects on the time course of ANS and neuroendocrine responses during hypoglycemia. We conclude that gastro-splanchnic-portal sensing of an amount of carbohydrate recommended for use in clinical practice for correction of hypoglycemia can have widespread and significant effects on central nervous system mediated counterregulatory responses in healthy humans.  相似文献   

9.
Antecedent hypoglycemia leads to impaired counterregulation and hypoglycemic unawareness. To ascertain whether antecedent portal vein hypoglycemia impairs portal vein glucose sensing, thereby inducing counterregulatory failure, we compared the effects of antecedent hypoglycemia, with and without normalization of portal vein glycemia, upon the counterregulatory response to subsequent hypoglycemia. Male Wistar rats were chronically cannulated in the carotid artery (sampling), jugular vein (glucose and insulin infusion), and mesenteric vein (glucose infusion). On day 1, the following three distinct antecedent protocols were employed: 1) HYPO-HYPO: systemic hypoglycemia (2.52 +/- 0.11 mM); 2) HYPO-EUG: systemic hypoglycemia (2.70 +/- 0.03 mM) with normalization of portal vein glycemia (portal vein glucose = 5.86 +/- 0.10 mM); and 3) EUG-EUG: systemic euglycemia (6.33 +/- 0.31 mM). On day 2, all groups underwent a hyperinsulinemic-hypoglycemic clamp in which the fall in glycemia was controlled so as to reach the nadir (2.34 +/- 0.04 mM) by minute 75. Counterregulatory hormone responses were measured at basal (-30 and 0) and during hypoglycemia (60-105 min). Compared with EUG-EUG, antecedent hypoglycemia (HYPO-HYPO) significantly blunted the peak epinephrine (10.44 +/- 1.35 vs. 15.75 +/- 1.33 nM: P = 0.01) and glucagon (341 +/- 16 vs. 597 +/- 82 pg/ml: P = 0.03) responses to next-day hypoglycemia. Normalization of portal glycemia during systemic hypoglycemia on day 1 (HYPO-EUG) prevented blunting of the peak epinephrine (15.59 +/- 1.43 vs. 15.75 +/- 1.33 nM: P = 0.94) and glucagon (523 +/- 169 vs. 597 +/- 82 pg/ml: P = 0.66) responses to day 2 hypoglycemia. Consistent with hormonal responses, the glucose infusion rate during day 2 hypoglycemia was substantially elevated in HYPO-HYPO (74 +/- 12 vs. 49 +/- 4 micromol x kg(-1) x min(-1); P = 0.03) but not HYPO-EUG (39 +/- 7 vs. 49 +/- 4 micromol x kg(-1) x min(-1): P = 0.36). Antecedent hypoglycemia local to the portal vein is required for the full induction of hypoglycemia-associated counterregulatory failure with slow-onset hypoglycemia.  相似文献   

10.
In the present study the hypothesis tested was that prior exercise may blunt counterregulatory responses to subsequent hypoglycemia. Healthy subjects [15 females (f)/15 males (m), age 27 +/- 1 yr, body mass index 22 +/- 1 kg/m(2), hemoglobin A(Ic) 5.6 +/- 0.5%] were studied during 2-day experiments. Day 1 involved either 90-min morning and afternoon cycle exercise at 50% maximal O2 uptake (VO2(max)) (priorEXE, n = 16, 8 m/8 f) or equivalent rest periods (priorREST, n = 14, 7 m/7 f). Day 2 consisted of a 2-h hypoglycemic clamp in all subjects. Endogenous glucose production (EGP) was measured using [3-3H]glucose. Muscle sympathetic nerve activity (MSNA) was measured using microneurography. Day 2 insulin (87 +/- 6 microU/ml) and plasma glucose levels (54 +/- 2 mg/dl) were equivalent after priorEXE and priorREST. Significant blunting (P < 0.01) of day 2 norepinephrine (-30 +/- 4%), epinephrine (-37 +/- 6%), glucagon (-60 +/- 4%), growth hormone (-61 +/- 5%), pancreatic polypeptide (-47 +/- 4%), and MSNA (-90 +/- 8%) responses to hypoglycemia occurred after priorEXE vs. priorREST. EGP during day 2 hypoglycemia was also suppressed significantly (P < 0.01) after priorEXE compared with priorREST. In summary, two bouts of exercise (90 min at 50% VO2(max)) significantly reduced glucagon, catecholamines, growth hormone, pancreatic polypeptide, and EGP responses to subsequent hypoglycemia. We conclude that, in normal humans, antecedent prolonged moderate exercise blunts neuroendocrine and metabolic counterregulatory responses to subsequent hypoglycemia.  相似文献   

11.
Forty-one postpartum anestrous Hereford cows, maintained under range conditions, were used to determine the influence of gonadotropin releasing hormone (GnRH) or pregnant mare serum gonadotropin (PMSG) on ovarian function. Anestrous cows were identified by estrous detection with sterile bulls and concentrations of progesterone in plasma obtained weekly. At 45 +/- 2 days postpartum, cows were allotted to the following treatments: (1) control (saline), (2) 100 mug GnRH, (3) 200 mug GnRH, (4) 200 mug GnRH in carboxymethyl cellulose (CMC), (5) 500 IU PMSG, (6) 1,000 IU PMSG or (7) 2,000 IU PMSG. Cows were bled frequently the first day after treatment and then every other day until 85 days postpartum. The LH responses after 100 and 200 mug of GnRH were not significantly different and mixing 200 mug GnRH with CMC before injection did not significantly alter the LH response. During the first 20 days after treatment, neither GnRH nor 500 IU PMSG altered estradiol concentrations in plasma, but treatment of cows with 1,000 or 2,000 IU PMSG resulted in increased (P<0.01) concentrations of estradiol. The time postpartum required for concentrations of progesterone in plasma to exceed 1 ng/ml was reduced (P<0.05) by all treatments except 100 mug GnRH. These data indicate that GnRH causes LH release in anestrous range cows and that treatment with 1,000 or 2,000 IU PMSG initiates ovarian activity as evidenced by increased concentrations of estradiol in plasma.  相似文献   

12.
Individuals with type 1 diabetes demonstrate a hypoglycemia-specific defect in glucagon secretion. To determine whether intraislet hyperinsulinemia plays a role in the genesis of this defect, glucagon-secretory responses to moderate hypoglycemia induced by either insulin or a novel combination of the noninsulin glucose-lowering agents 5-aminoimidazole-4-carboxamide (AICAR) and phlorizin were compared in diabetic BB rats (an animal model of type 1 diabetes) and nondiabetic BB rats. The phlorizin-AICAR combination was able to induce moderate and equivalent hypoglycemia in both diabetic and nondiabetic BB rats in the absence of marked hyperinsulinemia. Diabetic BB rats demonstrated impaired glucagon and epinephrine responses during insulin-induced hypoglycemia compared with nondiabetic rats. In contrast, both glucagon (9- to 10-fold increase) and epinephrine (5- to 6-fold increase) responses were markedly improved during phlorizin-AICAR hypoglycemia. Combining phlorizin, AICAR, and insulin attenuated the glucagon response to hypoglycemia by 70% in the diabetic BB rat. Phlorizin plus AICAR had no effect on counterregulatory hormones under euglycemic conditions. We conclude that alpha-cell glucagon secretion in response to hypoglycemia is not defective if intraislet hyperinsulinemia is prevented. This suggests that exogenous insulin plays a pivotal role in the etiology of this defect.  相似文献   

13.
Hypoglycemia frequently occurs during or after exercise in intensively treated patients with type 1 diabetes mellitus (T1DM), but the underlying mechanisms are not clear. In both diabetic and nondiabetic subjects, moderate hypoglycemia blunts counterregulatory responses to subsequent exercise, but it is unknown whether milder levels of hypoglycemia can exert similar effects in a dose-dependent fashion. This study was designed to test the hypothesis that prior hypoglycemia of differing depths induces acute counterregulatory failure of proportionally greater magnitude during subsequent exercise in T1DM. Twenty-two T1DM patients (11 males/11 females, HbA1c 8.0 +/- 0.3%) were studied during 90 min of euglycemic cycling exercise after two 2-h periods of previous day euglycemia or hypoglycemia of 3.9, 3.3, or 2.8 mmol/l (HYPO-3.9, HYPO-3.3, HYPO-2.8, respectively). Patients' counterregulatory responses (circulating levels of neuroendocrine hormones, intermediary metabolites, substrate flux, tracer-determined glucose kinetics, and cardiovascular measurements) were assessed during exercise. Identical euglycemia and basal insulin levels were successfully maintained during all exercise studies, regardless of blood glucose levels during the previous day. After day 1 euglycemia, patients displayed normal counterregulatory responses to exercise. Conversely, when identical exercise was performed after day 1 hypoglycemia of increasing depth, a progressively greater blunting of glucagon, catecholamine, cortisol, endogenous glucose production, and lipolytic responses to exercise was observed. This was paralleled by a graduated increase in the amount of exogenous glucose needed to maintain euglycemia during exercise. Our results demonstrate that acute counterregulatory failure during prolonged, moderate-intensity exercise may be induced in a dose-dependent fashion by differing depths of antecedent hypoglycemia starting at only 3.9 mmol/l in patients with T1DM.  相似文献   

14.
Clinical and preclinical studies have found sex-specific differences in the discrimination and perception of inflammatory stimuli. The emerging picture suggests that the biological basis of these differences resides in the regulatory activity of gonadal hormones in the central nervous system. This study describes the effects of ovarian hormones in inflammatory pain processes. Ovariectomized rats received estradiol and/or progesterone, and the number of paw flinches was measured after 1, 2.5 or 5% formalin administration. Both estradiol and progesterone altered the number of flinches only after 1% formalin administration. Estradiol significantly reduced the overall number of flinches during Phase II of the formalin nociceptive response while progesterone attenuated Phase I of the response. After co-administration of estradiol and progesterone, progesterone reversed estradiol's analgesic effect in Phase II, however, estradiol did not reverse progesterone's analgesic activity in Phase I. To determine if estradiol effects are receptor-mediated, tamoxifen (selective estrogen receptor mediator, 15 mg/kg) or alpha-estradiol (an inactive isomer of estradiol, 20 microg) were utilized. Tamoxifen decreased the number of formalin-induced flinches during Phase II while alpha-estradiol did not affect any formalin-induced responses. When co-administered with estradiol, tamoxifen failed to reverse estradiol's effect, suggesting both tamoxifen and estradiol activate similar intracellular mechanisms. Although Western blot analysis detected the presence of estradiol alpha and beta and progesterone B receptors in the spinal cord, hormone replacement treatments had no effects on the levels of these receptors. We postulate that the mechanisms by which estradiol and progesterone induce analgesia occur through the activation of their receptor at the spinal cord level.  相似文献   

15.
Exercise-induced hypoglycemia can occur within hours after exercise in type 1 diabetes mellitus (T1DM) patients. This study tested the hypothesis that an acute exercise bout causes (within hours) blunted autonomic and metabolic responses to subsequent hypoglycemia in patients with T1DM. Twelve T1DM patients (3 W/9 M) were studied during a single-step, 2-h hyperinsulinemic (572 +/- 4 pmol/l) hypoglycemic (2.8 +/- 0.1 mmol/l) clamp 2 h after either a hyperinsulinemic euglycemic (AM EUG) or hypoglycemic clamp (AM HYPO) or after sitting in a chair with basal insulin infusion (AM CON) or 90 min of moderate-intensity exercise (50% Vo(2 max), AM EX). Both AM HYPO and AM EX significantly blunted epinephrine responses and muscle sympathetic nerve activity responses to subsequent hypoglycemia compared with both control groups. Endogenous glucose production was significantly lower and the exogenous glucose infusion rate needed to maintain the hypoglycemic level was significantly greater during subsequent hypoglycemia in AM EX vs. CON. Rate of glucose disposal (Rd) was significantly reduced following AM HYPO. In summary, within 2.5 h, both moderate-intensity AM EX and AM HYPO blunted key autonomic counterregulatory responses. Despite this, glucose Rd was reduced during afternoon hypoglycemia following morning hypoglycemia, indicating posthypoglycemic insulin resistance. After morning exercise, endogenous glucose production was blunted, but glucose Rd was maintained during afternoon hypoglycemia, thereby indicating reduced metabolic defenses against hypoglycemia. These data suggest that exercise-induced counterregulatory failure can occur very rapidly, increasing the risk for hypoglycemia in T1DM within hours.  相似文献   

16.
The present study examined the influence of hormones on the levels of immunoglobulins A (IgA) and G (IgG) and secretory component (SC) in cervicovaginal secretions of ovariectomized rats. Administration of estradiol to ovariectomized rats resulted in a significant decline in cervicovaginal content of IgA, IgG and SC. This response was dose dependent and was not prevented by administration of dexamethasone, a potent synthetic glucocorticoid, with estradiol. Treatment of ovariectomized rats with progesterone also lowered the levels of IgA and SC in cervicovaginal secretions. In contrast, dexamethasone had no apparent vaginal effect. The action of estradiol on cervicovaginal IgA, IgG and SC appears to be independent of uterine influence. This conclusion is based upon our observation that estrogen treatment of rats with ligations at their uterocervical junction still have decreased cervicovaginal IgA and SC levels. In parallel with this inhibitory effect, estradiol administration stimulated the accumulation of IgA and SC in uterine secretions. These findings indicate that the sex hormones play a role in regulating IgA, IgG and SC content in cervicovaginal secretions. In addition, it suggests that hormonal balance in females may influence the immune response of the reproductive tract to infectious disease.  相似文献   

17.
Taking into consideration the biological importance of interaction between antioxidant defense (AD) enzymes and sexual steroid hormones it was deemed important to compare our recent achievements in the field with the state of current knowledge. The main goal of the present review was to investigate the changes of AD enzyme activities: superoxide dismutases, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase in the brain of female and male rats depending on progesterone and estradiol. These ovarian steroids produce their effects by acting on numerous target tissues and organs, such as the reproductive organs, bone tissue and cartilage, peripheral blood vessels and the central nervous system (CNS). We have chosen it as a new parameter that might represent an important indicator of the changes within the CNS, bearing in mind the biological importance of the enzymes of the AD system. Our experimental results indicate that the AD enzyme activities in the brain tissue of female and male rats show a certain dependence on the concentration of progesterone and estradiol. The present review suggests that the modulation of the oxidative and antioxidative capacity by sexual steroid hormones is mediated through antioxidant metabolizing enzymes.  相似文献   

18.
Pregnancies in hamsters may be terminated by 10 mug PGF2alpha administered b.i.d. on days 4, k and 6 of gestation. Small (250 mug and above) daily injections of progesterone on the same days will reverse this PG effect; in contradistinction, 10 mg of progesterone per day failed to maintain normal pregnancies in hamsters spayed on day 5. Daily administration of 3 mg of progesterone and 1 mug of estrone essentially normalized the gestation; administration of PGF2alpha at 10 mg on days 5, 6 and 7 of pregnancy in steroid-maintained rats, resulted in pregnancy termination in all animals, while 1 mg was partly effective. These data demonstrate an extra-ovarian site of action of prostaglandin F2alpha on pregnancy in hamsters.  相似文献   

19.
Effects of embelin on oestrous cycle, plasma levels of progesterone and oestradiol, and in vitro production of oestradiol and progesterone by mixed ovarian cells was studied. Forty adult (4 months old) regularly cycling female Sprague-Dawley rats were divided into four groups of 10 rats each. Groups I and II (controls) were given 1 ml/kg body weight of physiological saline or corn oil (vehicle). Groups III and IV received 10 mg/kg and 20 mg/kg body weight embelin in corn oil, respectively. Emberlin disrupted the oestrous cycles in Groups III and IV animals, and there was a significant depression in plasma oestradiol (p <0.05) and progesterone (p <0.02) at both 10 and 20 mg/kg body weights, respectively. Isolated mixed ovarian cells from embelin treated rats produced significantly less progesterone and estradiol than controls in vitro. It is concluded that embelin probably interferes with reproductive functions in female rats by suppressing ovarian production of sex steroid hormones.  相似文献   

20.
M R Brown  L A Fisher 《Life sciences》1986,39(11):1003-1012
Studies were performed to evaluate the effects of glucocorticoids on the activity of the sympathetic nervous system and adrenal medulla. Plasma concentrations of norepinephrine and epinephrine were measured in rats in which endogenous glucocorticoids were removed by bilateral adrenalectomy and in rats to which exogenous glucocorticoids were administered. In intact rats, dexamethasone (2.5, 25 or 250 micrograms) pretreatment suppressed ether vapor-induced elevations of norepinephrine and epinephrine concentrations in plasma. Corticosterone (3 mg/kg), similar to dexamethasone, attenuated the elevation of plasma concentrations of norepinephrine and epinephrine in rats exposed to ether vapor. Glucocorticoids did not alter the elevation of plasma catecholamines stimulated by intracerebroventricular injections of corticotropin-releasing factor or calcitonin gene-related peptide, thus demonstrating functional integrity of the sympathetic nervous system and adrenal medulla. Adrenalectomy resulted in elevation of basal plasma norepinephrine levels and accentuation of ether vapor-induced elevations of plasma norepinephrine concentrations in rats. Dexamethasone (25 ug) administration blunted the effects of adrenalectomy on both basal and ether vapor-stimulated levels of plasma norepinephrine. It is concluded that glucocorticoids acting at as yet undefined sites may be involved in the regulation of sympathetic nervous system and adrenal medullary function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号