首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
IKKepsilon is part of a novel PMA-inducible IkappaB kinase complex   总被引:6,自引:0,他引:6  
Here we report the identification of a novel PMA-inducible IkappaB kinase complex, distinct from the well-characterized high-molecular weight IkappaB kinase complex containing IKKalpha, IKKbeta, and IKKgamma. We have characterized one kinase from this complex, which we designate IKKepsilon. Although recombinant IKKepsilon directly phosphorylates only serine 36 of IKBalpha, the PMA-activated endogenous IKKepsilon complex phosphorylates both critical serine residues. Remarkably, this activity is due to the presence of a distinct kinase in this complex. A dominant-negative mutant of IKKepsilon blocks induction of NF-kappaB by both PMA and activation of the T cell receptor but has no effect on the activation of NF-KB by TNFalpha or IL-1. These observations indicate that the activation of NF-kappaB requires multiple distinct IkappaB kinase complexes, which respond to both overlapping and discrete signaling pathways.  相似文献   

2.
Tumor necrosis factor alpha (TNFalpha)-stimulated nuclear factor (NF) kappaB activation plays a key role in the pathogenesis of inflammatory bowel disease (IBD). Phosphorylation of NFkappaB inhibitory protein (IkappaB) leading to its degradation and NFkappaB activation, is regulated by the multimeric IkappaB kinase complex, including IKKalpha and IKKbeta. We recently reported that 5-aminosalicylic acid (5-ASA) inhibits TNFalpha-regulated IkappaB degradation and NFkappaB activation. To determine the mechanism of 5-ASA inhibition of IkappaB degradation, we studied young adult mouse colon (YAMC) cells by immunodetection and in vitro kinase assays. We show 5-ASA inhibits TNFalpha-stimulated phosphorylation of IkappaBalpha in intact YAMC cells. Phosphorylation of a glutathione S-transferase-IkappaBalpha fusion protein by cellular extracts or immunoprecipitated IKKalpha isolated from cells treated with TNFalpha is inhibited by 5-ASA. Recombinant IKKalpha and IKKbeta autophosphorylation and their phosphorylation of glutathione S-transferase-IkappaBalpha are inhibited by 5-ASA. However, IKKalpha serine phosphorylation by its upstream kinase in either intact cells or cellular extracts is not blocked by 5-ASA. Surprisingly, immunodepletion of cellular extracts suggests IKKalpha is predominantly responsible for IkappaBalpha phosphorylation in intestinal epithelial cells. In summary, 5-ASA inhibits TNFalpha-stimulated IKKalpha kinase activity toward IkappaBalpha in intestinal epithelial cells. These findings suggest a novel role for 5-ASA in the management of IBD by disrupting TNFalpha activation of NFkappaB.  相似文献   

3.
4.
T cell receptor (TCR) signaling to IkappaB kinase (IKK)/NF-kappaB is controlled by PKCtheta-dependent activation of the Carma1, Bcl10, and Malt1 (CBM) complex. Antigen-induced phosphorylation of Bcl10 has been reported, but its physiological function is unknown. Here we show that the putative downstream kinase IKKbeta is required for initial CBM complex formation. Further, upon engagement of IKKbeta/Malt1/Bcl10 with Carma1, IKKbeta phosphorylates Bcl10 in the C terminus and thereby interferes with Bcl10/Malt1 association and Bcl10-mediated IKKgamma ubiquitination. Mutation of the IKKbeta phosphorylation sites on Bcl10 enhances expression of NF-kappaB target genes IL-2 and TNFalpha after activation of primary T cells. Thus, our data provide evidence that IKKbeta serves a dual role upstream of its classical substrates, the IkappaB proteins. While being essential for triggering initial CBM complex formation, IKKbeta-dependent phosphorylation of Bcl10 exhibits a negative regulatory role in T cell activation.  相似文献   

5.
6.
Salicylates, including aspirin, have been shown to improve insulin sensitivity both in human and animal models. Although it has been suggested that salicylates sensitize insulin action by inhibiting IkappaB kinase beta (IKKbeta), the detailed mechanisms remain unclear. Protein kinase C isoforms and tumor necrosis factor alpha (TNFalpha) signaling pathways are well described mediators of insulin resistance; they are implicated in the activation of IKKbeta and the subsequent inhibition of proximal insulin signaling via insulin receptor substrate 1 (IRS1) and Akt. This study investigated the effect of salicylic acid on phorbol 12-myristate 13-acetate (PMA)- and TNFalpha-induced insulin resistance in a human embryonic kidney 293 (HEK293) cell line stably expressing recombinant human IRS1. The results showed that both PMA and TNFalpha inhibited insulin-induced Akt phosphorylation and promoted IRS1 phosphorylation on Ser-307. Salicylic acid pretreatment completely reversed the effects of PMA and TNFalpha on both Akt and IRS1. Whereas PMA activated protein kinase C isoforms and IKKbeta, TNFalpha activated neither. On the other hand, both PMA and TNFalpha activated the c-Jun N-terminal kinase (JNK), which has been reported to directly phosphorylate IRS1 Ser-307. SP600125, a JNK inhibitor, prevented PMA and TNFalpha-induced IRS1 Ser-307 phosphorylation. Finally, salicylic acid inhibited JNK activation induced by both PMA and TNFalpha. Taken together, these observations suggest that salicylic acid can reverse the inhibitory effects of TNFalpha on insulin signaling via an IKKbeta-independent mechanism(s), potentially involving the inhibition of JNK activation. The role of JNK in salicylic acid-mediated insulin sensitization, however, requires further validation because the JNK inhibitor SP600125 appears to have other nonspecific activity in addition to inhibiting JNK activity.  相似文献   

7.
8.
Zhao T  Hou M  Xia M  Wang Q  Zhu H  Xiao Y  Tang Z  Ma J  Ling W 《Cellular immunology》2005,238(1):19-30
Several lines of evidence have supported a link between obesity and inflammation. The present study investigated the capacity of leptin and globular adiponectin to affect tumor necrosis factor alpha (TNF-alpha) production in murine peritoneal macrophages. Leptin stimulated TNF-alpha production at mRNA as well as protein levels in a dose- and time-dependent manner. Intracellular cAMP concentration was increased and protein kinase A (PKA) was activated with the treatment of leptin, subsequently downstream MAPK signal proteins, ERK1/2 and p38, were phosphorylated. Specific inhibitors for the signal proteins, Rp cAMPS, H89, PD98059, and U0126, or SB203580, suppressed the signaling pathway and TNF-alpha expression. Although gAd partially increased cAMP concentration and PKA activity, it directly reduced leptin-induced ERK1/2 and p38 MAPK phosphorylation thus inhibiting TNF-alpha production. In conclusion, leptin promotes inflammation by stimulating TNF-alpha production, which is mediated by cAMP-PKA-ERK1/2 and p38 MAPK pathways. gAd inhibited leptin-induced TNF-alpha production through suppressing phosphorylation of ERK1/2 and p38 pathways.  相似文献   

9.
IkappaB kinase (IKK) complex is a key regulator of NF-kappaB pathways. Signal-induced interaction of the IKKgamma (NEMO) subunit with the C-terminal IKKgamma/NEMO-binding domain (gammaBD) of IKKbeta is an essential interaction for IKK regulation. Underlying regulatory mechanism(s) of this interaction are not known. Phosphorylation of gammaBD has been suggested to play a regulatory role for IKK activation. However, a kinase that phosphorylates gammaBD has not been identified. In this study, we used a C-terminal fragment of IKKbeta as substrate and purified Polo-like kinase 1 (Plk1) from HeLa cell extracts by standard chromatography as a gammaBD kinase. Plk1 phosphorylates serines 733, 740, and 750 in the gammaBD of IKKbeta in vitro. Phosphorylating gammaBD with Plk1 decreased its affinity for IKKgamma in pulldown assay. We generated phosphoantibodies against serine 740 and showed that gammaBD is phosphorylated in vivo. Expressing a constitutively active Plk1 in mammalian cells reduced tumor necrosis factor (TNF)-induced IKK activation, resulting in decreased phosphorylation of endogenous IkappaBalpha and reduced NF-kappaB activation. To activate endogenous Plk1, cells were treated with nocodazole, which reduced TNF-induced IKK activation, and increased the phosphorylation of gammaBD. Knocking down Plk1 in mammalian cells restored TNF-induced IKK activation in nocodazole-treated cells. Activation of Plk1 inhibited TNF-induced expression of cyclin D1. In cells in which Plk1 was knocked down, TNFalpha increased expression of cyclin D1 and the proportion of cells in the S phase of the cell cycle. Taken together, this study shows that phosphorylation regulates the interaction of gammaBD of IKKbeta with IKKgamma and therefore plays a critical role for IKK activation. Moreover, we identify Plk1 as a gammaBD kinase, which negatively regulates TNF-induced IKK activation and cyclin D1 expression, thereby affecting cell cycle regulation. Untimely activation of cyclin D1 by TNFalpha can provide a potential mechanism for an involvement of TNFalpha in inflammation-induced cancer.  相似文献   

10.
Activation of IkappaB kinase beta by protein kinase C isoforms   总被引:2,自引:0,他引:2       下载免费PDF全文
The atypical protein kinase C (PKC) isotypes (lambda/iotaPKC and zetaPKC) have been shown to be critically involved in important cell functions such as proliferation and survival. Previous studies have demonstrated that the atypical PKCs are stimulated by tumor necrosis factor alpha (TNF-alpha) and are required for the activation of NF-kappaB by this cytokine through a mechanism that most probably involves the phosphorylation of IkappaB. The inability of these PKC isotypes to directly phosphorylate IkappaB led to the hypothesis that zetaPKC may use a putative IkappaB kinase to functionally inactivate IkappaB. Recently several groups have molecularly characterized and cloned two IkappaB kinases (IKKalpha and IKKbeta) which phosphorylate the residues in the IkappaB molecule that serve to target it for ubiquitination and degradation. In this study we have addressed the possibility that different PKCs may control NF-kappaB through the activation of the IKKs. We report here that alphaPKC as well as the atypical PKCs bind to the IKKs in vitro and in vivo. In addition, overexpression of zetaPKC positively modulates IKKbeta activity but not that of IKKalpha, whereas the transfection of a zetaPKC dominant negative mutant severely impairs the activation of IKKbeta but not IKKalpha in TNF-alpha-stimulated cells. We also show that cell stimulation with phorbol 12-myristate 13-acetate activates IKKbeta, which is entirely dependent on the activity of alphaPKC but not that of the atypical isoforms. In contrast, the inhibition of alphaPKC does not affect the activation of IKKbeta by TNF-alpha. Interestingly, recombinant active zetaPKC and alphaPKC are able to stimulate in vitro the activity of IKKbeta but not that of IKKalpha. In addition, evidence is presented here that recombinant zetaPKC directly phosphorylates IKKbeta in vitro, involving Ser177 and Ser181. Collectively, these results demonstrate a critical role for the PKC isoforms in the NF-kappaB pathway at the level of IKKbeta activation and IkappaB degradation.  相似文献   

11.
12.
13.
The activation of NF-kappaB by neutrophil lactoferrin (Lf) is regulated via the IkappaB kinase (IKK) signaling cascade, resulting in the sequential phosphorylation and degradation of IkappaB. In this study, we observed that Lf protein augmented p65 phosphorylation at the Ser(536), but not the Ser(276) residue, and stimulated the translocation of p65 into the nucleus. Lf was also shown to enhance the association between p65 and CREB-binding protein/p300 in vivo. To elucidate the mechanism by which Lf triggers these signaling pathways, we attempted to delineate the roles of the upstream components of the IKK complex, using their dominant-negative mutants and IKKalpha(-/-) and IKKbeta(-/-) mouse embryonic cells. We demonstrated that both IKKalpha and IKKbeta as well as NF-kappaB-inducing kinase are indispensable for Lf-induced p65 phosphorylation. However, MAPK kinase kinase 1 is not essentially required for this activation. We also observed that Lf-induced p65 phosphorylation was either partially or completely abrogated as the result of treatment with the mutant forms of TNFR-associated factor (TRAF) 2, TRAF5, or TRAF6. Moreover, we demonstrated that Lf directly interacted with TRAF5. Expression of the dominant-negative mutant of TRAF5 or its small interfering RNA almost completely abrogated the Lf-induced p65 phosphorylation. These results suggest that signaling pathways, including TRAFs/NF-kappaB-inducing kinase/IKKs, may be involved in the regulation of Lf-induced p65 activation, thereby resulting in the activation of members of the NF-kappaB family.  相似文献   

14.
Two related kinases, IkappaB kinase alpha (IKKalpha) and IKKbeta, phosphorylate the IkappaB proteins, leading to their degradation and the subsequent activation of gene expression by NF-kappaB. IKKbeta has a much higher level of kinase activity for the IkappaB proteins than does IKKalpha and is more critical than IKKalpha in modulating tumor necrosis factor alpha activation of the NF-kappaB pathway. These results indicate an important role for IKKbeta in activating the NF-kappaB pathway but leave open the question of the role of IKKalpha in regulating this pathway. In the current study, we demonstrate that IKKalpha directly phosphorylates IKKbeta. Moreover, IKKalpha either directly or indirectly enhances IKKbeta kinase activity for IkappaBalpha. Finally, transfection studies to analyze NF-kappaB-directed gene expression suggest that IKKalpha is upstream of IKKbeta in activating the NF-kappaB pathway. These results indicate that IKKalpha, in addition to its previously described ability to phosphorylate IkappaBalpha, can increase the ability of IKKbeta to phosphorylate IkappaBalpha.  相似文献   

15.
Misregulation of NF-kappaB signaling leads to infectious, inflammatory, or autoimmune disorders. IkappaB kinase beta (IKKbeta) is an essential activator of NF-kappaB and is known to phosphorylate the NF-kappaB inhibitor, IkappaBalpha, allowing it to undergo ubiquitin-mediated proteasomal degradation. However, beyond IkappaBalpha, few additional IKKbeta substrates have been identified. Here we utilize a peptide library and bioinformatic approach to predict likely substrates of IKKbeta. This approach predicted Ser381 of the K63 deubiquitinase A20 as a likely site of IKKbeta phosphorylation. While A20 is a known negative regulator of innate immune signaling pathways, the mechanisms regulating the activity of A20 are poorly understood. We show that IKKbeta phosphorylates A20 in vitro and in vivo at serine 381, and we further show that this phosphorylation event increases the ability of A20 to inhibit the NF-kappaB signaling pathway. Phosphorylation of A20 by IKKbeta thus represents part of a novel feedback loop that regulates the duration of NF-kappaB signaling following activation of innate immune signaling pathways.  相似文献   

16.
Stafford MJ  Morrice NA  Peggie MW  Cohen P 《FEBS letters》2006,580(16):4010-4014
The protein kinase COT/Tpl2 is activated by interleukin-1 (IL-1), TNFalpha and lipopolysaccharide, and its activation by these agonists involves the IkappaB kinase beta (IKKbeta) catalysed phosphorylation of the p105 regulatory subunit. Here, we show that COT activation also requires catalytic subunit phosphorylation, since IL-1beta induced a 5-10-fold activation of a COT mutant unable to bind p105. Activation was paralleled by the phosphorylation of Thr290 and Ser62 and unaffected by the IKKbeta inhibitor PS1145 at concentrations which prevented the degradation of IkappaBalpha. Mutagenesis experiments indicated that COT activation is initiated by Thr290 phosphorylation catalysed by an IL-1-stimulated protein kinase distinct from IKKbeta, while Ser62 phosphorylation is an autophosphorylation event required for maximal activation.  相似文献   

17.
18.
19.
The IkappaB kinase (IKK) complex is a key regulator of signal transduction pathways leading to the induction of NF-kappaB-dependent gene expression and production of pro-inflammatory cytokines. It therefore represents a major target for the development of anti-inflammatory therapeutic drugs and may be targeted by pathogens seeking to diminish the host response to infection. Previously, the vaccinia virus (VACV) strain Western Reserve B14 protein was characterised as an intracellular virulence factor that alters the inflammatory response to infection by an unknown mechanism. Here we demonstrate that ectopic expression of B14 inhibited NF-kappaB activation in response to TNFalpha, IL-1beta, poly(I:C), and PMA. In cells infected with VACV lacking gene B14R (vDeltaB14) there was a higher level of phosphorylated IkappaBalpha but a similar level of IkappaBalpha compared to cells infected with control viruses expressing B14, suggesting B14 affects IKK activity. Direct evidence for this was obtained by showing that B14 co-purified and co-precipitated with the endogenous IKK complex from human and mouse cells and inhibited IKK complex enzymatic activity. Notably, the interaction between B14 and the IKK complex required IKKbeta but not IKKalpha, suggesting the interaction occurs via IKKbeta. B14 inhibited NF-kappaB activation induced by overexpression of IKKalpha, IKKbeta, and a constitutively active mutant of IKKalpha, S176/180E, but did not inhibit a comparable mutant of IKKbeta, S177/181E. This suggested that phosphorylation of these serine residues in the activation loop of IKKbeta is targeted by B14, and this was confirmed using Ab specific for phospho-IKKbeta.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号