首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host control mechanisms are thought to be critical for selecting against cheater mutants in symbiont populations. Here, we provide the first experimental test of a legume host’s ability to constrain the infection and proliferation of a native‐occurring rhizobial cheater. Lotus strigosus hosts were experimentally inoculated with pairs of Bradyrhizobium strains that naturally vary in symbiotic benefit, including a cheater strain that proliferates in the roots of singly infected hosts, yet provides zero growth benefits. Within co‐infected hosts, the cheater exhibited lower infection rates than competing beneficial strains and grew to smaller population sizes within those nodules. In vitro assays revealed that infection‐rate differences among competing strains were not caused by variation in rhizobial growth rate or interstrain toxicity. These results can explain how a rapidly growing cheater symbiont – that exhibits a massive fitness advantage in single infections – can be prevented from sweeping through a beneficial population of symbionts.  相似文献   

2.
Aphids harbour both an obligate bacterial symbiont, Buchnera aphidicola, and a wide range of facultative ones. Facultative symbionts can modify morphological, developmental and physiological host traits that favour their spread within aphid populations. We experimentally investigated the idea that symbionts may also modify aphid behavioural traits to enhance their transmission. Aphids exhibit many behavioural defences against enemies. Despite their benefits, these behaviours have some associated costs leading to reduction in aphid reproduction. Some aphid individuals harbour a facultative symbiont Hamiltonella defensa that provides protection against parasitoids. By analysing aphid behaviours in the presence of parasitoids, we showed that aphids infected with H. defensa exhibited reduced aggressiveness and escape reactions compared with uninfected aphids. The aphid and the symbiont have both benefited from these behavioural changes: both partners reduced the fitness decrements associated with the behavioural defences. Such symbiont-induced changes of behavioural defences may have consequences for coevolutionary processes between host organisms and their enemies.  相似文献   

3.
Legumes can preferentially select beneficial rhizobial symbionts and sanction ineffective strains that fail to fix nitrogen. Yet paradoxically, rhizobial populations vary from highly beneficial to ineffective in natural and agricultural soils. Classic models of symbiosis focus on the single dimension of symbiont cost‐benefit to sympatric hosts, but fail to explain the widespread persistence of ineffective rhizobia. Here, we test a novel framework predicting that spatio‐temporal and community dynamics can maintain ineffective strains in rhizobial populations. We used clonal and multistrain inoculations and quantitative culturing to investigate the relative fitness of four focal Bradyrhizobium strains varying from effective to ineffective on Acmispon strigosus. We found that an ineffective Bradyrhizobium strain can be sanctioned by its native A. strigosus host across the host's range, forming fewer and smaller nodules compared to beneficial strains. But the same ineffective Bradyrhizobium strain exhibits a nearly opposite pattern on the broadly sympatric host Acmispon wrangelianus, forming large nodules in both clonal and multistrain inoculations. These data suggest that community‐level effects could favour the persistence of ineffective rhizobia and contribute to variation in symbiotic nitrogen fixation.  相似文献   

4.
Research on life history strategies of microbial symbionts is key to understanding the evolution of cooperation with hosts, but also their survival between hosts. Rhizobia are soil bacteria known for fixing nitrogen inside legume root nodules. Arbuscular mycorrhizal (AM) fungi are ubiquitous root symbionts that provide plants with nutrients and other benefits. Both kinds of symbionts employ strategies to reproduce during symbiosis using host resources; to repopulate the soil; to survive in the soil between hosts; and to find and infect new hosts. Here we focus on the fitness of the microbial symbionts and how interactions at each of these stages has shaped microbial life-history strategies. During symbiosis, microbial fitness could be increased by diverting more resources to individual reproduction, but that may trigger fitness-reducing host sanctions. To survive in the soil, symbionts employ sophisticated strategies, such as persister formation for rhizobia and reversal of spore germination by mycorrhizae. Interactions among symbionts, from rhizobial quorum sensing to fusion of genetically distinct fungal hyphae, increase adaptive plasticity. The evolutionary implications of these interactions and of microbial strategies to repopulate and survive in the soil are largely unexplored.  相似文献   

5.
One of the key factors limiting the proper assessment and use of rhizobial strains in the field is the lack of suitable methodology to screen the success of individual isolates in competing for nodule occupancy with different cultivars of legumes and in different soil and agronomic conditions. The use of marker genes enables individual rhizobial strains to be identified by a simple colour assay, thus enabling a dramatic increase in throughput of strain screening. One such marker system for rhizobial ecology, the GUS system, is already in use to facilitate rapid screening of rhizobial isolates. Other markers, which will allow the competitive behaviour of several strains to be studied at once, are under development.Likewise, breeding of the host legume for a high efficiency of nitrogen fixation is hampered by the difficulty in assessing this property. The method which currently gives the highest throughput of analysis, and has been successfully used in soybean breeding programs, is the ureide technique. However, it remains somewhat laborious for use in routine breeding programs. In this paper we discuss the potential use of reporter genes to provide information on the relative levels of ureides and other nitrogenous compounds in plants growing in the field. This would greatly increase the rate at which this trait could be scored, and would thus enable routine assays for increased symbiotic nitrogen fixation for breeding or management purposes in legume crops such as soybean (Glycine max) and common bean (Phaseolus vulgaris).  相似文献   

6.
The genetic rules that dictate legume-rhizobium compatibility have been investigated for decades, but the causes of incompatibility occurring at late stages of the nodulation process are not well understood. An evaluation of naturally diverse legume (genus Medicago) and rhizobium (genus Sinorhizobium) isolates has revealed numerous instances in which Sinorhizobium strains induce and occupy nodules that are only minimally beneficial to certain Medicago hosts. Using these ineffective strain-host pairs, we identified gain-of-compatibility (GOC) rhizobial variants. We show that GOC variants arise by loss of specific large accessory plasmids, which we call HR plasmids due to their effect on symbiotic host range. Transfer of HR plasmids to a symbiotically effective rhizobium strain can convert it to incompatibility, indicating that HR plasmids can act autonomously in diverse strain backgrounds. We provide evidence that HR plasmids may encode machinery for their horizontal transfer. On hosts in which HR plasmids impair N fixation, the plasmids also enhance competitiveness for nodule occupancy, showing that naturally occurring, transferrable accessory genes can convert beneficial rhizobia to a more exploitative lifestyle. This observation raises important questions about agricultural management, the ecological stability of mutualisms, and the genetic factors that distinguish beneficial symbionts from parasites.  相似文献   

7.
8.
Rhizobial bacteria nodulate legume roots and fix nitrogen in exchange for photosynthates. These symbionts are infectiously acquired from the environment and in such cases selection models predict evolutionary spread of uncooperative mutants. Uncooperative rhizobia – including nonfixing and non‐nodulating strains – appear common in agriculture, yet their population biology and origins remain unknown in natural soils. Here, a phylogenetically broad sample of 62 wild‐collected rhizobial isolates was experimentally inoculated onto Lotus strigosus to assess their nodulation ability and effects on host growth. A cheater strain was discovered that proliferated in host tissue while offering no benefit; its fitness was superior to that of beneficial strains. Phylogenetic reconstruction of Bradyrhizobium rDNA and transmissible symbiosis‐island loci suggest that the cheater evolved via symbiotic gene transfer. Many strains were also identified that failed to nodulate L. strigosus, and it appears that nodulation ability on this host has been recurrently lost in the symbiont population. This is the first study to reveal the adaptive nature of rhizobial cheating and to trace the evolutionary origins of uncooperative rhizobial mutants.  相似文献   

9.
豆科植物凝集素及其对根瘤菌的识别作用   总被引:22,自引:0,他引:22  
本文讨论了豆科植物凝集素的性质、分布、基因及其表达;近年来研究表明识别根瘤菌的因子是豆科植物根上的凝集素。将一种豆科植物的凝集素基因转化到另一种豆科植物后,再接种前一种豆科植物的根瘤菌,可以使其被侵染和结瘤。由此人们提出了扩大根瘤菌宿主范围到非豆科植物,特别是粮食作物范围的可能性。  相似文献   

10.
Using the plant-infection technique, and soybeans as test plants, counts of root nodule bacteria in seven farm-lands in Southern Nigeria were estimated. All sites including those without a recent legume cover history contained bradyrhizobia. Abundance, however correlated with the presence of a legume. Populations varied from 0.95 to 3.63 log10 rhizobia per g soil.
In addition to the presence of a legume, soil moisture and pH appeared to influence the rhizobial distribution in these soils. Most of the nodules produced on the test plant were ineffective, indicating that the rhizobial presence alone does not guarantee adequate N2 fixation in a farming set-up.  相似文献   

11.
Symbioses are modelled as evolutionarily and ecologically variable with fitness outcomes for hosts shifting on a continuum from mutualism to parasitism. In a classic example, rhizobia fix atmospheric nitrogen for legume hosts in exchange for photosynthetic carbon. Rhizobial infection often enhances legume growth, but hosts also incur interaction costs because of root tissues and or metabolites needed to support symbionts in planta. Rhizobia exhibit genetic variation in symbiotic effectiveness, and ecological changes in light or mineral nitrogen availability can also alter the benefits of rhizobial infection for hosts. The net effects of symbiosis thus can range from mutualistic to parasitic in a context‐dependent manner. We tested the extent of the mutualism–parasitism continuum in the legume–rhizobium symbiosis and the degree to which host investment can shape its limits. We infected Lotus strigosus with sympatric Bradyrhizobium genotypes that vary in symbiotic effectiveness. Inoculations occurred under different mineral nitrogen and light regimes spanning ecologically relevant ranges. Net growth benefits of Bradyrhizobium infection varied for Lotus and were reduced or eliminated dependent on Bradyrhizobium genotype, mineral nitrogen and light availability. But we did not detect parasitism. Lotus proportionally reduced investment in Bradyrhizobium as net benefit from infection decreased. Lotus control occurred primarily after infection, via fine‐scale modulation of nodule growth, as opposed to control over initial nodulation. Our results show how divestment of symbiosis by Lotus can prevent shifts to parasitism.  相似文献   

12.
王逸群  荆玉祥 《植物学报》2000,17(2):127-132
本文讨论了豆科植物凝集素的性质、分布、基因及其表达;近年来研究表明识别根瘤菌的因子是豆科植物根上的凝集素。将一种豆科植物的凝集素基因转化到另一种豆科植物后,再接种前一种豆科植物的根瘤菌,可以使其被侵染和结瘤。由此人们提出了扩大根瘤菌宿主范围到非豆科植物,特别是粮食作物范围的可能性。  相似文献   

13.
Mutch LA  Young JP 《Molecular ecology》2004,13(8):2435-2444
The symbiotic partnerships between legumes and their root-nodule bacteria (rhizobia) vary widely in their degree of specificity, but the underlying reasons are not understood. To assess the potential for host-range evolution, we have investigated microheterogeneity among the shared symbionts of a group of related legume species. Host specificity and genetic diversity were characterized for a soil population of Rhizobium leguminosarum biovar viciae (Rlv) sampled using six wild Vicia and Lathyrus species and the crop plants pea (Pisum sativum) and broad bean (Vicia faba). Genetic variation among 625 isolates was assessed by restriction fragment length polymorphism (RFLP) of loci on the chromosome (ribosomal gene spacer) and symbiosis plasmid (nodD region). Broad bean strongly favoured a particular symbiotic genotype that formed a distinct phylogenetic subgroup of Rlv nodulation genotypes but was associated with a range of chromosomal backgrounds. Host range tests of 80 isolates demonstrated that only 34% of isolates were able to nodulate V. faba. By contrast, 89% were able to nodulate all the local wild hosts tested, so high genetic diversity of the rhizobial population cannot be ascribed directly to the diversity of host species at the site. Overall the picture is of a population of symbionts that is diversified by plasmid transfer and shared fairly indiscriminately by local wild legume hosts. The crop species are less promiscuous in their interaction with symbionts than the wild legumes.  相似文献   

14.
Symbiosis with mycorrhizal fungi substantially impacts secondary metabolism and defensive traits of colonised plants. In the present study, we investigated the influence of mycorrhization (Glomus intraradices) on inducible indirect defences against herbivores using the model legume Medicago truncatula. Volatile emission by mycorrhizal and non-mycorrhizal plants was measured in reaction to damage inflicted by Spodoptera spp. and compared to the basal levels of volatile emission by plants of two different cultivars. Emitted volatiles were recorded using closed-loop stripping and gas chromatography/mass spectrometry. The documented volatile patterns were evaluated using multidimensional scaling to visualise patterns and stepwise linear discriminant analysis to distinguish volatile blends of plants with distinct physiological status and genetic background. Volatile blends emitted by different cultivars of M. truncatula prove to be clearly distinct, whereas mycorrhization only slightly influenced herbivore-induced volatile emissions. Still, the observed differences were sufficient to create classification rules to distinguish mycorrhizal and non-mycorrhizal plants by the volatiles emitted. Moreover, the effect of mycorrhization turned out to be opposed in the two cultivars examined. Root symbionts thus seem to alter indirect inducible defences of M. truncatula against insect herbivores. The impact of this effect strongly depends on the genetic background of the plant and, hence, in part explains the highly contradictory results on tripartite interactions gathered to date.  相似文献   

15.
Concatenated sequence analysis with 16S rRNA, rpoB and fusA genes identified a bacterial strain (IRBG74) isolated from root nodules of the aquatic legume Sesbania cannabina as a close relative of the plant pathogen Rhizobium radiobacter (syn. Agrobacterium tumefaciens ). However, DNA:DNA hybridization with R. radiobacter , R. rubi , R. vitis and R. huautlense gave only 44%, 5%, 8% and 8% similarity respectively, suggesting that IRBG74 is potentially a new species. Additionally, it contained no vir genes and lacked tumour-forming ability, but harboured a sym -plasmid containing nifH and nodA genes similar to those in other Sesbania symbionts. Indeed, IRBG74 effectively nodulated S. cannabina and seven other Sesbania spp. that nodulate with Ensifer ( Sinorhizobium )/ Rhizobium strains with similar nodA genes to IRBG74, but not species that nodulate with Azorhizobium or Mesorhizobium . Light and electron microscopy revealed that IRBG74 infected Sesbania spp. via lateral root junctions under flooded conditions, but via root hairs under non-flooded conditions. Thus, IRBG74 is the first confirmed legume-nodulating symbiont from the Rhizobium ( Agrobacterium ) clade. Cross-inoculation studies with various Sesbania symbionts showed that S. cannabina could form fully effective symbioses with strains in the genera Rhizobium and Ensifer , only ineffective ones with Azorhizobium strains, and either partially effective ( Mesorhizobium huakii ) or ineffective ( Mesorhizobium plurifarium ) symbioses with Mesorhizobium . These data are discussed in terms of the molecular phylogeny of Sesbania and its symbionts.  相似文献   

16.
The infected root nodule cells of Pisum sativum cvs. Torsdag, Rondo and its supernodulating mutant nod3 have been investigated by transmission electron microscopy and morphometrically. Torsdag and nod3 developed effective nodules, when grown with or without nitrates in the growth medium. The nodules developed by Rondo were ineffective in the presence of nitrates, and otherwise effective. An obvious similarity in the fine structure of bacteroid tissue of root nodules has been observed in Torgsdag (Nod5) and the supernodulating mutant nod3, both forms being nitrate-tolerant, but nodulation being controlled by different genetic systems. The statistical processing results showed significant differences in the respective morphometric parameters of nodule cells between the plants grown according to either scheme: with and without nitrates. Combined nitrogen is likely to affect the ratio of symbionts in the infected nodule cells of cultivars with nitrate-tolerant nodulation.  相似文献   

17.
18.
The MtSucS1 gene encodes a sucrose synthase (EC 2.4.1.13) in the model legume Medicago truncatula. To determine the expression pattern of this gene in different organs and in particular during root endosymbioses, we transformed M. truncatula with specific regions of MtSucS1 fused to the gusAint reporter gene. These fusions directed an induction to the vasculature of leaves, stems, and roots as well as to flowers, developing seeds, young pods, and germinating seedlings. In root nodules, strong promoter activity occurred in the infected cells of the nitrogen-fixing zone but was additionally observed in the meristematic region, the prefixing zone, and the inner cortex, including the vasculature. Concerning endomycorrhizal roots, the MtSucS1 promoter mediated strongest expression in cortical cells harboring arbuscules. Specifically in highly colonized root sections, GUS-staining was furthermore detected in the surrounding cortical cells, irrespective of a direct contact with fungal structures. In accordance with the presence of an orthologous PsSus1 gene, we observed a comparable regulation of MtSucS1 expression in the grain legume Pisum sativum in response to microbial symbionts. Unlike other members of the MtSucS gene family, the presence of rhizobial or Glomus microsymbionts significantly altered and enhanced MtSucS1 gene expression, leading us to propose that MtSucS1 is involved in generating sink-strength, not only in root nodules but also in mycorrhizal roots.  相似文献   

19.
Horizontal transfer (HT) alters the repertoire of symbiosis genes in rhizobial genomes and may play an important role in the on-going evolution of the rhizobia–legume symbiosis. To gain insight into the extent of HT of symbiosis genes with different functional roles (nodulation, N-fixation, host benefit and rhizobial fitness), we conducted comparative genomic and selection analyses of the full-genome sequences from 27 rhizobial genomes. We find that symbiosis genes experience high rates of HT among rhizobial lineages but also bear signatures of purifying selection (low Ka : Ks). HT and purifying selection appear to be particularly strong in genes involved in initiating the symbiosis (e.g. nodulation) and in genome-wide association candidates for mediating benefits provided to the host. These patterns are consistent with rhizobia adapting to the host environment through the loss and gain of symbiosis genes, but not with host-imposed positive selection driving divergence of symbiosis genes through recurring bouts of positive selection.  相似文献   

20.
A. Micke 《Plant and Soil》1993,152(1):81-85
Genetic variation among existing cultivars and in germplasm collections is the outcome of selection during evolution and plant breeding. Mutagenesis offers the plant breeder a chance to tackle unconventional objectives, particularly those that were at a selection disadvantage in the past. Effective mutagens are available, but the bottleneck is the effective selection of rare desired variants from large mutagenized populations. Selection methods must be non-destructive. Grain legume mutation breeding has already led to improved cultivars with higher yield, better grain quality, or stronger resistance to pathogenens. Many mutations affecting nitrogen fixation related traits have also been reported. Some could be useful in breeding better cultivars, but the majority are being used to study the factors interacting in the complex process of symbiotic nitrogen fixation and to improve the strategy for producing cultivars with better fixation capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号