首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Field trials carried out in 1965 and 1966 showed that 2,4-DB, alone or in combination with dalapon, reduced nodulation and tended to decrease the efficiency of nitrogen fixation in birdsfoot trefoil. Dalapon appeared to enhance the inhibitory action of 2,4-DB on nodulation. No obvious cytological differences could be detected in the nodules or in the isolated bacteroids of field-treated and untreated plants. Under growth chamber conditions, 2,4-DB drastically reduced trefoil growth and nodulation particularly in treatments where the herbicide came directly in contact with the plants. It appears that the reduction in nodulation and nitrogen fixation is a result of plant damage and abnormal root growth caused by 2,4-DB application.Autoradiographs indicated that the translocation of the herbicide was rapid, with detectable concentrations observed in young leaves, leafveins, roots, and nodules 12 hours after leaf-feeding of 2,4-DB-1-C14. The radio-activity appeared to accumulate with time (up to 5 days) in the growing root tips and nodules. Fractionation of excised nodules from trefoil plants demonstrated the presence of radioactivity in the cell debris, bacteroids, 29,000g pellet, plant ribosomes, and the soluble portion. The greatest accumulation of radioactivity occurred in the soluble fraction.The degradation of 2,4-DB and 2,4-D in trefoil was demonstrated by the evolution of C14O2 from non-nodulated and aseptically growing plants leaf-fed with 2,4-DB-1-C14 or 2,4-D-1-C14.4-(2,4-dichlorophenoxy) butyric acid.2,2 dichloropropionic acid.  相似文献   

2.
To study the possibility of gene rescue in plants by direct gene transfer we chose the Arabidopsis mutant GH50 as a source of donor DNA. GH50 is tolerant of chlorsulfuron, a herbicide of the sulfonylurea class. Tobacco protoplasts were cotransfected with genomic DNA and the plasmid pHP23 which confers kanamycin resistance. A high frequency of cointegration of the plasmid and the genomic DNA was expected, which would allow the tagging of the plant selectable trait with the plasmid DNA. After transfection by electroporation the protoplasts were cultivated on regeneration medium supplemented with either chlorsulfuron or kanamycin as a selective agent. Selection on kanamycin yielded resistant calluses at an absolute transformation frequency (ATF) of 0.8 x 10(-3). Selection on chlorsulfuron yielded resistant calluses at an ATF of 4.7 x 10(-6). When a selection on chlorsulfuron was subsequently applied to the kanamycin resistant calluses, 8% of them showed resistance to this herbicide. Southern analysis carried out on the herbicide resistant transformants detected the presence of the herbicide resistance gene of Arabidopsis into the genome of the transformed tobacco. Segregation analysis showed the presence of the resistance gene and the marker gene in the progeny of the five analysed transformants. 3 transformants showed evidence of genetic linkage between the two genes. In addition we show that using the same technique a kanamycin resistance gene from a transgenic tobacco could be transferred into sugar beet protoplasts at a frequency of 0.17% of the transformants.  相似文献   

3.
A mutant of Arabidopsis thaliana, two hundred times more resistant to the imidazolinone herbicide imazapyr than wild-type plants, was isolated by direct selection of seedlings from a mutagenized population. Genetic analysis showed that resistance is due to a single dominant nuclear mutation that could not be separated by recombination from a mutation in the CSR1 gene encoding acetohydroxy acid synthase. Acetohydroxy acid synthase activity in extracts isolated from the mutant was 1000-fold more resistant to inhibition by imazapyr than that of the wild type. The resistant enzyme activity cosegregated with whole plant resistance. These data strongly suggest that the mutation is an allele of CSR1 encoding an imazapyr-resistant AHAS.  相似文献   

4.
The pBM plasmid, carrying the gene of hepatitis B virus surface antigen (HBsAg) and free of any selection markers of antibiotic or herbicide resistance, was constructed for genetic transformation of plants. A method for screening transformed plant seedlings on nonselective media was developed. Enzyme immunoassay was used for selecting transgenic plants with HBsAg gene among the produced regenerants; this method provides for a high sensitivity detection of HBsAg in plant extracts. Tobacco and tomato transgenic lines synthesizing this antigen at a level of 0.01–0.05% of the total soluble protein were obtained. The achieved level of HBsAg synthesis is sufficient for preclinical trials of the produced plants as a new generation safe edible vaccine. The developed method for selecting transformants can be used for producing safe plants free of selection markers.  相似文献   

5.
Summary Chlorsulfuron-resistant mutants of Arabidopsis thaliana were isolated by screening for growth of seedlings in the presence of the herbicide. Both whole plants and derived tissue cultures were resistant to concentrations of the herbicide approximately 300-fold higher than that required to prevent growth of the wild-type. The resistance is due to a single dominant nuclear mutation at a locus designated csr which has been genetically mapped to chromosome-3. Acetohydroxy acid synthase activity in extracts from chlorsulfuron-resistant plants was much less-susceptible to inhibition by chlorsulfuron and a structurally related inhibitor than the activity in wild-type extracts. This suggests that the csr locus is the structural gene for acetohydroxy acid synthase.  相似文献   

6.
The kanamycin resistance encoded by the neomycin phosphotransferase II gene (nptII) of transposon Tn5 is widely used in higher plant genetic transformation. The general process of plant transformation using nptII as a selectable marker gene, however, requires selecting kanamycin-resistant plants or tissues in culture. Even with the recently developed vacuum infiltration method for Arabidopsis transformation, the plant culture steps are not completely eliminated in selection for kanamycin-resistant transformants. The herbicide resistance genes, such as bar, which provides resistance to bialaphos, allow Arabidopsis transformation to become a true non-culture procedure. In this report, we assessed the feasibility of applying kanamycin as a spray in selecting for kanamycin-resistant Arabidopsis transformants grown in soil. We find that kanamycin-resistant transformants were effectively selected by spraying soil-grown Arabidopsis seedlings.  相似文献   

7.
Herbicide-resistant transgenic cotton (Gossypium hirsutum L.) plants carrying mutant forms of a native acetohydroxyacid synthase (AHAS) gene have been obtained by Agrobacterium and biolistic transformation. The native gene, A19, was mutated in vitro to create amino acid substitutions at residue 563 or residue 642 of the precursor polypeptide. Transformation with the mutated forms of the A19 gene produced resistance to imidazolinone and sulfonylurea herbicides (563 substitution), or imidazolinones only (642 substitution). The herbicide-resistant phenotype of transformants was also manifested in their in vitro AHAS activity. Seedling explants of both Coker and Acala cotton varieties were transformed with the mutated forms of the A19 gene using Agrobacterium. In these experiments, hundreds of transformation events were obtained with the Coker varieties, while the Acala varieties were transformed with an efficiency about one-tenth that of Coker. Herbicide-resistant Coker and Acala plants were regenerated from a subset of transformation events. Embryonic cell suspension cultures of both Coker and Acala varieties were biolistically transformed at high frequencies using cloned cotton DNA fragments carrying the mutated forms of the A19 gene. In these transformation experiments the mutated A19 gene served as the selectable marker, and the efficiency of selection was comparable to that obtained with the NPT II gene marker of vector Bin 19. Using this method, transgenic Acala plants resistant to imidazolinone herbicides were obtained. Southern blot analyses indicated the presence of two copies of the mutated A19 transgene in one of the biolistically transformed R0 plants, and a single copy in one of the R0 plants transformed with Agrobacterium. As expected. progeny seedlings derived from outcrosses involving the R0 plant transformed with Agrobacterium segregated in a 1:1 ratio with respect to herbicide resistance. The resistant progeny grew normally after irrigation with 175 g/l of the imidazolinone herbicide imazaquin, which is five times the field application rate. In contrast, untransformed sibling plants were severely stunted.Abbreviations AHAS acetohydroxyacid synthase - CaMV cauliflower mosaic virus - ELISA enzyme linked immunosorbent assay - FW fresh weight - GUS -glucuronidase - IC50 herbicide concentration that produces a 50% reduction in the fresh weight growth of cells - NAA -naphthaleneacetic acid - NPT II neomycin phosphotransferase II - MS Murashige and Skoog (1962)  相似文献   

8.
We have established an efficient particle-bombardment transformation protocol for the diploid non-apomictic genotype of the warm season forage crop Paspalum notatum (bahiagrass). A vector containing a herbicide resistance gene (bar) together with the GUS reporter gene was used in transformation experiments. The bar gene confers resistance to the herbicide bialaphos. An improved culture system, highly regenerative callus, dense in compact polyembryogenic clusters, was produced on medium with a high CuSO4 content at elevated temperature. Target tissue (360 calli) produced under these conditions yielded 52 rooted plants on herbicide-containing medium, and 22 of these plants were PCR-positive. DNA gel blot analysis revealed a copy number of 1-5 for the GUS gene in different independent transformants. There was no correlation between copy number and GUS activity. While conventional cultures yielded exclusively albino plants on herbicide-containing medium, improved culture conditions for the target tissue resulted in the recovery of 100% green transgenic plants. All green herbicide-resistant regenerants were morphological normal and fertile.  相似文献   

9.
Genetic manipulation of wheat (Triticum aestivum L. ) by biotechnological approaches is currently limited by a lack of efficient and reliable transformation method. The authors report a reproducible protocol for rapid production of transgenic wheat via microprojectile bombardment. The experiment was carried out by using the immature embryo excised from caryopsis 14 to 18 days postanthesis and the plant expression plasmid carrying a CaMV 35S-controlled bxn gene, for resistance to herbicide bromoxynil and a selectahle marker gene NPT I. After bombarding the precultured immature embryos isolated from 13 wheat varieties with plasmid DNA-coated tungsten particle, these embryos were transferred on MS medium containing 10 mg/L geneticin G418 sulphate to select and regenerate transformants step by step. As a result, 16 transformed plants were obtained from a total of 849 bombarded embryos. The characterization of these plants by inoculation with herbicide bromoxynil and Southern analysis with bxn gene as a probe showed that 4 of the self-fertile transformed plants contained the target gene and presented herbicide resistance. In several independent transformation experiments, the fastest one took only 6 months from embryo excision to characterization of regenerated plants. Therefore, this procedure is a rapid and efficient technique for delivering foreign DNA into wheat.  相似文献   

10.
Bialaphos selection of stable transformants from maize cell culture   总被引:15,自引:0,他引:15  
Summary Stable transformed Black Mexican Sweet (BMS) maize callus was recovered from suspension culture cells bombarded with plasmid DNA that conferred resistance to the herbicide bialaphos. Suspension culture cells were bombarded with a mixture of two plasmids. One plasmid contained a selectable marker gene, bar, which encoded phosphinothricin acetyl transferase (PAT), and the other plasmid encoded a screenable marker for -glucuronidase (GUS). Bombarded cells were selected on medium containing the herbicide bialaphos, which is cleaved in plant cells to yield phosphinothricin (PPT), an inhibitor of glutamine synthetase. The bialaphos-resistant callus contained the bar gene and expressed PAT as assayed by PPT inactivation. Transformants that expressed high levels of PAT grew more rapidly on increasing concentrations of bialaphos than transformants expressing low levels of PAT. Fifty percent of the bialaphos-resistant transformants tested (8 of 16) expressed the nonselected gene encoding GUS.  相似文献   

11.
ST-LS1, a single copy gene from potato displaying a leaf/stem specific gene expression, was tagged by an exon modification and introduced into both potato and tobacco cells using Agrobacterium vectors. After regeneration of whole plants, the expression of the tagged gene was analyzed with respect to its organ specificity and compared to the expression of the corresponding resident gene. The expression of the transferred gene in transgenic plants closely followed the expression of the resident gene. No marked influence of the plant species serving as host was observed. The level of expression of the introduced gene varied by a factor of at least 100 in independent transformants when normalized to the expression of the resident gene. Southern analysis performed on the transformed plants indicated a correlation between copy number of the introduced gene and its expression level. The activity of the tagged gene as well as of the resident gene was significantly inhibited by treatment of the transgenic plants with the herbicide norfluorazon, indicating that this gene activity is dependent on the presence of functional chloroplasts in the leaves.  相似文献   

12.
Annual ryegrass (Lolium rigidum) biotype SLR 31 is resistant to the postemergent graminicide methyl-2-[4-(2,4-dichlorophenoxy)phenoxy]-propanoate (diclofop-methyl). Uptake of [14C](U-phenyl)diclofop-methyl and root/shoot distribution of radioactivity in susceptible and resistant plants were similar. In both biotypes, diclofop-methyl was rapidly demethylated to the biocidal metabolite diclofop acid which, in turn, was metabolized to ester and aryl-O-sugar conjugates. Susceptible plants accumulated 5 to 15% more radioactivity in dicloflop acid than did resistant plants. Resistant plants had a slightly greater capacity to form nonbiocidal sugar conjugates. Despite these differences, resistant plants retained 20% of 14C in the biocidal metabolite diclofop acid 192 hours after treatment, whereas susceptible plants, which were close to death, retained 30% in diclofop acid. The small differences in the pool sizes of the active and inactive metabolites are by themselves unlikely to account for a 30-fold difference in sensitivity to the herbicide at the whole plant level. Similar high-pressure liquid chromatography elution patterns of conjugates from both susceptible and resistant biotypes indicated that the mechanisms and the products of catabolism in the biotypes are similar. It is suggested that metabolism of diclofop-methyl by the resistant biotype does not alone explain resistance observed at the whole-plant level. Diclofop acid reduced the electrochemical potential of membranes in etiolated coleoptiles of both biotypes; 50% depolarization required 1 to 4 μm diclofop acid. After removal of diclofop acid, membranes from the resistant biotype recovered polarity, whereas membranes from the susceptible biotype did not. Internal concentrations of diclofop acid 4 h after exposing plants to herbicide were estimated to be 36 to 39 micromolar in a membrane fraction and 16 to 17 micromolar in a soluble fraction. Such concentrations should be sufficient to fully depolarize membranes. It is postulated that differences in the ability of membranes to recover from depolarization are correlated with the resistance response of biotype SLR 31.  相似文献   

13.
Weed control is a substantial economic input for production of mint oils, the most commercially important of which are obtained from peppermint. The objective of this research is to obtain peppermint plants resistant to the broad-spectrum herbicide glufosinate, which can be used for development of economically efficacious weed control strategies and, perhaps, serve as a paradigm in perennial crops. The bar gene, which encodes phosphinothricin acetyltransferase (PAT) which inactivates glufosinate-ammonium or phosphinothricin (PPT), was constructed into Agrobacterium tumefaciens binary vectors under the nopaline synthase (NOS) or a chimeric promoter containing a trimer of the OCS-upstream-activating sequence (UAS) to a MAS promoter/activator region[(OCS) 3 MAS]. A total of 142 independent transgenic peppermint (cv. Black Mitcham) plants were obtained (107 and 35 were obtained with pGPTV (and pCAS1) and pATC940 vectors, respectively) and evaluated for herbicide resistance in the greenhouse after foliar application of glufosinate herbicide Liberty as the commercial product. All transgenic plants exhibited substantially less herbicide symptom development than non-transgenic Black Mitcham or untransformed tissue cultured-derived plants, albeit variation for herbicide resistance occurred amongst the transformed lines. Plants from 35 of the 142 lines were selected at random and all were PCR-positive for the presence of bar. Five lines, that were least affected, exhibited no injury symptoms to Liberty concentrations that are 4 times the standard level for control of weeds in peppermint fields. The most resistant transgenic plants had the greatest steady-state PAT mRNA levels and PAT activities. No experimental difference in herbicide resistance was evident between plant populations obtained with pGPTV (pCAS1)-bar or pATC940-bar vector. However, 4 of 35 lines transformed with (ocs) 3 MAS-bar exhibited maximal resistance while only 1 of 107 NOS-bar lines has comparable resistance. These herbicide resistant peppermint plants will facilitate development of post-emergent herbicide control strategies that use newer generation herbicides, like glufosinate, which have reduced environmental and product residual because of metabolism by microbes and the transgenic plants.  相似文献   

14.
Tobacco plants transformed with the RNA polymerase (RdRp) gene of potato virus X (PVX) that are extremely resistant to infection by potato virus X have previously been described. The PVX-resistant plants accumulated the RdRp protein at a lower level than fully susceptible plants transformed with the same RdRp construct. In this paper the difference between the PVX-resistant and susceptible transformed plants is investigated and it is demonstrated that there are three associated phenotypes of the RdRp transgene that vary in parallel between transformed lines. These phenotypes are: accumulation of the transgenic RdRp RNA at a low level; strain-specific resistance to PVX; and the ability of the transgene to trans -inactivate homologous transgenes. This gene-silencing potential of the transgenes conferring PVX resistance was illustrated by analysis of progeny from a cross between a transformant that was extremely resistant to PVX and a second PVX-susceptible transformant. In other transformants, in which the resistance was less extreme, the same three phenotypes were associated but in a transgene dosage-dependent manner. The same association of strain-specific resistance and low-level accumulation of the transgenic RdRp RNA was observed with plants that were transformed with mutant or wild-type versions of the RdRp gene. Strain-specific resistance was also produced in plants transformed with untranslatable versions of the RdRp transgene. Based on these data it is proposed that homology-dependent gene silencing and transgenic resistance to PVX may be due to the same RNA-based mechanism. An undefined genomic feature is proposed to account for the variation in the resistance and trans -inactivation phenotypes of different transformants. It is further proposed that this genome feature influences a cytoplasmic mechanism that degrades RNA with sequence homology to the silencing transgene.  相似文献   

15.
Zhang XQ  Powles SB 《Planta》2006,223(3):550-557
Acetyl-CoA carboxylase (ACCase) (EC.6.4.1.2) is an essential enzyme in fatty acid biosynthesis and, in world agriculture, commercial herbicides target this enzyme in plant species. In nearly all grass species the plastidic ACCase is strongly inhibited by commercial ACCase inhibiting herbicides [aryloxyphenoxypropionate (APP) and cyclohexanedione (CHD) herbicide chemicals]. Many ACCase herbicide resistant biotypes (populations) of L. rigidum have evolved, especially in Australia. In many cases, resistance to ACCase inhibiting herbicides is due to a resistant ACCase enzyme. Two ACCase herbicide resistant L. rigidum biotypes were studied to identify the molecular basis of ACCase inhibiting herbicide resistance. The carboxyl-transferase (CT) domain of the plastidic ACCase gene was amplified by PCR and sequenced. Amino acid substitutions in the CT domain were identified by comparison of sequences from resistant and susceptible plants. The amino acid residues Gln-102 (CAG codon) and Ile-127 (ATA codon) were substituted with a Glu residue (GAG codon) and Leu residue (TTA codon), respectively, in both resistant biotypes. Amino acid positions 102 and 127 within the fragment sequenced from L. rigidum corresponded to amino acid residues 1756 and 1781, respectively, in the A. myosuroides full ACCase sequence. Allele-specific PCR results further confirmed the mutations linked with resistance in these populations. The Ile-to-Leu substitution at position 1781 has been identified in other resistant grass species as endowing resistance to APP and CHD herbicides. The Gln-to-Glu substitution at position 1756 has not previously been reported and its role in herbicide resistance remains to be established.  相似文献   

16.
Single amino acid substitutions at either of two crucial positions in acetolactate synthase (ALS) result in a chlorsulfuron-insensitive form of this enzyme and, as a consequence, a herbicide-resistant phenotype. Here, we describe the successful in vivo targeting of endogenous tobacco (Nicotiana tabacum) ALS genes using chimeric RNA/DNA and all-DNA oligonucleotides at two different locations. Similar number of conversion events with two different chimeras indicates the absence of restricting influence of genomic target sequence on the gene repair in tobacco. Chlorsulfuron-resistant plants were regenerated from calli after mesophyll protoplast electroporation or leaf tissue particle bombardment with these specifically constructed chimeras. Sequence analysis and enzyme assays proved the resulting alterations to ALS at both DNA and protein levels. Furthermore, foliar application of chlorsulfuron confirmed the development of resistant phenotypes. Lines with proline-196-alanine, threonine, glutamine, or serine substitutions or with tryptophan-573-leucine substitutions were highly resistant at both cellular and whole plant levels, whereas lines with proline-196-leucine substitutions were less resistant. The stability of these modifications was demonstrated by the continuous growth of calli on chlorsulfuron-containing medium and by the transmission of herbicide resistance to progeny in a Mendelian manner. Ability of haploid state to promote chimera-mediated conversions is discussed.  相似文献   

17.
We constructed a cosmid vector, pOCA18, designed for transferring plant genomic libraries from Agrobacterium tumefaciens to plants. Clones from a genomic library of Arabidopsis thaliana DNA in pOCA 18 were propagated stably in both Escherichia coli and A. tumefaciens. Clones from the pOCA18 A. thaliana library were used to construct transgenic Nicotiana tabacum plants; the DNA inserts were transferred intact in 10 out of 16 transgenic N. tabacum plants examined but were partially deleted in six others. Transgenic N. tabacum plants constructed with a mutant A. thaliana acetohydroxy acid synthase gene (from the pOCA18 library) that encodes an enzyme resistant to the herbicide chlorsulfuron were resistant to chlorsulfuron. A statistical analysis indicated that if the A. thaliana library contains 10(7) members and if 10(7) A. tumefaciens transconjugants containing the library were used to transform plant cells, then 2 x 10(4) transformed plant cells must be generated to have a 95% probability of constructing a transgenic plant carrying a specific DNA sequence from the A. thaliana library.  相似文献   

18.
Carotenoids are constituents of the photosynthetic apparatus and essential for plant survival because of their involvement in protection of chlorophylls against photooxidation. Certain classes of herbicides are interfering with carotenoid biosynthesis leading to pigment destruction and a bleached plant phenotype. One important target site for bleaching herbicides is the enzyme phytoene desaturase catalysing the desaturation of phytoene in zeta-carotene. This enzymatic reaction can be inhibited by norflurazon or fluridone. We have transformed tobacco with a mutated cyanobacterial phytoene desaturase gene (pds) derived from the Synechococcus PCC 7942 mutant NFZ4. Characterization of the resulting transformants revealed an up to 58 fold higher norflurazon resistance in comparison to wild type controls. The tolerance for fluridone was also increased 3 fold in the transgenics. Furthermore, the transformed tobacco maintained a higher level of D1 protein of photosystem II indicating a lower susceptibility to photooxidative damage in the presence of norflurazon. In contrast, the genetic manipulation did not confer herbicide resistance against zeta-carotene desaturase inhibitors.  相似文献   

19.
This review focuses on the genes for the enzymes 5-enolpyruvyl-3-phosphoshikimlc acid synthase (EPSPS) and the glyphosate oxidoreductase (GOX). These genes have been used to genetically engineer plants that are resistant to the herbicide glyphosate. Overproduction of glyphosate-insensitive.EPSPS in transgenic crops has been used to overcome the deleterious effuts of this herbicide. The introduction into plants of GOX also confers glyphosate tolerance to plants and augments the tolerance of transgenic plants already expressing a glyphosate tolerant EPSPS. These genes also provide a method for selecting transformed plant tissue using the glyphosate tolerance as the selectable marker in the presence of inhibitory concentrations of glypllosate. Glyphosate tolerant transgenic plants of beet, corn, cotton, lettuce, poplar, potato, rapeseed. soybean, tobacco, tomato, and wheat have already been field tested and are entering agriculture.  相似文献   

20.
Embryogenic tissue cultures of soybean were transformed by particle bombardment with a vector pCHZ-II that carries the coding sequence for cyanamide hydratase (Cah), an enzyme that converts toxic cyanamide to urea, from the soil fungus Myrothecium verrucaria. The Cah gene was driven by the constitutive Arabidopsis thaliana actin-2 promoter and terminated with its cognate terminator. This vector also carries the hygromycin phosphotransferase gene (hpt) driven by the potato (Solanum tuberosum) ubiquitin-3 promoter. Twelve individual lines of transgenic plants that were obtained under hygromycin selection expressed Cah mRNA and exhibited resistance to hygromycin in leaf tissue culture, while the untransformed tissues were sensitive. Cah enzyme activity was present in extracts of transformed leaves and embryogenic tissue cultures when measured by a colorimetric assay and the presence of the Cah protein was confirmed by enzyme-linked immunosorbent assay (ELISA). Cah expression detoxified cyanamide in leaf callus and embryogenic cultures as well as in whole plants as shown by cyanamide resistance. The Cah-expressing plants grew and set seeds normally indicating that the Cah enzyme activity did not affect soybean plant metabolism. We also describe a test whereby callus was formed on cultured leaf tissue in the presence of hygromycin or cyanamide only if the hpt or Cah gene was expressed, respectively. This test is a convenient and cost-effective way to follow the marker gene in the primary regenerated plants and subsequent generations, which is particularly reliable for the hpt gene expression using hygromycin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号