首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PCO(2) in the lumen and serosa of cecum and colon was measured in rats, guinea pigs, and dogs to examine the relationship between serosal PCO(2) and the incidence of intestinal necrotic lesions after administration of gas-carrier contrast agents in rodents. The effects of the dietary substrate were tested in a group of mice maintained on a diet based on glucose as the only carbohydrate source. The anesthetic used was a fentanyl-fluanison-midazolam mixture (rodents) and pentobarbital (dogs). PCO(2) was measured in vivo and postmortem, and the kinetics of the postmortem serosal PCO(2) [transmural CO(2) flux (J(CO(2)))] was calculated. PCO(2) in the cecal serosa and lumen, respectively, was 64 +/- 4 and 392 +/- 18 Torr in rats, 67 +/- 3 and 276 +/- 17 Torr in guinea pigs, and 73 +/- 6 and 137 +/- 7 Torr in mice on glucose-based diet. In the colon serosa and lumen of dogs, PCO(2) was 30 +/- 6 and 523 +/- 67 Torr, respectively. Serosal PCO(2) increased rapidly after death in rats and slower in guinea pigs and mice, and the slowest change was observed in dogs. Compared with dogs, serosal PCO(2) and J(CO(2)) of rats and guinea pigs were significantly higher. Serosal PCO(2) of guinea pigs was similar to that of rats, whereas the J(CO(2)) of guinea pigs was significantly lower. These data suggest a causal relationship between the ability of the cecal and colonic wall to act as a barrier to CO(2) diffusion and the presence of characteristic gas-carrier contrast agent-induced intestinal lesions in mice and rats and their absence in guinea pigs, dogs, and other species.  相似文献   

2.
p-Cresol is a metabolite of aromatic amino acid metabolism produced by intestinal microflora, and its formation is influenced by intestinal conditions. Fasting drastically changes intestinal conditions. However, the effect of fasting on p-cresol production is unclear. In this study, serum and cecal p-cresol levels were determined in non-fasted rats and in rats fasting for either 12 or 18 h. Serum p-cresol increased significantly with 12-h fasting (3.44 +/- 2.15 nmol/ml; P<0.05) and 18-h fasting (5.40 +/- 2.20; P<0.001) as compared to the level in the non-fasted rats (1.02 +/- 0.50). Cecal p-cresol levels of the 12-h fasted (272.6 +/- 313.2 nmol/cecum) and 18-h fasted rats (436.6 +/- 190.8; P<0.01) were higher than those in non-fasted rats (27.1 +/- 21.9). The total cecal protein in content did not change with 18-h fasting. However, the cecal protein concentration increased significantly with fasting (P<0.001), and correlated closely with total cecal p-cresol contents (P<0.001). These results indicate that fasting enhances p-cresol production in the rat cecum, resulting in accumulation of serum p-cresol. We presume that the increase in p-cresol produced by fasting is related to the enhancement of bacterial nitrogen metabolism via an increased concentration of endogenous protein in the cecum.  相似文献   

3.
In the present investigation the effect of various bacterial contaminations of gnotobiotic mice and rats on cecal size is presented. Of the species tested, Bacteroides oralis and Fusobacterium nucleatum did not establish in germ-free mice. Streptococcus mutans, Clostridium difficile, a Neisseria strain and two recent cecal isolates established, but failed to exert an effect upon the cecum of mice. A group K streptococcus and B. fragilis increased the cecal size apparently by increasing the levels of water-soluble protein, peptides, and carbohydrates in the cecal contents. Mixed ileal bacteria decreased the cecal size by preventing accumulation of soluble proteins and carbohydrates in the cecum. A Peptococcus strain caused a reduction by lowering the levels of insoluble material in the cecum. When this strain was combined with two Clostridium isolates and introduced into gnotobiotic rats, 50 to 65% cecal reduction was observed. This polycontamination did not decrease the per cent water of the cecal contents but caused lower levels of both soluble and insoluble material to accumulate in the cecum. No net nitrogen absorption from the distal small intestine occurred in either the germ-free or polycontaminated rats.  相似文献   

4.
The effects of hypocapnia [arterial PCO(2) (Pa(CO(2))) 15 Torr] on splanchnic hemodynamics and gut mucosal-arterial P(CO(2)) were studied in seven anesthetized ventilated dogs. Ileal mucosal and serosal blood flow were estimated by using laser Doppler flowmetry, mucosal PCO(2) was measured continuously by using capnometric recirculating gas tonometry, and serosal surface PO(2) was assessed by using a polarographic electrode. Hypocapnia was induced by removal of dead space and was maintained for 45 min, followed by 45 min of eucapnia. Mean Pa(CO(2)) at baseline was 38.1 +/- 1.1 (SE) Torr and decreased to 13.8 +/- 1.3 Torr after removal of dead space. Cardiac output and portal blood flow decreased significantly with hypocapnia. Similarly, mucosal and serosal blood flow decreased by 15 +/- 4 and by 34 +/- 7%, respectively. Also, an increase in the mucosal-arterial PCO(2) gradient of 10.7 Torr and a reduction in serosal PO(2) of 30 Torr were observed with hypocapnia (P < 0.01 for both). Hypocapnia caused ileal mucosal and serosal hypoperfusion, with redistribution of flow favoring the mucosa, accompanied by increased PCO(2) gradient and diminished serosal PO(2).  相似文献   

5.
The antagonistic effect exerted towards Salmonella typhimurium by the flora issued from conventional chickens was studied in gnotobiotic animals. In germfree chickens and mice inoculated with S. typhimurium, the highest bacterial counts were observed in ceca, and were not significantly different in either host. The protection afforded by the inoculation of cecal flora issued from a conventional chicken was more effective when this flora was inoculated first into germfree chickens than when it was given only after inoculation with S. typhimurium. Administration of a cecal flora from a 15-day-old chick to gnotobiotic mice and chicken resulted in the inhibition of a further intestinal colonization by S. typhimurium in both hosts. Sixteen strains were isolated among the predominant populations of the fecal flora from chicken flora recipient mice. Association of 14 strains of strictly anaerobic bacteria with 2 strains of Escherichia coli and Streptococcus faecium only decreased the number of S. typhimurium in the ileum of gnotobiotic mice, but not in their cecum. Anaerobe cultures were obtained from 10(-6) and 10(-8) dilutions prepared from the fecal flora of gnotobiotic recipient mice. Antagonistic bacteria were present only in cultures from the 10(-6) dilution. Cecal concentrations of volatile fatty acids were shown not to be the sole factor implicated in the antagonistic effect against S. typhimurium.  相似文献   

6.
Mucoid enteropathy was induced experimentally by ligation of the cecum, and sterile filtrates were prepared from cecal contents of sick and control rabbits. Explants were prepared from the colons of normal rabbits and were maintained in a short-term organ culture system. Cecal filtrates from rabbits with experimental mucoid enteropathy when added to the culture medium, stimulated mucus secretion and discharge from goblet cells. This was exhibited by an increase in number of visible goblet cells, presence of mucus in crypt lumen and/or presence of a significant amount of mucus blanketing the surface epithelium. The results indicated that a mucus-stimulating substance, a goblet cell secretagogue, was produced in the cecum of affected rabbits.  相似文献   

7.
Oxygen dissociation curves (ODC) in whole blood and organic phosphate concentrations in red cells were determined in 10 highly trained male athletes (TR), 6 semitrained subjects (ST) who played sports regularly at low intensities and 8 untrained people (UT). In all groups standard ODCs (37 degrees C, pH 7.40, PCO2 approximately 43 Torr) at rest and after a short exhaustive exercise were nearly identical, but PO2 values measured immediately after blood sampling and corrected to standard conditions tended to fall to the right of the in vitro ODC. Elevated P50 in the physically active [28.65 +/- 1.4 Torr (3.81 +/- 0.18 kPa) in ST, 28.0 +/- 1.1 Torr (3.73 +/- 0.15 kPa) in TR, but 26.5 +/- 1.1 Torr (3.53 +/- 0.15 kPa) in UT] were partly caused by different [DPG] (11.9 +/- 1.3 mumol/GHb in UT, 13.3 +/- 1.5 mumol/GHb in TR, 13.8 +/- 2.2 mumol/gHb in ST). There were remarkable differences in the shape of the curves between the groups. The slope "n" in the Hill plot amounted to 2.65 +/- 0.12 in UT, 2.74 +/- in ST and 2.90 +/- 0.11 in the TR (2 p against UT less than 0.001), leading to an elevated oxygen pressure of about 2 Torr (0.27 kPa) at 20% saturation and an augmented oxygen extraction of 5--7 SO2 at a PO2 of about 15 Torr (2kPa), which might be favorable at high workloads. The reason for the phenomenon could be an increased amount of young red cells in the blood of TR, caused by exercise induced hemolysis.  相似文献   

8.
Effects of acetazolamide on cerebral acid-base balance   总被引:3,自引:0,他引:3  
Acetazolamide (AZ) inhibition of brain and blood carbonic anhydrase increases cerebral blood flow by acidifying cerebral extracellular fluid (ECF). This ECF acidosis was studied to determine whether it results from high PCO2, carbonic acidosis (accumulation of H2CO3), or lactic acidosis. Twenty rabbits were anesthetized with pentobarbital sodium, paralyzed, and mechanically ventilated with 100% O2. The cerebral cortex was exposed and fitted with thermostatted flat-surfaced pH and PCO2 electrodes. Control values (n = 14) for cortex ECF were pH 7.10 +/- 0.11 (SD), PCO2 42.2 +/- 4.1 Torr, PO2 107 +/- 17 Torr, HCO3- 13.8 +/- 3.0 mM. Control values (n = 14) for arterial blood were arterial pH (pHa) 7.46 +/- 0.03 (SD), arterial PCO2 (PaCO2) 32.0 +/- 4.1 Torr, arterial PO2 (PaO2) 425 +/- 6 Torr, HCO3- 21.0 +/- 2.0 mM. After intravenous infusion of AZ (25 mg/kg), end-tidal PCO2 and brain ECF pH immediately fell and cortex PCO2 rose. Ventilation was increased in nine rabbits to bring ECF PCO2 back to control. The changes in ECF PCO2 then were as follows: pHa + 0.04 +/- 0.09, PaCO2 -8.0 +/- 5.9 Torr, HCO3(-)-2.7 +/- 2.3 mM, PaO2 +49 +/- 62 Torr, and changes in cortex ECF were as follows: pH -0.08 +/- 0.04, PCO2 -0.2 +/- 1.6 Torr, HCO3(-)-1.7 +/- 1.3 mM, PO2 +9 +/- 4 Torr. Thus excess acidity remained in ECF after ECF PCO2 was returned to control values. The response of intracellular pH, high-energy phosphate compounds, and lactic acid to AZ administration was followed in vivo in five other rabbits with 31P and 1H nuclear magnetic resonance spectroscopy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
In 16 experiments male subjects, age 22.4 +/- 0.5 (SE) yr, inspired CO2 for 15 min (8% end-tidal CO2) or hyperventilated for 30 min (2.5% end-tidal CO2). Osmolality (Osm) and acid-base status of arterialized venous blood were determined at short intervals until 30 min after hypo- and hypercapnia, respectively. During hypocapnia [CO2 partial pressure (PCO2) -2.31 +/- 0.32 kPa (-17.4 Torr), pH + 0.19 units], Osm decreased by 3.9 +/- 0.3 mosmol/kg H2O; during hypercapnia [PCO2 + 2.10 +/- 0.28 kPa (+15.8 Torr), pH -0.12 units], Osm increased by 5.8 +/- 0.7 mosmol/kg H2O. Presentation of the data in Osm-PCO2 or Osm-pH diagrams yields hysteresis loops probably caused by exchange between blood and tissues. The dependence of Osm on PCO2 must result mainly from CO2 buffering and therefore from the formation of bicarbonate. In spite of the different buffer capacities in various body compartments, water exchange allows rapid restoration of osmotic equilibrium throughout the organism. Thus delta Osm/delta pH during a PCO2 jump largely depends on the mean buffer capacity of the whole body. The high estimated buffer value during hypercapnia (38 mmol/kg H2O) compared with hypocapnia (19 mmol/kg H2O) seems to result from very strong muscle buffering during moderate acidosis.  相似文献   

10.
Concentrations of bacteria in the ceca and colons of pigs were measured by determinations of colony counts on rumen fluid-based media in anaerobic roll tubes. With our most complete medium (medium CCA), the mean colony count of cecal samples from 20 pigs was 2.37 X 10(10) +/- 1.0 X 10(10) (+/- standard deviation)/g (wet weight). The mean number of bacteria attached to or associated with cecal epithelial tissues from three pigs on medium CCA was 2.67 X 10(7) +/- 0.81 X 10(7)/cm2 of tissue. The proportions of gut bacterial populations able to use various energy substrates were estimated on the basis of relative colony counts. The following substrates are listed in descending order of their capacity to support growth of cecal bacteria: glucose, starch, cellobiose, xylose, Trypticase, gastric mucin from swine, mannitol, glycerol, and lactate. The effect of diet upon this distribution was not examined. The relative proportions of bacteria from a given population that were able to grow on various selective media were used as population profiles. Comparisons of populations in this way indicated that differences could be detected between (i) populations from the cecum of littermate pigs, (ii) populations from the cecum and colon of the same pig, and (iii) populations in the lumen of the cecum as compared with populations associated with cecal mucosa.  相似文献   

11.
Concentrations of bacteria in the ceca and colons of pigs were measured by determinations of colony counts on rumen fluid-based media in anaerobic roll tubes. With our most complete medium (medium CCA), the mean colony count of cecal samples from 20 pigs was 2.37 X 10(10) +/- 1.0 X 10(10) (+/- standard deviation)/g (wet weight). The mean number of bacteria attached to or associated with cecal epithelial tissues from three pigs on medium CCA was 2.67 X 10(7) +/- 0.81 X 10(7)/cm2 of tissue. The proportions of gut bacterial populations able to use various energy substrates were estimated on the basis of relative colony counts. The following substrates are listed in descending order of their capacity to support growth of cecal bacteria: glucose, starch, cellobiose, xylose, Trypticase, gastric mucin from swine, mannitol, glycerol, and lactate. The effect of diet upon this distribution was not examined. The relative proportions of bacteria from a given population that were able to grow on various selective media were used as population profiles. Comparisons of populations in this way indicated that differences could be detected between (i) populations from the cecum of littermate pigs, (ii) populations from the cecum and colon of the same pig, and (iii) populations in the lumen of the cecum as compared with populations associated with cecal mucosa.  相似文献   

12.
We measured the PCO2 apneic threshold in preterm and term infants. We hypothesized that, compared with adult subjects, the PCO2 apneic threshold in neonates is very close to the eupneic PCO2, likely facilitating the appearance of periodic breathing and apnea. In contrast with adults, who need to be artificially hyperventilated to switch from regular to periodic breathing, neonates do this spontaneously. We therefore measured the apneic threshold as the average alveolar PCO2 (PaCO2) of the last three breaths of regular breathing preceding the first apnea of an epoch of periodic breathing. We also measured the PaCO2 of the first three breaths of regular breathing after the last apnea of the same periodic breathing epoch. In preterm infants, eupneic PaCO2 was 38.6 +/- 1.4 Torr, the preperiodic PaCO2 apneic threshold was 37.3 +/- 1.4 Torr, and the postperiodic PaCO2 was 37.2 +/- 1.4 Torr. In term infants, the eupneic PaCO2 was 39.7 +/- 1.1 Torr, the preperiodic PaCO2 apneic threshold was 38.7 +/- 1.0 Torr, and the postperiodic value was 37.9 +/- 1.2 Torr. This means that the PaCO2 apneic thresholds were 1.3 +/- 0.1 and 1.0 +/- 0.2 Torr below eupneic PaCO2 in preterm and term infants, respectively. The transition from eupneic PaCO2 to PaCO2 apneic threshold preceding periodic breathing was accompanied by a minor and nonsignificant increase in ventilation, primarily related to a slight increase in frequency. The findings suggest that neonates breathe very close to their PCO2 apneic threshold, the overall average eupneic PCO2 being only 1.15 +/- 0.2 Torr (0.95-1.79, 95% confidence interval) above the apneic threshold. This value is much lower than that reported for adult subjects (3.5 +/- 0.4 Torr). We speculate that this closeness of eupneic and apneic PCO2 thresholds confers great vulnerability to the respiratory control system in neonates, because minor oscillations in breathing may bring eupneic PCO2 below threshold, causing apnea.  相似文献   

13.
We investigated the aortic, mixed venous, and great cardiac vein acid-base changes in eight domestic pigs during cardiac arrest produced by ventricular fibrillation and during cardiopulmonary resuscitation (CPR). The great cardiac vein PCO2 increased from a control value of 52 +/- 2 to 132 +/- 28 (SD) Torr during CPR, whereas the arterial PCO2 was unchanged (39 +/- 4 vs. 38 +/- 4). The coronary venoarterial PCO2 gradient, therefore, increased remarkably from 13 +/- 2 to 94 +/- 29 Torr. The simultaneously measured great cardiac vein lactate concentrations increased from 0.24 +/- 0.06 to 7.3 +/- 2.34 mmol/l. Much more moderate increases in the lactate content of aortic blood from 0.64 +/- 0.25 to 2.56 +/- 0.27 mmol/l were observed. Increases in great cardiac vein PCO2 and lactate were highly correlated during CPR (r = 0.91). After successful CPR, the coronary venoarterial PCO2 gradient returned to normal levels within 2 min after restoration of spontaneous circulation. Lactate content was rapidly reduced and lactate extraction was reestablished within 30 min after CPR. These studies demonstrate marked but reversible acidosis predominantly as the result of myocardial CO2 production during CPR.  相似文献   

14.
A probiotic Lactobacillus strain was given in drinking water to young broiler chickens from 1 to 19 days of age. Cecal contents were collected from 4- and 19-day-old chickens in treated and control groups. Enumeration of bacteria by culture on selective media showed a decrease in Clostridium perfringens carriage in the 4-day-old treated chickens, whereas coliforms and Lactobacillus populations were not significantly affected by the treatment. Fluorescent in situ hybridization analysis with 7 phylogenetic probes targeting the major groups of intestinal bacteria revealed that the Clostridium coccoides group accounted for more than 50% of the total bacteria in the cecum of 4-day-old chickens, whereas the bacterial community of 19-day-old chickens evolved towards a more diverse microbiota with Faecalibacterium prausnitzii (36%) and C. coccoides (22%) groups representing the predominant bacteria. No effect of the Lactobacillus strain supplementation was observed in the composition of the cecal microbiota assessed by fluorescent in situ hybridization with the 7 probes. Nevertheless, profiling of the cecal microbiota using temporal temperature gradient gel electrophoresis in combination with principal component analysis demonstrated an impact of the probiotic treatment on the overall bacterial community as well as on the Lactobacillus population.  相似文献   

15.
The purpose of this study was to determine whether a change in respiratory sensation accompanies an increase in CO2 partial pressure (PCO2) in the absence of any changes in the level and pattern of thoracic displacement and respiratory muscle force. Eleven normal subjects were artificially hyperventilated with a positive-pressure mechanical respirator. In separate trials the tidal volume (VT) was set at 10 and 18 ml/kg and the frequency of ventilation (f) was adjusted to maintain the base-line end-tidal PCO2 at approximately 30 Torr. Thereafter, at a constant controlled VT and f, the PCO2 was progressively increased by raising the inspired CO2 concentration. There were no changes in respiratory motor activity as determined from the peak inspiratory airway pressure (Paw) until the PCO2 reached 40.8 +/- 1.0 and 40.1 +/- 1.0 (SE) Torr in the large and small VT trials, respectively. Initially there was no conscious awareness of the change in respiratory activity. Subjects first signaled that ventilatory needs were not being satisfied only after a further increase in PCO2 to 44.7 +/- 1.3 and 42.3 +/- 1.0 (SE) Torr in the large and small VT trials and after the Paw had fallen to 55-60% of the base-line value. The results suggest that changes in respiratory sensation produced by increasing chemical drive are a consequence of increases in respiratory efferent activity, but a direct effect of changes in PCO2 on respiratory sensation cannot be excluded.  相似文献   

16.
Pulmonary gas exchange in panting dogs   总被引:1,自引:0,他引:1  
Pulmonary gas exchange during panting was studied in seven conscious dogs (32 kg mean body wt) provided with a chronic tracheostomy and an exteriorized carotid artery loop. The animals were acutely exposed to moderately elevated ambient temperature (27.5 degrees C, 65% relative humidity) for 2 h. O2 and CO2 in the tracheostomy tube were continuously monitored by mass spectrometry using a special sample-hold phase-locked sampling technique. PO2 and PCO2 were determined in blood samples obtained from the carotid artery. During the exposure to heat, central body temperature remained unchanged (38.6 +/- 0.6 degrees C) while all animals rapidly switched to steady shallow panting at frequencies close to the resonant frequency of the respiratory system. During panting, the following values were measured (means +/- SD): breathing frequency, 313 +/- 19 breaths/min; tidal volume, 167 +/- 21 ml; total ventilation, 52 +/- 9 l/min; effective alveolar ventilation, 5.5 +/- 1.3 l/min; PaO2, 106.2 +/- 5.9 Torr; PaCO2, 27.2 +/- 3.9 Torr; end-tidal-arterial PO2 difference [(PE' - Pa)O2], 26.0 +/- 5.3 Torr; and arterial-end-tidal PCO2 difference, [(Pa - PE')CO2], 14.9 +/- 2.5 Torr. On the basis of the classical ideal alveolar air approach, parallel dead-space ventilation accounted for 54% of alveolar ventilation and 66% of the (PE' - Pa)O2 difference. But the steepness of the CO2 and O2 expirogram plotted against expired volume suggested a contribution of series in homogeneity due to incomplete gas mixing.  相似文献   

17.
Ventral medullary extracellular fluid pH and PCO2 during hypoxemia   总被引:1,自引:0,他引:1  
We designed experiments to study changes in ventral medullary extracellular fluid (ECF) PCO2 and pH during hypoxemia. Measurements were made in chloralose-urethan-anesthetized spontaneously breathing cats (n = 12) with peripherial chemodenervation. Steady-state measurements were made during normoxemia [arterial PO2 (PaO2) = 106 Torr], hypoxemia (PaO2 = 46 Torr), and recovery (PaO2 = 105 Torr), with relatively constant arterial PCO2 (approximately 44 Torr). Mean values of ventilation were 945, 683, and 1,037 ml/min during normoxemia, hypoxemia, and recovery from hypoxemia, respectively. Ventilatory depression occurred in each cat during hypoxemia. Mean values of medullary ECF PCO2 were 57.7 +/- 7.2 (SD), 59.4 +/- 9.7, and 57.4 +/- 7.2 Torr during normoxemia, hypoxemia, and recovery to normoxemia, respectively; respective values for ECF [H+] were 60.9 +/- 8.0, 64.4 +/- 11.6, and 62.9 +/- 9.2 neq/l. Mean values of calculated ECF [HCO3-] were 22.8 +/- 3.0, 21.7 +/- 3.3, and 21.4 +/- 3.1 meq/l during normoxemia, hypoxemia, and recovery, respectively. Changes in medullary ECF PCO2 and [H+] were not statistically significant. Therefore hypoxemia caused ventilatory depression independent of changes in ECF acid-base variables. Furthermore, on return to normoxemia, ventilation rose considerably, still independent of changes in ECF PCO2, [H+], and [HCO3-].  相似文献   

18.
Four different measures (PETCO2, PACO2, PADCO2, and PJCO2) for indirectly estimating arterial PCO2 (PaCO2) from respired gas at the mouth have been investigated. PETCO2 was the end-tidal PCO2. PACO2 was calculated using a reconstruction of the alveolar oscillation of PCO2 obtained from the end-tidal "plateau" in PCO2. PADCO2 was calculated as for PACO2 except that the effects of dead space were incorporated. PJCO2 was calculated from an empirical relationship involving PETCO2 and tidal volume. Six subjects were studied at rest and during cycle ergometry at 50 and 100 W while breathing a variety of gas mixtures. Arterial samples were drawn for determination of true PaCO2. The differences for each method between estimated and true PaCO2 at rest and at 50 and 100 W were as follows: PETCO2, -1.35 +/- 2.64, 1.67 +/- 2.31, and 2.67 +/- 2.02 (SD) Torr; PaCO2, -2.15 +/- 2.73, -0.80 +/- 2.18, and -0.35 +/- 2.31 (SD) Torr; PADCO2, -1.55 +/- 2.54, 0.25 +/- 2.16, and 0.63 +/- 2.26 (SD) Torr; and PJCO2, -1.41 +/- 2.30, 0.12 +/- 1.79, and 0.08 +/- 1.96 (SD) Torr. It is concluded that, at rest, all methods significantly underestimate true PaCO2 and during exercise PETCO2 significantly overestimates PaCO2, but no bias was detected for any of the other methods.  相似文献   

19.
Although the dominant respiratory response to hypoxia is stimulation of breathing via the peripheral chemoreflex, brain hypoxia may inhibit respiration. We studied the effects of two levels of brain hypoxia without carotid body stimulation, produced by inhalation of CO, on ventilatory (VI) and genioglossal (EMGgg) and diaphragmatic (EMGdi) responses to CO2 rebreathing in awake, unanesthetized goats. Neither delta VI/delta PCO2 nor VI at a PCO2 of 60 Torr was significantly different between the three conditions studied (0%, 25%, and 50% carboxyhemoglobin, HbCO). There were also no significant changes in delta EMGdi/delta PCO2 or EMGdi at a PCO2 of 60 Torr during progressive brain hypoxia. In contrast, delta EMGgg/delta PCO2 and EMGgg at a PCO2 of 60 Torr were significantly increased at 50% HbCO compared with either normoxia or 25% HbCO (P less than 0.05). The PCO2 threshold at which inspiratory EMGgg appeared was also decreased at 50% HbCO (45.6 +/- 2.6 Torr) compared with normoxia (55.0 +/- 1.4 Torr, P less than 0.02) or 25% HbCO (53.4 +/- 1.6 Torr, P less than 0.02). We conclude that moderate brain hypoxia (50% HbCO) in awake, unanesthetized animals results in disproportionate augmentation of EMGgg relative to EMGdi during CO2 rebreathing. This finding is most likely due to hypoxic cortical depression with consequent withdrawal of tonic inhibition of hypoglossal inspiratory activity.  相似文献   

20.
Quantitative estimates of endothelial cell adhesion molecule expression have revealed that some adhesion molecules [e.g., intercellular adhesion molecule-1 (ICAM-1)] are abundantly expressed in different vascular beds under normal conditions. The objective of this study was to determine whether the enteric microflora contribute to the constitutive expression of ICAM-1 and other endothelial cell adhesion molecules in the gastrointestinal tract and other regional vascular beds. The dual radiolabeled monoclonal antibody technique was used to measure endothelial expression of ICAM-1, ICAM-2, vascular cell adhesion molecule-1 (VCAM-1), and E-selectin in conventional, germ-free mice and germ-free mice receiving the cecal contents of conventional mice to reestablish the enteric microflora (total association). Constitutive ICAM-1 expression was significantly lower in the splanchnic organs (pancreas, stomach, small and large intestine, mesentery, and liver), kidneys, skeletal muscle, and skin of germ-free mice compared with their conventional counterparts. These differences were abolished after total association of germ-free mice with the indigenous gastrointestinal flora. The expression of ICAM-2, VCAM-1, and E-selectin in the various tissues studied did not differ between conventional and germ-free mice. These findings indicate that the indigenous gastrointestinal microflora are responsible for a significant proportion of the basal ICAM-1 expression detected in both intestinal and extraintestinal tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号