首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Mutations (base changes) were introduced into the four DnaA binding sites (DnaA boxes) of theEscherichia coli replication origin,oriC. Mutations in a single DnaA box did not impair the ability of these origins to replicate in vivo and in vitro. A combination of mutations in two DnaA boxes, R1 and R4, resulted in slower growth of theoriC plasmid-bearing host cells. DnaA protein interaction with mutant and wild-type DnaA boxes was analyzed by DNase I footprinting. Binding of DnaA protein to a mutated DnaA box R1 was not affected by a mutation in DnaA box R4 and vice versa. Mutations in DnaA boxes R1 and R4 did not modify the ability of the DnaA protein to bind to other DnaA boxes inoriC.  相似文献   

2.
The main roles of the DnaA protein are to bind the origin of chromosome replication (oriC), to unwind DNA and to provide a hub for the step-wise assembly of a replisome. DnaA is composed of four domains, with each playing a distinct functional role in the orisome assembly. Out of the four domains, the role of domain I is the least understood and appears to be the most species-specific. To better characterise Helicobacter pylori DnaA domain I, we have constructed a series of DnaA variants and studied their interactions with H. pylori bipartite oriC. We show that domain I is responsible for the stabilisation and organisation of DnaA-oriC complexes and provides cooperativity in DnaA–DNA interactions. Domain I mediates cross-interactions between oriC subcomplexes, which indicates that domain I is important for long-distance DnaA interactions and is essential for orisosme assembly on bipartite origins. HobA, which interacts with domain I, increases the DnaA binding to bipartite oriC; however, it does not stimulate but rather inhibits DNA unwinding. This suggests that HobA helps DnaA to bind oriC, but an unknown factor triggers DNA unwinding. Together, our results indicate that domain I self-interaction is important for the DnaA assembly on bipartite H. pylori oriC.  相似文献   

3.
During assembly of the E. coli pre‐replicative complex (pre‐RC), initiator DnaA oligomers are nucleated from three widely separated high‐affinity DnaA recognition sites in oriC. Oligomer assembly is then guided by low‐affinity DnaA recognition sites, but is also regulated by a switch‐like conformational change in oriC mediated by sequential binding of two DNA bending proteins, Fis and IHF, serving as inhibitor and activator respectively. Although their recognition sites are separated by up to 90 bp, Fis represses IHF binding and weak DnaA interactions until accumulating DnaA displaces Fis from oriC. It remains unclear whether high‐affinity DnaA binding plays any role in Fis repression at a distance and it is also not known whether all high‐affinity DnaA recognition sites play an equivalent role in oligomer formation. To examine these issues, we developed origin‐selective recombineering methods to mutate E. coli chromosomal oriC. We found that, although oligomers were assembled in the absence of any individual high‐affinity DnaA binding site, loss of DnaA binding at peripheral sites eliminated Fis repression, and made binding of both Fis and IHF essential. We propose a model in which interaction of DnaA molecules at high‐affinity sites regulates oriC DNA conformation.  相似文献   

4.
Shogo Ozaki  Tsutomu Katayama   《Plasmid》2009,62(2):71-82
Escherichia coli DnaA is the initiator of chromosomal replication. Multiple ATP-DnaA molecules assemble at the oriC replication origin in a highly regulated manner, and the resultant initiation complexes promote local duplex unwinding within oriC, resulting in open complexes. DnaB helicase is loaded onto the unwound single-stranded region within oriC via interaction with the DnaA multimers. The tertiary structure of the functional domains of DnaA has been determined and several crucial residues in the initiation process, as well as their unique functions, have been identified. These include specific DNA binding, inter-DnaA interaction, specific and regulatory interactions with ATP and with the unwound single-stranded oriC DNA, and functional interaction with DnaB helicase. An overall structure of the initiation complex is also proposed. These are important for deepening our understanding of the molecular mechanisms that underlie DnaA assembly, oriC duplex unwinding, regulation of the initiation reaction, and DnaB helicase loading. In this review, we summarize recent progress on the molecular mechanisms of the functions of DnaA on oriC. In addition, some members of the AAA+ protein family related to the initiation of replication and its regulation (e.g., DnaA) are briefly discussed.  相似文献   

5.
In bacteria, initiation of DNA replication requires the DnaA protein. Regulation of DnaA association and activity at the origin of replication, oriC, is the predominant mechanism of replication initiation control. One key feature known to be generally important for replication is DNA topology. Although there have been some suggestions that topology may impact replication initiation, whether this mechanism regulates DnaA‐mediated replication initiation is unclear. We found that the essential topoisomerase, DNA gyrase, is required for both proper binding of DnaA to oriC as well as control of initiation frequency in Bacillus subtilis. Furthermore, we found that the regulatory activity of gyrase in initiation is specific to DnaA and oriC. Cells initiating replication from a DnaA‐independent origin, oriN, are largely resistant to gyrase inhibition by novobiocin, even at concentrations that compromise survival by up to four orders of magnitude in oriC cells. Furthermore, inhibition of gyrase does not impact initiation frequency in oriN cells. Additionally, deletion or overexpression of the DnaA regulator, YabA, significantly modulates sensitivity to gyrase inhibition, but only in oriC and not oriN cells. We propose that gyrase is a negative regulator of DnaA‐dependent replication initiation from oriC, and that this regulatory mechanism is required for cell survival.  相似文献   

6.
7.
We probed the complex betweenoriC and DnaA protein using two types of mutants inoriC. Base changes in the DnaA binding sites, DnaA boxes, had little effect on origin function. Mutations which change the distance between DnaA boxes R3 and R4, on the other hand, inactivatedoriC unless the mutation deleted or inserted one complete helical turn. Origins with other 10 base pair insertions in the interval between DnaA boxes R2 and R3 were functional, but not insertions in the R1–R2 interval. FIS protein binds to a bipartite site inoriC between DnaA boxes R2 and R3. A model for theoriC/DnaA complex based on these results suggests an array of DnaA monomers with a 34 Å spacing upon whichoriC is arranged.  相似文献   

8.
DNA replication and chromosome segregation must be carefully regulated to ensure reproductive success. During Bacillus subtilis sporulation, chromosome copy number is reduced to two, and cells divide asymmetrically to produce the future spore (forespore) compartment. For successful sporulation, oriC must be captured in the forespore. New rounds of DNA replication are prevented in part by SirA, a protein that utilizes residues in its N‐terminus to directly target Domain I of the bacterial initiator, DnaA. Using a quantitative forespore chromosome organization assay, we show that SirA also acts in the same pathway as another DnaA regulator, Soj, to promote oriC capture in the forespore. By analyzing loss‐of‐function variants of both SirA and DnaA, we observe that SirA's ability to inhibit DNA replication can be genetically separated from its role in oriC capture. In addition, we identify substitutions near the C‐terminus of SirA and in DnaA Domain III that enhance interaction between the two proteins. One such variant, SirAP141T, remained functional in regard to inhibiting replication, but was unable to support oriC capture. Collectively, our results support a model in which SirA targets DnaA Domain I to inhibit DNA replication, and DnaA Domain III to facilitate Soj‐dependent oriC capture in the forespore.  相似文献   

9.
Summary Plasmid DNA containing the replication origin of the Escherichia coli chromosome (oriC) has been shown to be inefficient as a template for DNA synthesis in vitro when isolated from dam mutants. here, we extend this study to hemimethylated oriC plasmids and to replication in dam-3 mutant enzyme extracts. The results show that: (1) hemimethylated oriC plasmids replicate with the same low efficiency as nonmethylated DNA; (2) DNA synthesis starts at oriC regardless of the methylated state of the template; (3) replication in dam-3 enzyme extracts is inefficient because this strain is deficient in DnaA protein; and (4) consistent with this observation, the copy number of the oriC plasmid pFH271 is reduced in the dam-3 mutant. However, we have found that low DnaA protein levels in dam-3 mutants are not sufficient to explain the reduced transformation efficiency of oriC plasmids. We suggest that there must exist in vivo inhibitory factors not present or present in low quantities in vitro which specifically recognize the hemimethylated or nonmethylated forms of the oric region.  相似文献   

10.
The kinetics of initiation of chromosome replication after induction of DnaA protein synthesis was studied in a dnaA(null) rnh mutant of Escherichia coli. DnaA protein synthesis was induced to different extents using the wild-type dnaA gene controlled by a lac promoter. Initiation of chromosome replication from oriC, measured as an increase in origin to terminus ratio, took place at different times after addition of an inducer dependent on the DnaA protein synthesis rate. The first initiations always occurred when DnaA protein had accumulated approximately to the average wild-type concentration (24 ng of DnaA protein per ml cells at OD450= 1.0) At a low DnaA protein accumulation rate one synchronous round of replication was obtained after 30min of induction. The initiation kinetics obtained when DnaA protein accumulated rapidly was complicated and indicated that other factors might also be involved.  相似文献   

11.
In bacteria, chromosome replication is initiated by binding of the DnaA initiator protein to DnaA boxes located in the origin of chromosomal replication (oriC). This leads to DNA helix opening within the DNA-unwinding element. Helicobacter pylori oriC, the first bipartite origin identified in Gram-negative bacteria, contains two subregions, oriC1 and oriC2, flanking the dnaA gene. The DNA-unwinding element region is localized in the oriC2 subregion downstream of dnaA. Surprisingly, oriC2–DnaA interactions were shown to depend on DNA topology, which is unusual in bacteria but is similar to initiator–origin interactions observed in higher organisms. In this work, we identified three DnaA boxes in the oriC2 subregion, two of which were bound only as supercoiled DNA. We found that all three DnaA boxes play important roles in orisome assembly and subsequent DNA unwinding, but different functions can be assigned to individual boxes. This suggests that the H. pylori oriC may be functionally divided, similar to what was described recently for Escherichia coli oriC. On the basis of these results, we propose a model of initiation complex formation in H. pylori.  相似文献   

12.
 Replication of mini-F plasmids requires the initiator protein RepE, which binds specifically to four iterons within the origin (ori2), as well as some host factors that are involved in chromosomal DNA replication. To understand the role of host factors and RepE in the early steps of mini-F DNA replication, we examined the effects of RepE and the Escherichia coli proteins DnaA and HU on the localized melting of ori2 DNA in a purified in vitro system. We found that the binding of RepE to an iteron causes a 50° bend at or around the site of binding. RepE and HU exhibited synergistic effects on the localized melting within the ori2 region, as detected by sensitivity to the single-strand specific P1 endonuclease. This opening of duplex DNA occurred around the 13mer of ori2, whose sequence closely resembles the set of 13mers found in the chromosomal origin oriC. Further addition of DnaA to the reaction mixture increased the efficiency of melting and appeared to extend melting to the adjacent AT-rich region. Moreover, DNA melting with appreciably higher efficiencies was observed with mutant forms of RepE that were previously shown to be hyperactive both in DNA binding in vitro and in initiator activity in vivo. We propose that the binding of RepE to four iterons of ori2 causes bending at the sites of RepE binding and, with the assistance of HU, induces a localized melting in the 13mer region. The addition of DnaA extends melting to the AT-rich region, which could then serve as the entry site for the DnaB-DnaC complex, much as has been documented for oriC- dependent replication. Received: 15 May 1996/Accepted: 11 July 1996  相似文献   

13.
14.
Binding of the DnaA protein to oriC leads to DNA melting within the DNA unwinding element (DUE) and initiates replication of the bacterial chromosome. Helicobacter pylori oriC was previously identified as a region localized upstream of dnaA and containing a cluster of DnaA boxes bound by DnaA protein with a high affinity. However, no unwinding within the oriC sequence has been detected. Comprehensive in silico analysis presented in this work allowed us to identify an additional region (oriC2), separated from the original one (oriC1) by the dnaA gene. DnaA specifically binds both regions, but DnaA-dependent DNA unwinding occurs only within oriC2. Surprisingly, oriC2 is bound exclusively as supercoiled DNA, which directly shows the importance of the DNA topology in DnaA-oriC interactions, similarly as previously presented only for initiator-origin interactions in Archaea and some Eukaryota. We conclude that H. pylori oriC exhibits bipartite structure, being the first such origin discovered in a Gram-negative bacterium. The H. pylori mode of initiator-oriC interactions, with the loop formation between the subcomplexes of the discontinuous origin, resembles those discovered in Bacillus subtilis chromosome and in many plasmids, which might suggest a similar way of controlling initiation of replication.  相似文献   

15.
A hybrid bacterial replication origin   总被引:1,自引:0,他引:1       下载免费PDF全文
Seitz H  Welzeck M  Messer W 《EMBO reports》2001,2(11):1003-1006
We constructed a hybrid replication origin that consists of the main part of oriC from Escherichia coli, the DnaA box region and the AT-rich region from Bacillus subtilis oriC. The AT-rich region could be unwound by E. coli DnaA protein, and the DnaB helicase was loaded into the single-stranded bubble. The results show that species specificity, i.e. which DnaA protein can do the unwinding, resides within the DnaA box region of oriC.  相似文献   

16.
17.
In Escherichia coli, ATP-DnaA multimers formed on the replication origin oriC promote duplex unwinding, which leads to helicase loading. Based on a detailed functional analysis of the oriC sequence motifs, we previously proposed that the left half of oriC forms an ATP-DnaA subcomplex competent for oriC unwinding, whereas the right half of oriC forms a distinct ATP-DnaA subcomplex that facilitates helicase loading. However, the molecular basis for the functional difference between these ATP-DnaA subcomplexes remains unclear. By analyzing a series of novel DnaA mutants, we found that structurally distinct DnaA multimers form on each half of oriC. DnaA AAA+ domain residues Arg-227 and Leu-290 are specifically required for oriC unwinding. Notably, these residues are required for the ATP-DnaA-specific structure of DnaA multimers in complex with the left half of oriC but not for that with the right half. These results support the idea that the ATP-DnaA multimers formed on oriC are not uniform and that they can adopt different conformations. Based on a structural model, we propose that Arg-227 and Leu-290 play a crucial role in inter-ATP-DnaA interaction and are a prerequisite for the formation of unwinding-competent DnaA subcomplexes on the left half of oriC. These residues are not required for the interaction with DnaB, nucleotide binding, or regulatory DnaA-ATP hydrolysis, which further supports their important role in inter-DnaA interaction. The corresponding residues are evolutionarily conserved and are required for unwinding in the initial complexes of Thermotoga maritima, an ancient hyperthermophile. Therefore, our findings suggest a novel and common mechanism for ATP-DnaA-dependent activation of initial complexes.  相似文献   

18.
The opening of the three tandem 13-mers (iterons) in the replication origin (oriC) of Escherichia coli by DnaA protein, assisted by protein HU or IHF (Hwang, D. S., and Kornberg, A. (1992) J. Biol. Chem. 267, 23083-23086), represents an essential early stage in the initiation of chromosomal replication (Bramhill, D., and Kornberg, A. (1988) Cell 54, 915-918). We now show by mutational alterations of the 13-mer region that oriC function, both in vitro and in vivo, requires AT-richness in the left 13-mer and sequence specificity in the middle and right 13-mers. Interactions of DnaA protein with the middle and right 13-mers are crucial for the opening of the region. Binding of the protein to the top strand of the 13-mers appeared to maintain single-strandedness in the bottom strand. IciA protein, the inhibitor of initiation, binds the three 13-mers and blocks the opening of the region. The degrees of inhibition by IciA protein of 13-mer opening and of oriC plasmid replication observed with mutant forms of the 13-mers could be correlated with the binding affinity of IciA protein. Whereas the binding of IciA protein to the 13-mers did not affect the binding of DnaA protein to its four 9-mers boxes, interaction of DnaA protein with the 13-mers was blocked. The selective interactions of DnaA and IciA proteins with the 13-mer region appear to be components of the on/off switch that controls initiation of E. coli chromosomal replication.  相似文献   

19.
ATP-DnaA binds to multiple DnaA boxes in the Escherichia coli replication origin (oriC) and forms left-half and right-half subcomplexes that promote DNA unwinding and DnaB helicase loading. DnaA forms homo-oligomers in a head-to-tail manner via interactions between the bound ATP and Arg-285 of the adjacent protomer. DnaA boxes R1 and R4 reside at the outer edges of the DnaA-binding region and have opposite orientations. In this study, roles for the protomers bound at R1 and R4 were elucidated using chimeric DnaA molecules that had alternative DNA binding sequence specificity and chimeric oriC molecules bearing the alternative DnaA binding sequence at R1 or R4. In vitro, protomers at R1 and R4 promoted initiation regardless of whether the bound nucleotide was ADP or ATP. Arg-285 was shown to play an important role in the formation of subcomplexes that were active in oriC unwinding and DnaB loading. The results of in vivo analysis using the chimeric molecules were consistent with the in vitro data. Taken together, the data suggest a model in which DnaA subcomplexes form in symmetrically opposed orientations and in which the Arg-285 fingers face inward to mediate interactions with adjacent protomers. This mode is consistent with initiation regulation by ATP-DnaA and bidirectional loading of DnaB helicases.  相似文献   

20.
An essential protein, DnaA, binds to 9-bp DNA sites within the origin of replication oriC. These binding events are prerequisite to forming an enigmatic nucleoprotein scaffold that initiates replication. The number, sequences, positions, and orientations of these short DNA sites, or DnaA boxes, within the oriCs of different bacteria vary considerably. To investigate features of DnaA boxes that are important for binding Mycobacterium tuberculosis DnaA (MtDnaA), we have determined the crystal structures of the DNA binding domain (DBD) of MtDnaA bound to a cognate MtDnaA-box (at 2.0 Å resolution) and to a consensus Escherichia coli DnaA-box (at 2.3 Å). These structures, complemented by calorimetric equilibrium binding studies of MtDnaA DBD in a series of DnaA-box variants, reveal the main determinants of DNA recognition and establish the [T/C][T/A][G/A]TCCACA sequence as a high-affinity MtDnaA-box. Bioinformatic and calorimetric analyses indicate that DnaA-box sequences in mycobacterial oriCs generally differ from the optimal binding sequence. This sequence variation occurs commonly at the first 2 bp, making an in vivo mycobacterial DnaA-box effectively a 7-mer and not a 9-mer. We demonstrate that the decrease in the affinity of these MtDnaA-box variants for MtDnaA DBD relative to that of the highest-affinity box TTGTCCACA is less than 10-fold. The understanding of DnaA-box recognition by MtDnaA and E. coli DnaA enables one to map DnaA-box sequences in the genomes of M. tuberculosis and other eubacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号