首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The coronavirus disease 2019 (COVID-19) pandemic was caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus has challenged civilization and modern science in ways that few infectious diseases and natural disasters have previously, causing globally significant human morbidity and mortality and triggering economic downturns across financial markets that will be dealt with for generations. Despite this, the pandemic has also brought an opportunity for humanity to come together and participate in a shared scientific investigation. Clinically, SARS-CoV-2 is associated with lower mortality rates than other recently emerged coronaviruses, such as SARS-CoV and the Middle East respiratory syndrome coronavirus (MERS-CoV). However, SARS-CoV-2 exhibits efficient human-to-human spread, with transmission often occurring before symptom recognition; this feature averts containment strategies that had worked previously for SARS-CoV and MERS-CoV. Severe COVID-19 disease is characterized by dysregulated inflammatory responses associated with pulmonary congestion and intravascular coagulopathy leading to pneumonia, vascular insults, and multiorgan disease. Approaches to treatment have combined supportive care with antivirals, such as remdesivir, with immunomodulatory medications, including corticosteroids and cytokine-blocking antibody therapies; these treatments have advanced rapidly through clinical trials. Innovative approaches to vaccine development have facilitated rapid advances in design, testing, and distribution. Much remains to be learned about SARS-CoV-2 and COVID-19, and further biomedical research is necessary, including comparative medicine studies in animal models. This overview of COVID-19 in humans will highlight important aspects of disease, relevant pathophysiology, underlying immunology, and therapeutics that have been developed to date.

In December 2019, a cluster of cases of pneumonia without a clear etiology occurred in Wuhan, China. With remarkable speed and efficiency, the etiology of this illness was soon identified as a novel coronavirus; the complete viral genome was sequenced and published on January 10, 2020.182 These events introduced the world to coronavirus disease 2019 (COVID-19). The disease, now known to be caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has developed into the most significant pandemic of recent times. In less than a year since the virus was first recognized, multiple candidate vaccines were developed worldwide, and some of them rapidly progressed to clinical trials and widespread administration. As the pandemic continues, a number of sequence variants of the virus have emerged around the world. This continued viral evolution highlights the need for continued biomedical research to facilitate understanding of the pathogenesis of COVID-19, seeking innovative therapeutic and preventative strategies for the current and possibly future pandemics. This article will review aspects of SARS-CoV-2 infection of humans and COVID-19, focusing on important aspects of clinical disease, pathophysiology, immunology, and the development of therapeutic and preventative measures to provide context for discussion of the animal models used to study SARS-CoV-2 and COVID-19.  相似文献   

2.
The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 disease, has killed over five million people worldwide as of December 2021 with infections rising again due to the emergence of highly transmissible variants. Animal models that faithfully recapitulate human disease are critical for assessing SARS-CoV-2 viral and immune dynamics, for understanding mechanisms of disease, and for testing vaccines and therapeutics. Pigtail macaques (PTM, Macaca nemestrina) demonstrate a rapid and severe disease course when infected with simian immunodeficiency virus (SIV), including the development of severe cardiovascular symptoms that are pertinent to COVID-19 manifestations in humans. We thus proposed this species may likewise exhibit severe COVID-19 disease upon infection with SARS-CoV-2. Here, we extensively studied a cohort of SARS-CoV-2-infected PTM euthanized either 6- or 21-days after respiratory viral challenge. We show that PTM demonstrate largely mild-to-moderate COVID-19 disease. Pulmonary infiltrates were dominated by T cells, including CD4+ T cells that upregulate CD8 and express cytotoxic molecules, as well as virus-targeting T cells that were predominantly CD4+. We also noted increases in inflammatory and coagulation markers in blood, pulmonary pathologic lesions, and the development of neutralizing antibodies. Together, our data demonstrate that SARS-CoV-2 infection of PTM recapitulates important features of COVID-19 and reveals new immune and viral dynamics and thus may serve as a useful animal model for studying pathogenesis and testing vaccines and therapeutics.  相似文献   

3.
The coronavirus disease 2019 (COVID-19) pandemic has become the most serious global public health issue in the past two years, requiring effective therapeutic strategies. This viral infection is a contagious disease caused by new coronaviruses (nCoVs), also called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Autophagy, as a highly conserved catabolic recycling process, plays a significant role in the growth and replication of coronaviruses (CoVs). Therefore, there is great interest in understanding the mechanisms that underlie autophagy modulation. The modulation of autophagy is a very complex and multifactorial process, which includes different epigenetic alterations, such as histone modifications and DNA methylation. These mechanisms are also known to be involved in SARS-CoV-2 replication. Thus, molecular understanding of the epigenetic pathways linked with autophagy and COVID-19, could provide novel therapeutic targets for COVID-19 eradication. In this context, the current review highlights the role of epigenetic regulation of autophagy in controlling COVID-19, focusing on the potential therapeutic implications.  相似文献   

4.
新型冠状病毒肺炎(简称新冠)疫情仍在发展,新型冠状病毒变异株的出现致使其传染性和致病性增强,部分国家的政府和民众防控措施松懈导致某些地区疫情加剧。新型冠状病毒疫苗广泛使用后,接种情况会影响疫情发展。本文主要阐述新冠疫情与疫苗接种、病毒变异的关联性,接种疫苗存在的问题及其应对措施,并建议在加快疫苗接种的同时应做好各项新冠防控工作。  相似文献   

5.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging respiratory virus responsible for the ongoing coronavirus disease 19 (COVID-19) pandemic. More than a year into this pandemic, the COVID-19 fatigue is still escalating and takes hold of the entire world population. Driven by the ongoing geographical expansion and upcoming mutations, the COVID-19 pandemic has taken a new shape in the form of emerging SARS-CoV-2 variants. These mutations in the viral spike (S) protein enhance the virulence of SARS-CoV-2 variants by improving viral infectivity, transmissibility and immune evasion abilities. Such variants have resulted in cluster outbreaks and fresh infection waves in various parts of the world with increased disease severity and poor clinical outcomes. Hence, the variants of SARS-CoV-2 pose a threat to human health and public safety. This review enlists the most recent updates regarding the presently characterized variants of SARS-CoV-2 recognized by the global regulatory health authorities (WHO, CDC). Based on the slender literature on SARS-CoV-2 variants, we collate information on the biological implications of these mutations on virus pathology. We also shed light on the efficacy of therapeutics and COVID-19 vaccines against the emerging SARS-CoV-2 variants.  相似文献   

6.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), is a new coronavirus strain that was first reported in December 2019 in Wuhan, China. A specific treatment for COVID-19 has yet to be identified. Potential therapeutic targets include SARS-CoV-2 main protease (Mpro) and the SARS-CoV-2 spike-ACE2 interaction. Molecular docking, molecular dynamics (MD), solvent screening for the extraction of the specified compounds, and prediction of the drug properties of certain molecules were the methods used in this study to investigate compounds from the medicinal plant Myristica fragrans, which is one of twelve herbs in Prasachandaeng remedy (PSD). ArgusLab, AutoDock Vina, and AutoDock were used to perform docking tasks. The examined ligands were compared with panduratin A as a standard (Kanjanasirirat et al., 2020), which is a promising medicinal plant molecule for the treatment of COVID-19. Molecular docking revealed that malabaricones B and C and licarins A, B and C bound to SARS-CoV-2/ACE2 and SARS-CoV-2 Mpro with low binding energies compared to that of the standard ligand. Furthermore, appropriate solvent usage is important. Acetone was selected by COSMOquick software for compound extraction in this investigation because it can extract large amounts of all five of the abovementioned M. fragrans compounds. Furthermore, the drug-like properties of these compounds were studied utilizing the Lipinski, Veber, and Ghose criteria. The results revealed that these M. fragrans compounds have potential as effective medicines to combat the COVID-19 pandemic. However, to assess the therapeutic potential of these ligands, additional research is needed, which will use our findings as a foundation.  相似文献   

7.
Responding to the coronavirus disease 2019 (COVID-19) pandemic has been an unexpected and unprecedented global challenge for humanity in this century. During this crisis, specialists from the laboratories and frontline clinical personnel have made great efforts to prevent and treat COVID-19 by revealing the molecular biological characteristics and epidemic characteristics of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, SARS-CoV-2 has severe consequences for public health, including human respiratory system, immune system, blood circulation system, nervous system, motor system, urinary system, reproductive system and digestive system. In the review, we summarize the physiological and pathological damage of SARS-CoV-2 to these systems and its molecular mechanisms followed by clinical manifestation. Concurrently, the prevention and treatment strategies of COVID-19 will be discussed in preclinical and clinical studies. With constantly unfolding and expanding scientific understanding about COVID-19, the updated information can help applied researchers understand the disease to build potential antiviral drugs or vaccines, and formulate creative therapeutic ideas for combating COVID-19 at speed.  相似文献   

8.
《Biophysical journal》2021,120(24):5592-5618
The ongoing COVID-19 pandemic is a global public health emergency requiring urgent development of efficacious vaccines. While concentrated research efforts have focused primarily on antibody-based vaccines that neutralize SARS-CoV-2, and several first-generation vaccines have either been approved or received emergency use authorization, it is forecasted that COVID-19 will become an endemic disease requiring updated second-generation vaccines. The SARS-CoV-2 surface spike (S) glycoprotein represents a prime target for vaccine development because antibodies that block viral attachment and entry, i.e., neutralizing antibodies, bind almost exclusively to the receptor-binding domain. Here, we develop computational models for a large subset of S proteins associated with SARS-CoV-2, implemented through coarse-grained elastic network models and normal mode analysis. We then analyze local protein domain dynamics of the S protein systems and their thermal stability to characterize structural and dynamical variability among them. These results are compared against existing experimental data and used to elucidate the impact and mechanisms of SARS-CoV-2 S protein mutations and their associated antibody binding behavior. We construct a SARS-CoV-2 antigenic map and offer predictions about the neutralization capabilities of antibody and S mutant combinations based on protein dynamic signatures. We then compare SARS-CoV-2 S protein dynamics to SARS-CoV and MERS-CoV S proteins to investigate differing antibody binding and cellular fusion mechanisms that may explain the high transmissibility of SARS-CoV-2. The outbreaks associated with SARS-CoV, MERS-CoV, and SARS-CoV-2 over the last two decades suggest that the threat presented by coronaviruses is ever-changing and long term. Our results provide insights into the dynamics-driven mechanisms of immunogenicity associated with coronavirus S proteins and present a new, to our knowledge, approach to characterize and screen potential mutant candidates for immunogen design, as well as to characterize emerging natural variants that may escape vaccine-induced antibody responses.  相似文献   

9.
The coronavirus disease 2019 (COVID-19) is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients with severe COVID-19 exhibit hyper-inflammatory responses characterized by excessive activation of myeloid cells, including monocytes, macrophages, and neutrophils, and a plethora of pro-inflammatory cytokines and chemokines. Accumulating evidence also indicates that hyper-inflammation is a driving factor for severe progression of the disease, which has prompted the development of anti-inflammatory therapies for the treatment of patients with COVID-19. Corticosteroids, IL-6R inhibitors, and JAK inhibitors have demonstrated promising results in treating patients with severe disease. In addition, diverse forms of exosomes that exert anti-inflammatory functions have been tested experimentally for the treatment of COVID-19. Here, we briefly describe the immunological mechanisms of the hyper-inflammatory responses in patients with severe COVID-19. We also summarize current anti-inflammatory therapies for the treatment of severe COVID-19 and novel exosome-based therapeutics that are in experimental stages.  相似文献   

10.
SARS-CoV-2 is a novel coronavirus that severely affects the respiratory system, is the cause of the COVID-19 pandemic, and is projected to result in the deaths of 2 million people worldwide. Recent reports suggest that SARS-CoV-2 also affects the central nervous system along with other organs. COVID-19-associated complications are observed in older people with underlying neurological conditions like stroke, Alzheimer's disease, and Parkinson’s disease. Hence, we discuss SARS-CoV-2 viral replication and its inflammation-mediated infection. This review also focuses on COVID-19 associated neurological complications in individuals with those complications as well as other groups of people. Finally, we also briefly discuss the current therapies available to treat patients, as well as ongoing available treatments and vaccines for effective cures with a special focus on the therapeutic potential of a small 5 amino acid peptide (PHSCN), ATN-161, that inhibits SARS-CoV-2 spike protein binding to both integrin α5β1 and α5β1/hACE2.  相似文献   

11.
COVID-19 caused by SARS-CoV-2 is declared global pandemic. The virus owing high resemblance with SARS-CoV and MERS-CoV has been placed in family of beta-coronavirus. However, transmission and infectivity rate of COVID-19 is quite higher as compared to other members of family. Effective management strategy with potential drug availability will break the virus transmission chain subsequently reduce the pressure on the healthcare system. Extensive research trials are underway to develop novel efficient therapeutics against SARS-CoV-2. In this review, we have discussed the origin and family of coronavirus, structure, genome and pathogenesis of virus SARS-CoV-2 inside human host cell; comparison among SARS, MERS, SARS-CoV-2 and common flu; effective management practices; treatment with immunity boosters; available medication with ongoing clinical trials. We suggest medicinal plants could serve as potential candidates for drug development against COVID-19 infection.  相似文献   

12.
Dear Editor, The ongoing coronavirus disease 2019(COVID-19)global pandemic is caused by a novel coronavirus,severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),which instigates severe and often fatal symptoms.As of September 4th,2020,more than 26 million cases of COVID-19 and almost 900,000 deaths have been reported to WHO.Based on Kissler and colleagues'modeled projections of future viral transmission scenarios,a resurgence in SARS-CoV-2 could occur over the next five years(Kissler et al.,2020).Research and clinical trials are underway to develop vacci-nes and treatments for COVID-19,but there are currently no specific vaccines or treatments for COVID-19(www.who.int),and therapeutic and prophylactic interventions are urgently needed to combat the outbreak of SARS-CoV-2.Of partic-ular importance is the identification of drugs which are effective,less-intrusive,most socioeconomic,and ready-to-use.  相似文献   

13.
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which is an ongoing pandemic disease. SARS-CoV-2-specific CD4+ and CD8+ T-cell responses have been detected and characterized not only in COVID-19 patients and convalescents, but also unexposed individuals. Here, we review the phenotypes and functions of SARS-CoV-2-specific T cells in COVID-19 patients and the relationships between SARS-CoV-2-specific T-cell responses and COVID-19 severity. In addition, we describe the phenotypes and functions of SARS-CoV-2-specific memory T cells after recovery from COVID-19 and discuss the presence of SARS-CoV-2-reactive T cells in unexposed individuals and SARS-CoV-2-specific T-cell responses elicited by COVID-19 vaccines. A better understanding of T-cell responses is important for effective control of the current COVID-19 pandemic.  相似文献   

14.
由严重急性呼吸综合征冠状病毒2(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)引起的病毒性肺炎已经扩散到全球200多个国家和地区,导致了数十万人死亡。2019冠状病毒病(coronavirus disease 19,COVID-19)的流行病学、致病机制和临床治疗方法成为各国政府以及科研界亟待研究解决的重大问题。本文对SARS-CoV-2的病原学特征及COVID-19的发病机制、病理学研究进展进行综述,重点评述病毒受体人血管紧张素转换酶Ⅱ (human angiotensin-converting enzyme 2,ACE2)与病毒致病机制的相关性,为后续研究与防治提供参考。  相似文献   

15.
16.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the COVID-19 pandemic. Computer simulations of complete viral particles can provide theoretical insights into large-scale viral processes including assembly, budding, egress, entry, and fusion. Detailed atomistic simulations are constrained to shorter timescales and require billion-atom simulations for these processes. Here, we report the current status and ongoing development of a largely “bottom-up” coarse-grained (CG) model of the SARS-CoV-2 virion. Data from a combination of cryo-electron microscopy (cryo-EM), x-ray crystallography, and computational predictions were used to build molecular models of structural SARS-CoV-2 proteins, which were then assembled into a complete virion model. We describe how CG molecular interactions can be derived from all-atom simulations, how viral behavior difficult to capture in atomistic simulations can be incorporated into the CG models, and how the CG models can be iteratively improved as new data become publicly available. Our initial CG model and the detailed methods presented are intended to serve as a resource for researchers working on COVID-19 who are interested in performing multiscale simulations of the SARS-CoV-2 virion.  相似文献   

17.
《Cytotherapy》2022,24(3):235-248
The emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses a never before seen challenge to human health and the economy. Considering its clinical impact, with no streamlined therapeutic strategies in sight, it is crucial to understand the infection process of SARS-CoV-2. Our limited knowledge of the mechanisms underlying SARS-CoV-2 infection impedes the development of alternative therapeutics to address the pandemic. This aspect can be addressed by modeling SARS-CoV-2 infection in the human context to facilitate drug screening and discovery. Human induced pluripotent stem cell (iPSC)-derived lung epithelial cells and organoids recapitulating the features and functionality of the alveolar cell types can serve as an in vitro human model and screening platform for SARS-CoV-2. Recent studies suggest an immune system asynchrony leading to compromised function and a decreased proportion of specific immune cell types in coronavirus disease 2019 (COVID-19) patients. Replenishing these specific immune cells may serve as useful treatment modality against SARS-CoV-2 infection. Here the authors review protocols for deriving lung epithelial cells, alveolar organoids and specific immune cell types, such as T lymphocytes and natural killer cells, from iPSCs with the aim to aid investigators in making relevant in vitro models of SARS-CoV-2 along with the possibility derive immune cell types to treat COVID-19.  相似文献   

18.
The recent appearance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people around the world and caused a global pandemic of coronavirus disease 2019 (COVID-19). It has been suggested that uncontrolled, exaggerated inflammation contributes to the adverse outcomes of COVID-19. In this review, we summarize our current understanding of the innate immune response elicited by SARS-CoV-2 infection and the hyperinflammation that contributes to disease severity and death. We also discuss the immunological determinants behind COVID-19 severity and propose a rationale for the underlying mechanisms.  相似文献   

19.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has become a global health concern. Various SARS-CoV-2 vaccines have been developed and are being used for vaccination worldwide. However, no therapeutic agents against coronavirus disease 2019 (COVID-19) have been developed so far; therefore, new therapeutic agents are urgently needed. In the present study, we evaluated several hepatitis C virus direct-acting antivirals as potential candidates for drug repurposing against COVID-19. Theses include asunaprevir (a protease inhibitor), daclatasvir (an NS5A inhibitor), and sofosbuvir (an RNA polymerase inhibitor). We found that asunaprevir, but not sofosbuvir and daclatasvir, markedly inhibited SARS-CoV-2-induced cytopathic effects in Vero E6 cells. Both RNA and protein levels of SARS-CoV-2 were significantly decreased by treatment with asunaprevir. Moreover, asunaprevir profoundly decreased virion release from SARS-CoV-2-infected cells. A pseudoparticle entry assay revealed that asunaprevir blocked SARS-CoV-2 infection at the binding step of the viral life cycle. Furthermore, asunaprevir inhibited SARS-CoV-2 propagation in human lung Calu-3 cells. Collectively, we found that asunaprevir displays broad-spectrum antiviral activity and therefore might be worth developing as a new drug repurposing candidate for COVID-19.  相似文献   

20.
The coronavirus causing the COVID-19 pandemic, SARS-CoV-2, uses −1 programmed ribosomal frameshifting (−1 PRF) to control the relative expression of viral proteins. As modulating −1 PRF can inhibit viral replication, the RNA pseudoknot stimulating −1 PRF may be a fruitful target for therapeutics treating COVID-19. We modeled the unusual 3-stem structure of the stimulatory pseudoknot of SARS-CoV-2 computationally, using multiple blind structural prediction tools followed by μs-long molecular dynamics simulations. The results were compared for consistency with nuclease-protection assays and single-molecule force spectroscopy measurements of the SARS-CoV-1 pseudoknot, to determine the most likely conformations. We found several possible conformations for the SARS-CoV-2 pseudoknot, all having an extended stem 3 but with different packing of stems 1 and 2. Several conformations featured rarely-seen threading of a single strand through junctions formed between two helices. These structural models may help interpret future experiments and support efforts to discover ligands inhibiting −1 PRF in SARS-CoV-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号