首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitzschia seriata Cleve, a common member of marine bottom ice communities in the Arctic, was grown in unialgal batch cultures to test for compensatory mechanisms for the low temperatures (?1.8° C) typical of its natural habitat. The upper lethal limit for growth was between 12° and 15°C, and the optimum was between 6° and 12° C. The Arrhenius function adequately (R2= 73%) fitted the relationship between growth rate and temperature from – 1.6° up to 10° C, with an average Q10 of 1.9 over the entire range. Light-saturated and light-limited rates of photosynthesis (normalized to chlorophyll a or cell carbon) showed complete compensation from 12° to 4° C. Photosynthetic rates, especially at light saturation, declined rapidly at temperatures below 4° C. Susceptibility to photoinhibition was greatest at the lowest growth temperatures. Cellular composition (chlorophyll a, protein, polysaccharide, and lipid contents) was not systematically related to temperature in any simple way, although cell size (carbon per cell) was maximal at the lowest growth temperature. Dark respiration was unmeasurably low (<0.015 day?1) at all growth temperatures. The strategy of adaptation in N. seriata may be characterized as optimizing efficiency and compensation, rather than maximization, of growth rate.  相似文献   

2.
Tomato seedlings were grown in a 12-hour day at constant andalternating day and night temperatures ranging from 10°to 30° C. The pattern of results was similar at light intensitiesof 400 and 800 f.c. The maximum rate of dryweight accumulationoccurred at a constant temperature close to 25° C. The effectsof day and night temperatures on total dry weight showed a considerabledegree of independence. The optimum day temperature was 25°C irrespective of the night temperature; the optimum night temperatureincreased from 18° to 25° C over the whole range ofday temperature. On average, day temperature affected totaldry weight twice as much as night temperature. High night temperaturesto some extent compensated for low day temperatures. The optimumday and night temperatures for leaf growth were both 25°C. On average day temperature affected leaf growth one and ahalf times as much as night temperature. By 12-hourly sampling it was shown that the cotyledons and leavesgrow throughout both day and night and that high night temperatureaccelerates nocturnal growth (cotyledons by cell expansion,young leaves by cell multiplication). Plants having receivedonly one night at 25° C, as compared with 15° C, showa slightly greater assimilation during the following light period,apparently as a consequence of increased photosynthetic surface.The respiratory loss in dry weight during darkness was not significantlyaffected by temperature over the range 15–25° C.  相似文献   

3.
J E Urban 《Cryobiology》1977,14(1):100-111
DNA synthesis rates were measured in Escherichia coli 15T? (555-7) at each degree increment in the range of 8 to 37 °C. These measurements were made (a) by means of continuous incorporation of thymine into temperature-equilibrated cultures, (b) by incorporation of short pulses of thymidine into chilled, intact cells, or (c) by incorporation of deoxynucleotide triphosphate into chilled, toluenized cells. Measurements were made in wild type and in a fast-growing mutant, with each assayed at doubling times of less than 60 min (glucose-grown cells) and greater than 60 min (aspartic acid-grown cells). Rates of DNA synthesis from each experimental system were plotted according to the method of Arrhenius, and data points fitted to either one, two, or three lines.Using the slopes of the regression lines as a general index of temperature coefficients, it is possible to relate growth history, medium (or growth rate), and cell type to temperature coefficients. Only in temperature-equilibrated cells did DNA synthesis possibly have a single temperature coefficient across the entire 8 to 37 °C range; in cells grown at 37 °C and cooled to a lower temperature before DNA synthesis was measured, at least two temperature coefficients were observed. In addition to affecting the actual slopes of the regression lines, growth history, medium (or growth rate), and cell type appear to affect the temperatures at which slopes change. Collectively, these observations show that DNA synthesis rates measured at certain low temperatures cannot routinely be extrapolated to higher temperatures, to different growth conditions, or to other strains.  相似文献   

4.
The growth rate of five species of intertidal Fucales (Pelvetia canaliculata (L.) Dec. et Thur., Fucus spiralis L., Fucus vesiculosus L., Fucus serratus L., Ascophyllum nodosum (L.) Le Jolis) was measured at temperatures from 2.5 to 35 °C. An increase in temperature immediately causes a high growth rate, and during the first hour it increases linearly with temperature; at 35 °C it is 20 times the control at 7 °C. This acceleration of growth is based mainly on stored photosynthate. After the first few hours the growth rate decreases rapidly, particularly at the highest temperatures. After 2–3 weeks a temperature optimum below 17.5 °C is indicated. High temperatures, 30–35 °C, were lethal to all species, with a survival time corresponding to their vertical zonation in the natural habitat.  相似文献   

5.
Summary The upper thermal limit for maintenance of eleven mosquito cell lines was studied. Although most cell lines could be grown at 32°C to 34°C,Anopheles stephensi cell line could be maintained at 37°C. At higher temperatures initial growth rate was higher, but yield of cells after about a week of incubation was lower than at the standard temperature (28°C). Replication of several flaviviruses inAedes albopictus cell cultures adapted to 34.5°C was faster, and viral titers were higher than at 28°C.  相似文献   

6.
Lepidopteran heat-tolerant (ht) cell lines have been obtained with sf-9, sf-21 and several Bombyx cells. They have a distinct karyotype, membrane lipid composition, morphology and growth kinetics from the parental cell lines. In this paper, we report the development of ht cell lines from other insect species and examination of their growth characteristics and virus susceptibility. Adaptation of cell lines sf-9, BTI-TN-5B1-4 (High5) and BTI-TN-MG1 (MG1) to 33°C and 35°C was carried out by shifting the culture temperature between 28°C and higher temperatures by a gradual stepwise increase in temperature. The process of adaption to a higher culture temperature was accomplished over a period of 2 months. The cell lines with the temperature adaption were designated as sf9-ht33, sf9-ht35, High5-ht33, High5-ht35, MG1-ht33, MG1-ht35. These cell lines have been subcultured over 70 passages. Adaption to high temperatures was confirmed by a constant population doubling time with individual cell lines. The population doubling time of heat adapted cell lines were 1–4 h less than these of parental cell lines. Cell shapes did not show obvious change, however, the cell size of sf9-ht cells was enlarged and those of High5 and MG1 ht cells were reduced after heat adaption. When the cell lines were infected with Autographa californica nuclear polyhedrosis virus (AcMNPV) at 28°C, 33°C, 35°C and 37°C, production of budded virus and occlusion bodies in each cell line was optimum at its own adapted temperature.  相似文献   

7.
The impact of growth temperature was evaluated for the fungal plant pathogen Mycoleptodiscus terrestris over a range of temperatures (20–36°C). The effect of temperature on biomass accumulation, colony forming units (cfu), and microsclerotia production was determined. Culture temperatures of 24–30°C produced significantly higher biomass accumulations and 20–24°C resulted in a significantly higher cfu. The growth of M. terrestris was greatly reduced at temperatures above 30°C and was absent at 36°C. The highest microsclerotia concentrations were produced over a wide range of temperatures (20–30°C). These data suggest that a growth temperature of 24°C would optimize the parameters evaluated in this study. In addition to growth parameters, we also evaluated the desiccation tolerance and storage stability of air-dried microsclerotial preparations from these cultures during storage at 4°C. During 5 months storage, there was no significant difference in viability for air-dried microsclerotial preparations from cultures grown at 20–30°C (>72% hyphal germination) or in conidia production (sporogenic germination) for air-dried preparations from cultures grown at 20–32°C. When the effect of temperature on germination by air-dried microsclerotial preparations was evaluated, data showed that temperatures of 22–30°C were optimal for hyphal and sporogenic germination. Air-dried microsclerotial preparations did not germinate hyphally at 36°C or sporogenically at 20, 32, 34, or 36°C. These data show that temperature does impact the growth and germination of M. terrestris and suggest that water temperature may be a critical environmental consideration for the application of air-dried M. terrestris preparations for use in controlling hydrilla.  相似文献   

8.
Thirty-five taxa (128 clonal cultures) of Antarctic algae isolated from various habitats were assayed for growth over a range of 2–34°C. Isolates, all unialgal and two axenic, varied markedly in their temperature-growth responses. Only four taxa belonging to either the Chlamydomonadaceae or Ulotrichaceae were obligately cold-adapted and incapable of growth at ≥20°C. All isolates grew at temperatures ranging from 7.5 to 18°C, and a few were incapable of growth at ≤5°C. Over one-third of the isolates grew at 30°C, but none grew at 34°C. Percentages of cold-adapted clones correlated well with the more stable low temperature habitats. Four chlamydomonad isolates displayed optimum temperatures for growth near their maximum temperatures for growth, both temperatures being well above those of the native habitats. This temperature-growth response suggests a closer relationship to algae from more moderate thermal regions than one might have supposed. However, the ability to grow at low temperatures and the inability to grow at 34°C suggest that these Antarctic algae are cold temperature adapted. Growth capability at low in situ temperatures is considered more useful ecologically than physiologically-defined categories for algae based on their maximum temperature for growth.  相似文献   

9.
Groups of replicated lines of the bacterium Escherichia coli were propagated for 2,000 generations at constant 32, 37, or 42°C, or in an environment that alternated between 32 and 42°C. Here, we examine the performance of each group across a temperature range of 12-44°C measuring the temperatures over which each line can maintain itself in serial dilution culture (the thermal niche). Thermal niche was not affected by selection history: average lower and upper limits remained about 19 and 42°C for all groups. In addition, no significant differences among groups were observed in rate of extinction at more extreme temperatures. Within the thermal niche, we measured the mean fitness of the evolved groups relative to their common ancestor. Increases in mean fitness were temperature specific, with the largest increase for each group occurring near its selected temperature. Thus, the temperature at which mean fitness relative to the ancestor was greatest (the thermal optimum) diverged by about 10°C for the groups selected at constant 32°C versus constant 42°C. Tradeoffs in relative fitness (decrements relative to the ancestor elsewhere within the thermal niche) did not necessarily accompany fitness improvements, although tradeoffs were observed for a few of the lines. We conclude that adaptation in this system was quite temperature specific, but substantial divergence among groups in thermal optima had little effect on the limits of their thermal niches and did not necessarily involve tradeoffs in fitness at other temperatures.  相似文献   

10.
Typically, laboratory studies on the physiological effects of temperature are conducted using stable acclimation temperatures. Nonetheless, information extrapolated from these studies may not accurately represent wild populations living in thermally variable environments. The aim of this study was to compare the growth rate, metabolism and swimming performance of wild Atlantic salmon exposed to cycling temperatures, 16–21°C, and stable acclimation temperatures, 16, 18.5, 21°C. Growth rate, metabolic rate, swimming performance and anaerobic metabolites did not change among acclimation groups, suggesting that within Atlantic salmon's thermal optimum range, temperature variation has no effect on these physiological properties.  相似文献   

11.
Phaeodactylum tricornutum Bohlin (Bacillariophyceae) was maintained in exponential growth under Fe‐replete and stressed conditions over a range of temperatures from 5 to 30° C. The maximum growth rate (GR) was observed at 20° C (optimal temperature) for Fe‐replete and ‐stressed cells. There was a gradual decrease in the GR decreasing temperatures below the optimum temperature; however, the growth rate dropped sharply as temperature increased above the optimum temperature. Fe‐stressed cells grew at half the growth rate of Fe‐replete cells at 20° C, whereas this difference became larger at lower temperatures. The change in metabolic activities showed a similar pattern to the change in growth rate temperature aside from their optimum temperature. Nitrate reductase activity (NRA) and respiratory electron transport system activity (ETS) per cell were maximal between 15 and 20° C, whereas cell‐specific photosynthetic rate (Pcell) was maximal at 20° C for Fe‐replete cells. These metabolic activities were influenced by Fe deficiency, which is consistent with the theoretical prediction that these activities should have an Fe dependency. The degree of influence of Fe deficiency, however, was different for the four metabolic activities studied: NRA > Pcell > ETS = GR. NRA in Fe‐stressed cells was only 10% of that in Fe‐replete cells at the same temperature. These results suggest that cells would have different Fe requirements for each metabolic pathway or that the priority of Fe supply to each metabolic reaction is related to Fe nutrition. In contrast, the order of influence of decreasing the temperature from the optimum temperature was ETS > Pcell > NRA > GR. For NRA, the observed temperature dependency could not be accounted for by the temperature dependency of the enzyme reaction rate itself that was almost constant with temperature, suggesting that production of the enzyme would be temperature dependent. For ETS, both the enzyme reactivity and the amount of enzyme accounted for the dependency. This is the first report to demonstrate the combined effects of Fe and temperature on three important metabolic activities (NRA, Pcell, and ETS) and to determine which activity is affected the most by a shortage of Fe. Cellular composition was also influenced by Fe deficiency, showing lower chl a content in the Fe‐stressed cells. Chl a per cell volume decreased by 30% as temperature decreased from 20 to 10° C under Fe‐replete conditions, but chl a decreased by 50% from Fe‐replete to Fe‐stressed conditions.  相似文献   

12.
The kelp Undaria pinnatifida has a widespread latitudinal range in Japan, with populations exposed to very different temperature regimes. To test the hypothesis that U. pinnatifida exhibits genetic differentiation in its temperature response, juvenile sporophytes from a warmer location (Naruto, southern Japan) and two colder locations (Okirai Bay and Matsushima Bay, northern Japan) were collected and transplanted to long lines, cultivated under the environmental conditions in Matsushima Bay. These plants were bred using successive self-crossing methods for three generations and the characteristics of photosynthesis, growth, survival, and nitrogen contents of the third-generation juvenile sporophytes (2–3 cm) then were measured and compared. The plants from Naruto showed significantly higher photosynthetic activities and respiration than those from the northern populations at warmer temperatures of 20–35°C. The juvenile sporophytes from all three locations had similar growth rates below 18°C, but significant differences were observed at 18–24°C. The optimum temperatures for growth were 14–16°C in plants that originated from Okirai Bay and Matsushima Bay and 18°C in plants that originated from Naruto. These results reflected the differences in latitude. Dead plants were observed at high temperatures of 22 and 24°C in the northern population plants, whereas no plants from Naruto died. Juvenile sporophytes from Naruto exhibited the greatest capacity to accumulate high nitrogen reserves. These results suggest that the differences in high-temperature tolerance in juvenile U. pinnatifida sporophytes from geographically separated populations are due to genetic differentiation rather than phenotypic plasticity.  相似文献   

13.
Following an environmental change, the course of a population's adaptive evolution may be influenced by environmental factors, such as the degree of marginality of the new environment relative to the organism's potential range, and by genetic factors, including constraints that may have arisen during its past history. Experimental populations of bacteria were used to address these issues in the context of evolutionary adaptation to the thermal environment. Six replicate lines of Escherichia coli (20°C group), founded from a common ancestor, were propagated for 2000 generations at 20°C, a novel temperature that is very near the lower thermal limit at which it can maintain a stable population size in a daily serial transfer (100-fold dilution) regime. Four additional groups (32/20, 37/20, 42/20, and 32–42/20°C groups) of six lines, each with 2000 generation selection histories at different temperatures (32, 37, 42, and daily alternation of 32 and 42°C), were moved to the same 20°C environment and propagated in parallel to ascertain whether selection histories influence the adaptive response in this novel environment. Adaptation was measured by improvement in fitness relative to the common ancestor in direct competition experiments conducted at 20°C. All five groups showed improvement in relative fitness in this environment; the mean fitness of the 20°C group after 2000 generations increased by about 8%. Selection history had no discernible effect on the rate or final magnitude of the fitness responses of the four groups with different histories after 2000 generations. The correlated fitness responses of the 20°C group were measured across the entire thermal niche. There were significant tradeoffs in fitness at higher temperatures; for example, at 40°C the average fitness of the 20°C group was reduced by almost 20% relative to the common ancestor. We also observed a downward shift of 1–2°C in both the upper and lower thermal niche limits for the 20°C selected group. These observations are contrasted with previous observations of a markedly greater rate of adaptation to growth near the upper thermal limit (42°C) and a lack of trade-off in fitness at lower temperatures for lines adapted to that high temperature. The evolutionary implications of this asymmetry are discussed.  相似文献   

14.
A 30 day feeding trial was conducted using a freshwater fish, Labeo rohita (rohu), to determine their thermal tolerance, oxygen consumption and optimum temperature for growth. Four hundred and sixteen L. rohita fry (10 days old, 0.385±0.003 g) were equally distributed between four treatments (26, 31, 33 and 36 °C) each with four replicates for 30 days. Highest body weight gain and lowest feed conversion ratio (FCR) was recorded between 31 and 33 °C. The highest specific growth rate was recorded at 31 °C followed by 33 and 26 °C and the lowest was at 36 °C. Thermal tolerance and oxygen consumption studies were carried out after completion of growth study to determine tolerance level and metabolic activity at four different acclimation temperatures. Oxygen consumption rate increased significantly with increasing acclimation temperature. Preferred temperature decided from relationship between acclimation temperature and Q10 values were between 33 and 36 °C, which gives a better understanding of optimum temperature for growth of L. rohita. Critical thermal maxima (CTMax) and critical thermal minima (CTMin) were 42.33±0.07, 44.81±0.07, 45.35±0.06, 45.60±0.03 and 12.00±0.08, 12.46±0.04, 13.80±0.10, 14.43±0.06, respectively, and increased significantly with increasing acclimation temperatures (26, 31, 33 and 36 °C). Survival (%) was similar in all groups indicating that temperature range of 26–36 °C is not fatal to L. rohita fry. The optimum temperature range for growth was 31–33 °C and for Q10 values was 33–36 °C.  相似文献   

15.
Candida Krusei has a optimum growth temperature of 37°C on SASOL ethanol-isopropanol mixture. The organism was unable to grow on isopropanol, but oxidized it partially to acetone in the presence and absence of ethanol. Growth at 40°C in the alcohol mixture was slightly faster than at 30°C over an ethanol concentration range of 0.43 to 3.6% (v/v), although at both temperatures the growth rate declined continuously with increasing concentration. At an ethanol concentration greater than 3.6% (v/v), the mixture was much more inhibitory to growth at 40 and 30°C. The inhibitory effect was due to the ethanol rather than the isopropanol. Metabolites such as acetate, acetaldehyde, and ethyl acetate accumulated in the medium, but the degree of accumulation depended upon the temperature and alcohol mixture concentration. At 40°C, acetaldehyde and acetate accumulated to a greater extent than 30°C on a 4.0% (v/v) synthetic alcohol mixture and this may also cause the greater inhibition at this temperature. The alcohol mixture is unsuitable for single cell protein (SCP) production in batch culture because of the low cell densities observed at all alcohol concentrations.  相似文献   

16.
Abstract The germination of Sorghum bicolor seeds of 9 genotypes was tested at temperatures between 8°C and 48°C on a thermal gradient plate. Samples were tested from three regions of the panicle expected to differ in temperature during grain filling. Seeds of a tenth genotype, SPV 354, produced in controlled-environment glasshouses at different panicle temperatures, were tested similarly. In addition, the emergence of SPV 354 was measured from planting depths of 2 and 5 cm at mean soil temperatures of 15, 20 and 25°C. Four methods of calculating mean germination rate for the nine genotypes were compared. Germination characters like base, optimum and maximum temperature (Tb, To, Tm), thermal time (θ)and the germination rate at To(Rmax showed only small differences between methods. There was a range of genotypic variation in all characters: Tb 8.5–11.9°C; To, 33.2–37.5°C; Tm, 46.8–49.2°C; θ, 23.4–38.0°Cd; Rmax, 0.69–1.14-d-1. In contrast, mean germinability (G) was between 90% and 100% over the temperature range 13–40°C. Panicle temperature had no effect on any germination character in SPV 354. However, deeper burial increased θ for emergence and decreased G, irrespective of soil temperature except at 5 cm. Increasing panicle temperature, by reducing seed size, reduced G and increased θ by about 10% only at 15°C and 5 cm depth.  相似文献   

17.
Prochlorococcus play a crucial role in the ocean's biogeochemical cycling, but it remains controversial how they will respond to global warming. Here we assessed the response to temperature (22–30°C) of the growth dynamics and gene expression profiles of a Red Sea Prochlorococcus strain (RSP50) in a non-axenic culture. Both the specific growth rate (0.55–0.80 day−1) and cell size (0.04–0.07 μm3) of Prochlorococcus increased significantly with temperature. The primary production released extracellularly ranged from 20% to 34%, with humic-like fluorescent compounds increasing up to fivefold as Prochlorococcus reached its maximum abundance. At 30°C, genes involved in carbon fixation such as CsoS2 and CsoS3 and photosynthetic electron transport including PTOX were downregulated, suggesting a cellular homeostasis and energy saving mechanism response. In contrast, PTOX was found upregulated at 22°C and 24°C. Similar results were found for transaldolase, related to carbon metabolism, and citrate synthase, an important enzyme in the TCA cycle. Our data suggest that in spite of the currently warm temperatures of the Red Sea, Prochlorococcus can modulate its gene expression profiles to permit growth at temperatures lower than its optimum temperature (28°C) but is unable to cope with temperatures exceeding 30°C.  相似文献   

18.
Germination of Peronospora viciae sporangia washed off infected leaves varied from 20% to 60%. Sporangia shaken off in the dry state gave 11–19% germination. Most sporangia lost viability within 3 days after being shed, though a few survived at least 5 days. Infected leaves could produce sporangia up to 6 weeks after infection, and sporulating lesions carried viable sporangia for 3 weeks. Sporangia germinated over the range 1–24 °C, with an optimum between 4 and 8 °C. Light and no effct. The temperature limits for infection were the same as for germination, but with an optimum between 12 and 20 °C. A minimum leaf-wetness period of 4h was required, and was independent of temperature over the range 4–24 °C. Maximum infectivity occurred after 6h leaf wetness at temperatures between 8 and 20 °C. Infection occurred equally in continuous light or in darkness. After an incubation period of 6–10 days sporangia were produced on infected leaves at temperatures between 4 and 24 °C, with an optimum of 12–20 °C. Exposure to temperatures of 20–24 °C for 10 days reduced subsequent sporulation. Sporangia produced at suboptimal temperatures were larger, and at 20 °C. smaller, than those produce at 12–16 °C. Viability was also reduced. No sporangia were produced in continuous light, or at relative humidities below 91%. For maximum sporulaiton an r.h. of 100% was required, following a lower r.h. during incubation. Oospores wre commonly formed in sporulating lesions, and also where conditons limited or prevented sporulation. The results are discussed briefly in relaiton to disease development under field conditions.  相似文献   

19.
It has been established that following removal of the micronucleus in Paramecium tetraurelia, the amicronucleate cell line enters a depression period, characterized by slow growth rate and oral abnormalities, at normal growth temperature (27°C). Such cell lines gradually recover in growth rate and stomatogenesis. In the present study, 4 recovered amicronucleate cell lines were challenged with high temperatures (35°C, 36°C, and 36.5°C). They exhibited growth rate reduction and abortive cytokinesis at 35°C and 36°C, and died at 36.5°C. In addition, they demonstrated oral defects similar to those observed in the depression period: disruption of the regular oral membranellar pattern, reduction in the length of the oral apparatus, and impaired phagocytosis (food vacuole formation). These high temperature-induced abnormalities were largely restricted to amicronucleates, and were rare or seen to a much lesser extent in sister micronucleate cell lines. This study demonstrates the participation of the micronucleus in conferring thermotolerance on the cells. It is hypothesized that the micronucleus specifies heat-shock proteins to maintain the integrity of oral and somatic cytoskeletal elements at high temperature.  相似文献   

20.
The submersed aquatic vegetation (SAV) species Vallisneria americana Michx. (tape grass) is a valuable resource in the Caloosahatchee estuary and in many other aquatic systems. Given the variable nature of freshwater inflows and environmental conditions in the Caloosahatchee, it is necessary to understand how tape grass will respond to high and low salinity conditions at different light and temperature levels. Specifically, quantitative information is needed as input to modeling tools that can be applied to predict growth and survival of tape grass under a range of environmental conditions present in the estuary. We determined growth rates for small and medium sized tape grass plants obtained from the Caloosahatchee estuary, southwest coastal Florida, USA in freshwater (0.5 psu) under high (331 μE m?2 s?1) and low light (42 μE m?2 s?1) and at 10 psu under high light conditions. We ran six treatments at five temperatures spanning 13–32 °C for 8–9 weeks. The optimum temperature for growth was roughly 28 °C, with a minimum threshold temperature of 13 °C and a maximum threshold temperature of 38 °C. Plants grew fastest in freshwater, at high light and temperatures greater than 20 °C. The slowest growth rates were observed at 13 °C regardless of salinity, light or plant size. Our results suggest that tape grass growth is strongly influenced by water temperature and that additional stressors such as low light and elevated salinity can reduce the range of temperature tolerance, especially at colder water temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号