首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Slipped-strand mispairing: a major mechanism for DNA sequence evolution   总被引:141,自引:13,他引:128  
Simple repetitive DNA sequences are a widespread and abundant feature of genomic DNA. The following several features characterize such sequences: (1) they typically consist of a variety of repeated motifs of 1-10 bases--but may include much larger repeats as well; (2) larger repeat units often include shorter ones within them; (3) long polypyrimidine and poly-CA tracts are often found; and (4) tandem arrangements of closely related motifs are often found. We propose that slipped-strand mispairing events, in concert with unequal crossing- over, can readily account for all of these features. The frequent occurrence of long tandem repeats of particular motifs (polypyrimidine and poly-CA tracts) appears to result from nonrandom patterns of nucleotide substitution. We argue that the intrahelical process of slipped-strand mispairing is much more likely to be the major factor in the initial expansion of short repeated motifs and that, after initial expansion, simple tandem repeats may be predisposed to further expansion by unequal crossing-over or other interhelical events because of their propensity to mispair. Evidence is presented that single-base repeats (the shortest possible motifs) are represented by longer runs in mammalian introns than would be expected on a random basis, supporting the idea that SSM may be a ubiquitous force in the evolution of the eukaryotic genome. Simple repetitive sequences may therefore represent a natural ground state of DNA unselected for coding functions.   相似文献   

2.
3.
4.
The rhizobia are a group of bacteria widely studied for their capacity to form intimate symbiotic relationships with leguminous plants. However, they are also interesting for containing a remarkable abundance of repetitive genetic elements, such as long DNA repeats. In this study we deeply analyzed long, exact DNA repeats in five representative rhizobial genomes; Rhizobium etli, Rhizobium leguminosarum, Bradyrhizobium japonicum, Sinorhizobium meliloti and Mesorhizobium loti. The results suggest that a huge proportion of repeats can be located in either plasmid or chromosome replicons, except in B. japonicum, which lacks plasmids, but contains the largest number, and longest repeat elements of the genomes analyzed here. Interestingly, we detected a slight correlation between the density of repeats (either number or length) and genome size. As expected, the highest percentage of DNA repeats code for mobile genetic elements, including insertion sequences, recombinases, and transposases. Some repeats corresponded to non-coding or intergenic regions, while in genomes like that of R. etli, a significant percentage of large repeats, mainly located in plasmids, were strongly associated with symbiotic and nitrogen fixation activities. In conclusion, our analysis shows that rhizobial genomes contain a high density of long DNA repeats, which might facilitate recombination events and genome rearrangements, functioning in adaption and persistence during saprophytic or symbiotic life.  相似文献   

5.
The taxonomic relationships among perennial oats (Helictotrichon Besser ex Schultes & Schultes, Aveninae, Aveneae, Poaceae) have been studied using highly repeated satellite DNA as a molecular marker. Highly repetitive sequences were isolated from restriction endonuclease digests of nuclear DNA of Helictotrichon convolutum, and satellite repeats (approximately 365 bp in length) were cloned, sequenced and compared among each other. They exhibited an intraspecific sequence variability of 6–9%. This satellite DNA, CON1, is differentially distributed within the genus Helictotrichon. In species of the subgenus Helictotrichon a high copy number is detectable, whereas in representatives of the subgenera Pratavenastrum and Pubavenastrum the number of copies per genome is rather low. Surprisingly, the satellite DNA repeat CON1 shows 74% sequence similarity to an A-genome specific repetitive DNA of Oryza (rice).  相似文献   

6.
X Tian  J E Strassmann  D C Queller 《Heredity》2014,112(2):215-218
Eukaryotic protein sequences often contain amino-acid homopolymers that consist of a single amino acid repeated from several to dozens of times. Some of these are functional but others may persist largely because of high expansion rates due to DNA slippage. However, very long homopolymers with over a hundred repeats are very rare. We report an extraordinarily long homopolymer consisting of 306 tandem serine repeats from the single-celled eukaryote Dictyostelium discoideum, which also has a multicellular stage. The gene has a paralog with 132 repeats and orthologs, also with high serine repeat numbers, in various other Dictyostelid species. The conserved gene structure and protein sequences suggest that the homopolymer is functional. The high codon diversity and very poor alignment of serine codons in this gene between species similarly indicate functionality. This is because the serine homopolymer is conserved despite much DNA sequence change. A survey of other very long amino-acid homopolymers in eukaryotes shows that high codon diversity is the rule, suggesting that these too may be functional.  相似文献   

7.
The repetitive sequence PisTR-A has an unusual organization in the pea (Pisum sativum) genome, being present both as short dispersed repeats as well as long arrays of tandemly arranged satellite DNA. Cloning, sequencing and FISH analysis of both PisTR-A variants revealed that the former occurs in the genome embedded within the sequence of Ty3/gypsy-like Ogre elements, whereas the latter forms homogenized arrays of satellite repeats at several genomic loci. The Ogre elements carry the PisTR-A sequences in their 3′ untranslated region (UTR) separating the gag-pol region from the 3′ LTR. This region was found to be highly variable among pea Ogre elements, and includes a number of other tandem repeats along with or instead of PisTR-A. Bioinformatic analysis of LTR-retrotransposons mined from available plant genomic sequence data revealed that the frequent occurrence of variable tandem repeats within 3′ UTRs is a typical feature of the Tat lineage of plant retrotransposons. Comparison of these repeats to known plant satellite sequences uncovered two other instances of satellites with sequence similarity to a Tat-like retrotransposon 3′ UTR regions. These observations suggest that some retrotransposons may significantly contribute to satellite DNA evolution by generating a library of short repeat arrays that can subsequently be dispersed through the genome and eventually further amplified and homogenized into novel satellite repeats.  相似文献   

8.
Major eukaryotic genomic elements, including the ribosomal DNA (rDNA), are composed of repeated sequences with well-defined copy numbers that must be maintained by regulated recombination. Although mechanisms that instigate rDNA recombination have been identified, none are directional and they therefore cannot explain precise repeat number control. Here, we show that yeast lacking histone chaperone Asf1 undergo reproducible rDNA repeat expansions. These expansions do not require the replication fork blocking protein Fob1 and are therefore independent of known rDNA expansion mechanisms. We propose the existence of a regulated rDNA repeat gain pathway that becomes constitutively active in asf1Δ mutants. Cells lacking ASF1 accumulate rDNA repeats with high fidelity in a processive manner across multiple cell divisions. The mechanism of repeat gain is dependent on highly repetitive sequence but, surprisingly, is independent of the homologous recombination proteins Rad52, Rad51 and Rad59. The expansion mechanism is compromised by mutations that decrease the processivity of DNA replication, which leads to progressive loss of rDNA repeats. Our data suggest that a novel mode of break-induced replication occurs in repetitive DNA that is dependent on high homology but does not require the canonical homologous recombination machinery.  相似文献   

9.
In the chicken genome there are middle repetitive DNA sequences with a clustered organization. Each cluster is composed of members of different families of repeated DNA sequences and usually contains only one member of each family. Many clusters have the same assortment of repeated sequences but they are in scrambled order from cluster to cluster. These clusters usually exceed 20 × 103 bases in length and comprise at least 10% of the repeated DNA of the chicken. The repeated sequences that are cluster components are extensively methylated. Methylation was detected by comparing HpaII and MspI digests of total DNA, where the occurrence of the sequence C-m5C-G-G is indicated when HpaII (cleaves C-C-G-G) fragments are larger than those generated by MspI (cleaves C-m5C-G-G or C-C-G-G). In hybridization experiments with Southern (1975) blots of total DNA digested with either HpaII or MspI, the cloned probes representing clustered repeated sequences showed a dramatic difference in the lengths of restriction fragments detected in the two digests. Many of the sequences that comprise these clusters are methylated in most of their genomic occurrences. There are patterns of methylation that are reproduced faithfully from copy to copy. The overall distribution of methylation within clusters seems to be regional, with long methylated DNA segments interrupted by specific undermethylated regions.  相似文献   

10.
Wide arrays of repetitive DNA sequences form an important part of eukaryotic genomes. These repeats appear to evolve as coherent families, where repeats within a family are more similar to each other than to other orthologous representatives in related species. The continuous homogenization of repeats, through selective and non-selective processes, is termed concerted evolution. Ascertaining the level of variation between repeats is crucial to determining which evolutionary model best explains the homogenization observed for these sequences. Here, for the grasshopper Eyprepocnemis plorans, we present the analysis of intragenomic diversity for two repetitive DNA sequences (a satellite DNA (satDNA) and the 45S rDNA) resulting from the independent microdissection of several chromosomes. Our results show different homogenization patterns for these two kinds of paralogous DNA sequences, with a high between-chromosome structure for rDNA but no structure at all for the satDNA. This difference is puzzling, considering the adjacent localization of the two repetitive DNAs on paracentromeric regions in most chromosomes. The disparate homogenization patterns detected for these two repetitive DNA sequences suggest that several processes participate in the concerted evolution in E. plorans, and that these mechanisms might not work as genome-wide processes but rather as sequence-specific ones.  相似文献   

11.
Tandem repeats often confound large genome assemblies. A survey of tandemly arrayed repetitive sequences was carried out in whole genome sequences of the green alga Chlamydomonas reinhardtii, the moss Physcomitrella patens, the monocots rice and sorghum, and the dicots Arabidopsis thaliana, poplar, grapevine, and papaya, in order to test how these assemblies deal with this fraction of DNA. Our results suggest that plant genome assemblies preferentially include tandem repeats composed of shorter monomeric units (especially dinucleotide and 9–30-bp repeats), while higher repetitive units pose more difficulties to assemble. Nevertheless, notwithstanding that currently available sequencing technologies struggle with higher arrays of repeated DNA, major well-known repetitive elements including centromeric and telomeric repeats as well as high copy-number genes, were found to be reasonably well represented. A database including all tandem repeat sequences characterized here was created to benefit future comparative genomic analyses.  相似文献   

12.
A family of repetitive DNA elements of approximately 350 bp—Sat350—that are members of Toxoplasma gondii satellite DNA was further analyzed. Sequence analysis identified at least three distinct repeat types within this family, called types A, B, and C. B repeats were divided into the subtypes B1 and B2. A search for internal repetitions within this family permitted the identification of conserved regions and the design of PCR primers that amplify almost all these repetitive elements. These primers amplified the expected 350-bp repeats and a novel 680-bp repetitive element (Sat680) related to this family. Two additional tandemly repeated high-order structures corresponding to this satellite DNA family were found by searching the Toxoplasma genome database with these sequences. These studies were confirmed by sequence analysis and identified: (1) an arrangement of AB1CB2 350-bp repeats and (2) an arrangement of two 350-bp-like repeats, resulting in a 680-bp monomer. Sequence comparison and phylogenetic analysis indicated that both high-order structures may have originated from the same ancestral 350-bp repeat. PCR amplification, sequence analysis and Southern blot showed that similar high-order structures were also found in the Toxoplasma-sister taxon Neospora caninum. The Toxoplasma genome database ( ) permitted the assembly of a contig harboring Sat350 elements at one end and a long nonrepetitive DNA sequence flanking this satellite DNA. The region bordering the Sat350 repeats contained two differentially expressed sequence-related regions and interstitial telomeric sequences.  相似文献   

13.
The organization of the DNA sequences in five specics of Citellus (C. pygmaeus, C. fulvus, C. major, C. parryi and C. undulatus) was determined from the reassociation kineties of DNA fragments of various lengths and the size distribution of SI-nuclease-resistant duplexes of repetitive DNA. Only 15% of the genome of all the species studied consists of short unique and repeated sequences interspersed with a period less than 2 3 kb, whereas the major part of the genome is occupied by much more extensive sequences of two types, moderately long (3–15 kb) and very long (much more than 15 kb). On the basis of the number of moderately long single-copy sequences the species under study are divided into two groups, coinciding with their division into short-tailed and long-tailed ground squirrels: the short-tailed (C. pygmaeus, C. major and C. fulvus) possess far more such sequences (17–24%) than do the long-tailed ones (C. parryi and C. undulatus) (1–7%). The same division is observed in the amount of very long single-copy sequences. The repeated DNA sequences of Citellus vary widely in size, i.e. from 70 up to some thousands of nucleotide pairs, sequences of more than 1200 nucleotide pairs being most common. In addition, part of the repetitions contain between 70 and 150 base pairs. About one-third of C. parryi repeats (10% of the genome) are characterized by such very short sequences whereas their amont is much less in the other Citellus species (1–4% of the genome).  相似文献   

14.
From Bradyrhizobium japonicum highly reiterated sequence-possessing (HRS) strains indigenous to Niigata and Tokachi in Japan with high copy numbers of the repeated sequences RSα and RSβ (K. Minamisawa, T. Isawa, Y. Nakatsuka, and N. Ichikawa, Appl. Environ. Microbiol. 64:1845–1851, 1998), several insertion sequence (IS)-like elements were isolated by using the formation of DNA duplexes by denaturation and renaturation of total DNA, followed by treatment with S1 nuclease. Most of these sequences showed structural features of bacterial IS elements, terminal inverted repeats, and homology with known IS elements and transposase genes. HRS and non-HRS strains of B. japonicum differed markedly in the profiles obtained after hybridization with all the elements tested. In particular, HRS strains of B. japonicum contained many copies of IS1631, whereas non-HRS strains completely lacked this element. This association remained true even when many field isolates of B. japonicum were examined. Consequently, IS1631 occurrence was well correlated with B. japonicum HRS strains possessing high copy numbers of the repeated sequence RSα or RSβ. DNA sequence analysis indicated that IS1631 is 2,712 bp long. In addition, IS1631 belongs to the IS21 family, as evidenced by its two open reading frames, which encode putative proteins homologous to IstA and IstB of IS21, and its terminal inverted repeat sequences with multiple short repeats.  相似文献   

15.
Repeated sequences cloned from the DNA of the sea urchin S. purpuratus were used as probes to measure the lengths of individual families of repeats. Some probes reassociated much more rapidly with preparations of long repeats than with short repeats while others reassociated more rapidly with short repeats than with long repeats. In this way two of five cloned repeats were shown to represent families with a great majority of sequences in the long class. One represented a family with similar numbers of long and short class members. Two were members of predominantly short class families. — The cloned repeats representing long class families, formed more precise duplexes than those representing short class families. Thermal stability measurements using S. purpuratus or S. franciscanus driver DNA showed that precise repetitive sequences have as great an interspecies sequence difference as the less precise repeats. Thus the precision of many families may result from recent multiplication rather than from selective pressure on the DNA sequences. Measurements of evolutionary frequency change show a clear correlation between the frequency change and the size of families of repeats in S. purpuratus. Comparison with S. franciscanus indicates that many of the large size families in S. purpuratus are those that have grown in size since these two species diverged.  相似文献   

16.
Structure-prone DNA repeats are common components of genomic DNA in all kingdoms of life. In humans, these repeats are linked to genomic instabilities that result in various hereditary disorders, including many cancers. It has long been known that DNA repeats are not only highly polymorphic in length but can also cause chromosomal fragility and stimulate gross chromosomal rearrangements, i.e., deletions, duplications, inversions, translocations and more complex shuffles. More recently, it has become clear that inherently unstable DNA repeats dramatically elevate mutation rates in surrounding DNA segments and that these mutations can occur up to ten kilobases away from the repetitive tract, a phenomenon we call repeat-induced mutagenesis (RIM). This review describes experimental data that led to the discovery and characterization of RIM and discusses the molecular mechanisms that could account for this phenomenon.  相似文献   

17.
Evidence for rolling circle replication of tandem genes in Drosophila   总被引:2,自引:0,他引:2  
Extrachromosomal circular DNA (eccDNA) is one characteristic of the plasticity of the eukaryotic genome. It is found in various organisms and contains sequences derived primarily from repetitive chromosomal DNA. Using 2D gel electrophoresis, we have previously detected eccDNA composed of chromosomal tandem repeats throughout the life cycle of Drosophila. Here, we report for the first time evidence suggesting the occurrence of rolling circle replication of eccDNA in Drosophila. We show, on 2D gels, specific structures that can be enriched by benzoylated naphthoylated DEAE-cellulose chromatography and were identified in other systems as rolling circle intermediates (RCIs). These RCIs are homologous to histone genes, Stellate and Suppressor of Stellate, which are all organized in the chromosomes as tandem repeats. RCIs are detected throughout the life cycle of Drosophila and in cultured fly cells. These structures are found regardless of the expression of the replicated gene or of its chromosomal copy number.  相似文献   

18.
The genomic organization of two parasitic wasps was analyzed by DNA reassociation. Cot curves revealed a pattern with three types of components. A highly repetitive DNA, accounting for 15 to 25% of the genome, was identified as satellite DNA. The moderately repetitive DNA corresponds to 26 to 42% of the genome in both species, and shows large variations in complexity, repetitive frequency and a number of sub-components between males and females. These variations are seen as resulting from DNA amplification during somatic and sexual differentiation. Dot blot analyses show that such DNA amplifications concern several types of structural and regulatory genes. The presence of repeated mobile elements was studied by the Roninson method to compare the repeated sequence patterns of Diadromus pulchellus and Eupelmus vuilleti with those of Drosophila melanogaster. The occurrence and organization of mobile elements in these Hymenoptera differ from those of the neighboring order of Diptera. The repetitive and unique components define very large genomes (1 to 3 × 109 base pairs). The genomic organization in Parasitica appears to be an extreme drosophilan type. We propose that the germinal genome of these parasitic wasps is primarily composed of satellite DNA blocks and very long stretches of unique sequences, separated by a few repeated and/or variously deleted, interspersed elements of each mobile element family.  相似文献   

19.
20.
Base sequence studies of 300 nucleotide renatured repeated human DNA clones   总被引:117,自引:0,他引:117  
A band of 300 nucleotide long duplex DNA is released by treating renatured repeated human DNA with the single strand-specific endonuclease S1. Since many of the interspersed repeated sequences in human DNA are 300 nucleotides long, this band should be enriched in such repeats. We have determined the nucleotide sequences of 15 clones constructed from these 300 nucleotide S1-resistant repeats. Ten of these cloned sequences are members of the Alu family of interspersed repeats. These ten sequences share a recognizable consensus sequence from which individual clones have an average divergence of 12.8%. The 300 nucleotide Alu family consensus sequence has a dimeric structure and was evidently formed from a head to tail duplication of an ancestral monomeric sequence. Three of the remaining clones are variations on a simple pentanucleotide sequence previously reported for human satellite III DNA. Two of the 15 clones have distinct and complex sequences and may represent other families of interspersed repeated sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号