首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Salinity stress causes ionic stress (mainly from high Na+ and Cl- levels) and osmotic stress (as a result of inhibition of water uptake by roots and amplified water loss from plant tissue), resulting in cell death and inhibition of growth and ultimately adversely reducing crop productivity. In this report, changes in root nitric oxide content, shoot and root biomass, root H2O2 content, root lipid peroxidation, root cell death, root caspase-like enzymatic activity, root antioxidant enzymatic activity and root ascorbate and glutathione contents/redox states were investigated in maize (Zea mays L. cv Silverking) after long-term (21 d) salt stress (150 mM NaCl) with or without exogenously applied nitric oxide generated from the nitric oxide donor 2,2′-(Hydroxynitrosohydrazano)bis-ethane. In addition to reduced shoot and root biomass, salt stress increased the nitric oxide and H2O2 contents in the maize roots and resulted in elevated lipid peroxidation, caspase-like activity and cell death in the roots. Altered antioxidant enzymatic activities, along with changes in ascorbate and glutathione contents/redox status were observed in the roots in response to salt stress. The detrimental effects of salt stress in the roots were reversed by exogenously applied nitric oxide. These results demonstrate that exogenously applied nitric oxide confers salt stress tolerance in maize by reducing salt stress-induced oxidative stress and caspase-like activity through a process that limits accumulation of reactive oxygen species via enhanced antioxidant enzymatic activity.  相似文献   

8.
MicroRNAs (miRNAs) are tiny non-coding regulatory molecules that modulate plant’s gene expression either by cleaving or repressing their mRNA targets. To unravel the plant actions in response to various environmental factors, identification of stress related miRNAs is essential. For understanding the regulatory behaviour of various abiotic stresses and miRNAs in wheat genotype C-306, we examined expression profile of selected conserved miRNAs viz. miR159, miR164, miR168, miR172, miR393, miR397, miR529 and miR1029 tangled in adapting osmotic, salt and cold stresses. The investigation revealed that two miRNAs (miR168, miR397) were down-regulated and miR172 was up-regulated under all the stress conditions. However, miR164 and miR1029 were up-regulated under cold and osmotic stresses in contrast to salt stress. miR529 responded to cold alone and does not change under osmotic and salt stress. miR393 showed up-regulation under osmotic and salt, and down-regulation under cold stress indicating auxin based differential cold response. Variation in expression level of studied miRNAs in presence of target genes delivers a likely elucidation of miRNAs based abiotic stress regulation. In addition, we reported new stress induced miRNAs Ta-miR855 using computational approach. Results revealed first documentation that miR855 is regulated by salinity stress in wheat. These findings indicate that diverse miRNAs were responsive to osmotic, salt and cold stress and could function in wheat response to abiotic stresses.  相似文献   

9.
microRNA(miRNA)是一类广泛存在于真核生物中长度为20~24 nt的内源非编码小RNA,它们通过对靶基因mRNA进行切割或翻译抑制,在转录后水平调控靶基因的表达。近期研究表明,miRNA参与植物生长发育与逆境胁迫响应的多个重要生物学过程,对作物的农艺性状也起到重要的调控作用。玉米作为重要的粮食、饲料和工业原料,提高其产量和品质对于保障世界粮食安全至关重要,然而与模式植物拟南芥和水稻相比,玉米中miRNA的研究仍然相对较少,理解miRNA在玉米中的功能和调控机理有助于通过分子育种对关键农艺性状进行遗传改良。本文综述了玉米中miRNA的发现与鉴定,系统总结了参与玉米miRNA代谢途径的关键蛋白DCL、AGO和HEN1的研究进展,重点阐述了在玉米生长发育和非生物胁迫响应过程中已开展功能研究miRNA的调控作用,并对玉米miRNA研究当前存在的问题和未来的发展趋势进行了讨论。  相似文献   

10.
ABSTRACTSuaeda salsaL. is a typical euhalophyte and is widely distributed throughout the world. Suaeda plants are important halophyte resources, and the physiological and biochemical characteristics of their various organsand their response to salt stress have been intensively studied. Leaf succulence, intracellular ion localization, increased osmotic regulation and enhanced antioxidant capacities are important responses for Suaeda plants to adapt to salt stress. Among these responses, scavenging of reactive oxygen species (ROS) is an important mechanism for plants to withstand oxidative stress and improve salt tolerance. The generation and scavenging pathways of ROS, as well as the expression of scavenging enzymes change under salt stress. This article reviews the antioxidant system constitute of S. salsa, and the mechanisms by which S. salsaantioxidant capacity is improved for salt tolerance. In addition, the differences between types of antioxidant mechanisms in S. salsaare reviewed, thereby revealing the adaptation mechanisms of Suaeda to different habitats. The review provides important clues for the comprehensive understanding of the salt tolerance mechanisms of halophytes.KEYWORDS: Suaeda salsa, halophyte, salt-tolerance mechanism, oxidative stress, antioxidant system  相似文献   

11.
12.
MicroRNA393 (miR393) has been implicated in plant growth, development and multiple stress responses in annual species such as Arabidopsis and rice. However, the role of miR393 in perennial grasses remains unexplored. Creeping bentgrass (Agrostis stolonifera L.) is an environmentally and economically important C3 cool‐season perennial turfgrass. Understanding how miR393 functions in this representative turf species would allow the development of novel strategies in genetically engineering grass species for improved abiotic stress tolerance. We have generated and characterized transgenic creeping bentgrass plants overexpressing rice pri‐miR393a (Osa‐miR393a). We found that Osa‐miR393a transgenics had fewer, but longer tillers, enhanced drought stress tolerance associated with reduced stomata density and denser cuticles, improved salt stress tolerance associated with increased uptake of potassium and enhanced heat stress tolerance associated with induced expression of small heat‐shock protein in comparison with wild‐type controls. We also identified two targets of miR393, AsAFB2 and AsTIR1, whose expression is repressed in transgenics. Taken together, our results revealed the distinctive roles of miR393/target module in plant development and stress responses between creeping bentgrass and other annual species, suggesting that miR393 would be a promising candidate for generating superior crop cultivars with enhanced multiple stress tolerance, thus contributing to agricultural productivity.  相似文献   

13.
14.
15.
16.
17.
18.
In this study, the effects of lanthanum were investigated on contents of pigments, chlorophyll (Chl) fluorescence, antioxidative enzymes, and biomass of maize seedlings under salt stress. The results showed that salt stress significantly decreased the contents of Chl and carotenoids, maximum photochemical efficiency of PSII (Fv/Fm), photochemical quenching (qP), and quantum efficiency of PSII photochemistry (ΦPSII), net photosynthetic rate (PN), and biomass. Salt stress increased nonphotochemical quenching (qN), the activities of ascorbate peroxidase, catalase, superoxide dismutase, glutathione peroxidase, and the contents of malondialdehyde and hydrogen peroxide compared with control. Pretreatment with lanthanum prior to salt stress significantly enhanced the contents of Chl and carotenoids, Fv/Fm, qP, qN, ΦPSII, PN, biomass, and activities of the above antioxidant enzymes compared with the salt-stressed plants. Pretreatment with lanthanum also significantly reduced the contents of malondialdehyde and hydrogen peroxide induced by salt stress. Our results suggested that lanthanum can improve salt tolerance of maize seedlings by enhancing the function of photosynthetic apparatus and antioxidant capacity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号