首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyridoxal 5'-phosphate (PLP) inhibits DNA polymerase activity of the intact multifunctional DNA polymerase alpha complex by binding at either of two sites which can be distinguished on the basis of differential substrate protection. One site (PLP site 1) corresponds to an important nucleotide-binding site which is distinct from the DNA polymerase active site and which appears to correspond to the DNA primase active site while the second site (PLP site 2) corresponds to the dNTP binding domain of the DNA polymerase active site. A method for the enzymatic synthesis of high specific activity [32P]PLP is described and this labeled PLP was used to identify the binding sites described above. PLP inhibition of DNA polymerase alpha activity was shown to involve the binding of only a few (one to two) molecules of PLP/molecule of DNA polymerase alpha, and this label is primarily found on the 148- and 46-kDa subunits although the 63-, 58-, and 49-kDa subunits are labeled to a lesser extent. Labeling of the 46-kDa subunit by [32P]PLP is the only labeling on the enzyme which is blocked or even diminished in the presence of nucleotide alone, and, therefore, this 46-kDa subunit contains PLP site 1. Labeling of the 148-kDa subunit is enhanced in the presence of template-primer, suggesting that this subunit undergoes a conformational change upon binding template-primer. Furthermore, labeling of the 148-kDa subunit is the only labeling on the enzyme which can be specifically blocked only by the binding of both template-primer and the correct dNTP in a stable ternary complex. Therefore, the 148-kDa subunit contains PLP site 2, which corresponds to the dNTP binding domain of the DNA polymerase active site.  相似文献   

2.
Zahn KE  Averill A  Wallace SS  Doublié S 《Biochemistry》2011,50(47):10350-10358
5-Hydroxycytosine (5-OHC) is a stable oxidation product of cytosine associated with an increased frequency of C → T transition mutations. When this lesion escapes recognition by the base excision repair pathway and persists to serve as a templating base during DNA synthesis, replicative DNA polymerases often misincorporate dAMP at the primer terminus, which can lead to fixation of mutations and subsequent disease. To characterize the dynamics of DNA synthesis opposite 5-OHC, we initiated a comparison of unmodified dCMP to 5-OHC, 5-fluorocytosine (5-FC), and 5-methylcytosine (5-MEC) in which these bases act as templates in the active site of RB69 gp43, a high-fidelity DNA polymerase sharing homology with human replicative DNA polymerases. This study presents the first crystal structure of any DNA polymerase binding this physiologically important premutagenic DNA lesion, showing that while dGMP is stabilized by 5-OHC through normal Watson-Crick base pairing, incorporation of dAMP leads to unstacking and instability in the template. Furthermore, the electronegativity of the C5 substituent appears to be important in the miscoding potential of these cytosine-like templates. While dAMP is incorporated opposite 5-OHC ~5 times more efficiently than opposite unmodified dCMP, an elevated level of incorporation is also observed opposite 5-FC but not 5-MEC. Taken together, these data imply that the nonuniform templating by 5-OHC is due to weakened stacking capabilities, which allows dAMP incorporation to proceed in a manner similar to that observed opposite abasic sites.  相似文献   

3.
A genetic look at the active site of RNA polymerase III   总被引:1,自引:0,他引:1       下载免费PDF全文
rpc160-112, a mutant of the RNA polymerase III active site, is corrected in vivo by six second-site mutants obtained by random mutagenesis. These mutants introduce single-site amino acid replacements at the two large subunits of the enzyme. The mutated motifs are conserved in RNA polymerases I and II and, for some of them, in the bacterial enzyme, thus delineating key elements of the active site in eukaryotic RNA polymerases.  相似文献   

4.
DNA polymerases achieve high-fidelity DNA replication in part by checking the accuracy of each nucleotide that is incorporated and, if a mistake is made, the incorrect nucleotide is removed before further primer extension takes place. In order to proofread, the primer-end must be separated from the template strand and transferred from the polymerase to the exonuclease active center where the excision reaction takes place; then the trimmed primer-end is returned to the polymerase active center. Thus, proofreading requires polymerase-to-exonuclease and exonuclease-to-polymerase active site switching. We have used a fluorescence assay that uses differences in the fluorescence intensity of 2-aminopurine (2AP) to measure the rates of active site switching for the bacteriophage T4 DNA polymerase. There are three findings: (i) the rate of return of the trimmed primer-end from the exonuclease to the polymerase active center is rapid, >500 s1; (ii) T4 DNA polymerase can remove two incorrect nucleotides under single turnover conditions, which includes presumed exonuclease-to-polymerase and polymerase-to-exonuclease active site switching steps and (iii) proofreading reactions that initiate in the polymerase active center are not intrinsically processive.  相似文献   

5.
Specific labelling of the active site of T7 RNA polymerase.   总被引:1,自引:1,他引:0       下载免费PDF全文
We describe a method for specifically labelling T7 RNA polymerase at (or near) the active site. Enzyme molecules that have been modified by covalent attachment of a benzaldehyde nucleotide derivative in the presence of template DNA are subsequently incubated with radioactively labelled nucleoside triphosphates. Labelling of the enzyme occurs as a result of the formation of the first phosphodiester bond. The labelling is template-directed and the expected specificity of initiation at individual T7 promoters is observed. The label has been localized to an 80 kd tryptic fragment that contains the carboxy-terminal portion of the enzyme.  相似文献   

6.
Mapping the active site of yeast RNA polymerase B (II)   总被引:11,自引:0,他引:11  
Yeast RNA polymerase B (II) was incubated with a collection of 13 different nucleotide derivatives and affinity labeled by allowing DNA-directed phosphodiester bond formation. The 32P-labeled site was localized in the C-terminal part of the B150 subunit by microsequencing a proteolytic fragment, then further mapped by a combination of extensive or single-hit chemical cleavage reactions and analysis of the labeled peptide patterns. The affinity label was mapped to between Asn946 and Met999, within one of the nine regions that are conserved between B150 and the bacterial beta subunit. The results underscore the conservative evolution of the catalytic center of eukaryotic and bacterial RNA polymerases.  相似文献   

7.
Bacterial cells are fortified against osmotic lysis by a cell wall made of peptidoglycan (PG). Synthases called penicillin‐binding proteins (PBPs), the targets of penicillin and related antibiotics, polymerize the glycan strands of PG and crosslink them into the cell wall meshwork via attached peptides. The average length of glycan chains inserted into the matrix by the PBPs is thought to play an important role in bacterial morphogenesis, but polymerization termination factors controlling this process have yet to be discovered. Here, we report the identification of Escherichia coli MltG (YceG) as a potential terminase for glycan polymerization that is broadly conserved in bacteria. A clone containing mltG was initially isolated in a screen for multicopy plasmids generating a lethal phenotype in cells defective for the PG synthase PBP1b. Biochemical studies revealed that MltG is an inner membrane enzyme with endolytic transglycosylase activity capable of cleaving at internal positions within a glycan polymer. Radiolabeling experiments further demonstrated MltG‐dependent nascent PG processing in vivo, and bacterial two‐hybrid analysis identified an MltG‐PBP1b interaction. Mutants lacking MltG were also shown to have longer glycans in their PG relative to wild‐type cells. Our combined results are thus consistent with a model in which MltG associates with PG synthetic complexes to cleave nascent polymers and terminate their elongation.  相似文献   

8.
9.
Mammalian DNA polymerase delta (Pol delta) is believed to replicate a large portion of the genome and to synthesize DNA in DNA repair and genetic recombination pathways. The effects of mutation in the polymerase domain of this essential enzyme are unknown. Here, we generated mice harboring an L604G or L604K substitution in highly conserved motif A in the polymerase active site of Pol delta. Homozygous Pold1(L604G/L604G) and Pold1(L604K/L604K) mice died in utero. However, heterozygous animals were viable and displayed no overall increase in disease incidence, indicative of efficient compensation for the defective mutant polymerase. The life spans of wild-type and heterozygous Pold1(+/L604G) mice did not differ, while that of Pold1(+/L604K) mice was reduced by 18%. Cultured embryonic fibroblasts from the heterozygous strains exhibited comparable increases in both spontaneous mutation rate and chromosome aberrations. We observed no significant increase in cancer incidence; however, Pold1(+/L604K) mice bearing histologically diagnosed tumors died at a younger median age than wild-type mice. Our results indicate that heterozygous mutation at L604 in the polymerase active site of DNA polymerase delta reduces life span, increases genomic instability, and accelerates tumorigenesis in an allele-specific manner, novel findings that have implications for human cancer.  相似文献   

10.
The kinetic, thermodynamic, and structural basis for fidelity of nucleic acid polymerases remains controversial. An understanding of viral RNA-dependent RNA polymerase (RdRp) fidelity has become a topic of considerable interest as a result of recent experiments that show that a 2-fold increase in fidelity attenuates viral pathogenesis and a 2-fold decrease in fidelity reduces viral fitness. Here we show that a conformational change step preceding phosphoryl transfer is a key fidelity checkpoint for the poliovirus RdRp (3Dpol). We provide evidence that this conformational change step is orientation of the triphosphate into a conformation suitable for catalysis, suggesting a kinetic and structural model for RdRp fidelity that can be extrapolated to other classes of nucleic acid polymerases. Finally, we show that a site remote from the catalytic center can control this checkpoint, which occurs at the active site. Importantly, similar connections between a remote site and the active site exist in a wide variety of viral RdRps. The capacity for sites remote from the catalytic center to alter fidelity suggests new possibilities for targeting the viral RdRp for antiviral drug development.  相似文献   

11.
The DNA polymerase from Amherst pheasant virus (APV), a member of the pheasant virus species of retroviruses, was compared to the DNA polymerases of avian leukosis viruses (ALV) and a reticuloendotheliosis virus (spleen necrosis virus (SNV)). Immunoglobulin inhibition tests and competition immunoassays showed that APV and ALV DNA polymerases are closely related at their active sites. The determinants common to their active sites are not shared by SNV DNA polymerase. Bu using a species-specific radioimmunoassay, it was shown that both APV and SNV DNA polymerases are grossly different from ALV DNA polymerase. The specificity of the relationship of the active sites of APV and ALV DNA polymerases was confirmed by a heterologous radioimmunoassay. Our data indicate that pheasant viruses are evolutionarily linked to ALV.  相似文献   

12.
In this report, we sought to determine the putative active site residues of ACAT enzymes. For experimental purposes, a particular region of the C-terminal end of the ACAT protein was selected as the putative active site domain due to its high degree of sequence conservation from yeast to humans. Because ACAT enzymes have an intrinsic thioesterase activity, we hypothesized that by analogy with the thioesterase domain of fatty acid synthase, the active site of ACAT enzymes may comprise a catalytic triad of ser-his-asp (S-H-D) amino acid residues. Mutagenesis studies revealed that in ACAT1, S456, H460, and D400 were essential for activity. In ACAT2, H438 was required for enzymatic activity. However, mutation of D378 destabilized the enzyme. Surprisingly, we were unable to identify any S mutations of ACAT2 that abolished catalytic activity. Moreover, ACAT2 was insensitive to serine-modifying reagents, whereas ACAT1 was not. Further studies indicated that tyrosine residues may be important for ACAT activity. Mutational analysis showed that the tyrosine residue of the highly conserved FYXDWWN motif was important for ACAT activity. Furthermore, Y518 was necessary for ACAT1 activity, whereas the analogous residue in ACAT2, Y496, was not. The available data suggest that the amino acid requirement for ACAT activity may be different for the two ACAT isozymes.  相似文献   

13.
A Yamaguchi  H Adachi  T Sawai 《FEBS letters》1987,218(1):126-130
The active site sequence of a beta-lactamase encoded by chromosomal gene(s) in Citrobacter freundii GN346 was determined using dansyl-penicillin as a fluorescent probe. The tryptic digest of the labelled enzyme gave a fluorescent peptide containing 22 amino acids. The sequence of this peptide was identical to the consensus sequence of class C beta-lactamases, Gly-Ser-X-Ser-Lys. The residue labelled was the serine adjacent to the glycine. The active site sequence corresponded to positions 46-67 of the entire sequence of the Citrobacter freundii beta-lactamase determined on the basis of the DNA sequence of the structural gene [(1986) Eur. J. Biochem. 156, 441-445]. The labelled serine corresponded to Ser-64.  相似文献   

14.
Two forms of urokinase (EC 3.4.99.26) with apparent molecular weights of 33 400 and 47 000 purified by affinity chromatography have been modified specifically with newly synthesized peptide chloroketones by affinity labeline. Rapid inactivation of the enzyme preparations was observed with Ac-Gly-Lys-CH2 Cl and Nle-Gly-Lys-CH2 Cl which might be associated with a change in which a histidine residue is lost. After performic acid oxidation, an equivalent amount of 3-carboxymethyl histidine could be recovered, indicating alkylation at the N-3 of a histidine residue. In the case of the norleucine derivative, norleucine was concomitantly incorporated into the protein. It is thus likely that urokinase belongs in the class of enzymes utilizing the Asp..His..Ser triad for their catalytic action. The two active site residues so far identified, serine and histidine, were located in the heavy chain (33 100 mol. wt) of the 47 000 molecular weight form and in the 33 400 molecular weight form, the molecular weight of which remained constant.  相似文献   

15.
DNA polymerases occasionally insert the wrong nucleotide. For this error to become a mutation, the mispair must be extended. We report a structure of DNA polymerase beta (pol beta) with a DNA mismatch at the boundary of the polymerase active site. The structure of this complex indicates that the templating adenine of the mispair stacks with the primer terminus adenine while the templating (coding) cytosine is flipped out of the DNA helix. Soaking the crystals of the binary complex with dGTP resulted in crystals of a ternary substrate complex. In this case, the templating cytosine is observed within the DNA helix and forms Watson-Crick hydrogen bonds with the incoming dGTP. The adenine at the primer terminus has rotated into a syn-conformation to interact with the opposite adenine in a planar configuration. Yet, the 3'-hydroxyl on the primer terminus is out of position for efficient nucleotide insertion.  相似文献   

16.
《Molecular membrane biology》2013,30(2-3):104-113
Abstract

The serotype-specific glucosyltransferase, GtrV, is responsible for glucosylation of the O-antigen repeating unit of Shigella flexneri serotype 5a strains. GtrV is an integral inner membrane protein with two essential periplasmic loops: the large Loop 2 and the C-terminal Loop 10. In this study, the full length of the Loop 2 was shown to be necessary for GtrV function. Site-directed mutagenesis within this loop revealed that conserved aromatic and charged amino acids have a critical role in the formation of the active site. Sequential deletions of the C-terminal end indicated that this region may be essential for assembly of the protein in the cytoplasmic membrane. The highly conserved FWAED motif is thought to form the substrate-binding site and was found to be critical in GtrV and GtrX, a serotype-specific glucosyltransferase with homology to GtrV. The data presented constitutes a targeted analysis of the formation of the GtrV active site and highlights the essential role of the large periplasmic Loop 2 in its function.  相似文献   

17.
The crystal structure of human recombinant poly(ADP-ribose) polymerase (PARP) complexed with a potent inhibitor, FR257517, was solved at 3.0 A resolution. The fluorophenyl part of the inhibitor induces an amazing conformational change in the active site of PARP by motion of the side chain of the amino acid, Arg878, which forms the bottom of the active site. Consequently, a corn-shaped hydrophobic subsite, which consists of the side chains of Leu769, Ile879, Pro881, and the methylene chain of Arg878, newly emerges from the well-known active site.  相似文献   

18.
The photoaffinity analog of ATP, 8-azidoATP, labels T7 RNA polymerase. Photoincorporation exhibits saturation behavior and is protected against by the substrate ATP. 8-AzidoATP is a competitive inhibitor of ATP incorporation with Ki approximately 40 microM. The photolabeled T7 RNA polymerase, following cyanogen bromide digestion, was analyzed by phenylboronate agarose column chromatography followed by reverse-phase high pressure liquid chromatography. Sequencing of the peptides labeled with radioactive photoprobe allowed the identification of three peptides, P314-M362 (I), L550-M666 (II), and F751-M861 (III). These peptides are in the proximity of the photoprobe 8-azidoATP and, therefore, expected to contain functionally significant residues and define an active site domain. These peptides (I and II) contain residues previously implicated in T7 RNA polymerase activity or show homology to active site regions of the Klenow fragment of DNA polymerase I (II and III).  相似文献   

19.
20.
The adenine base analogue 2-aminopurine (2AP) is a potent base substitution mutagen in prokaryotes because of its enhanceed ability to form a mutagenic base pair with an incoming dCTP. Despite more than 50 years of research, the structure of the 2AP-C base pair remains unclear. We report the structure of the 2AP-dCTP base pair formed within the polymerase active site of the RB69 Y567A-DNA polymerase. A modified wobble 2AP-C base pair was detected with one H-bond between N1 of 2AP and a proton from the C4 amino group of cytosine and an apparent bifurcated H-bond between a proton on the 2-amino group of 2-aminopurine and the ring N3 and O2 atoms of cytosine. Interestingly, a primer-terminal region rich in AT base pairs, compared to GC base pairs, facilitated dCTP binding opposite template 2AP. We propose that the increased flexibility of the nucleotide binding pocket formed in the Y567A-DNA polymerase and increased "breathing" at the primer-terminal junction of A+T-rich DNA facilitate dCTP binding opposite template 2AP. Thus, interactions between DNA polymerase residues with a dynamic primer-terminal junction play a role in determining base selectivity within the polymerase active site of RB69 DNA polymerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号