首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developmental arrest of the embryo proper in aborted seeds from mutant 50B, a recessive embryo-lethal mutant of Arabidopsis thaliana, was shown to be followed by abnormal growth of the suspensor. Each of the 12 aborted seeds examined in sectioned material contained an abnormally large suspensor and an embryo proper arrested at a preglobular stage of development. Analysis of serial sections revealed that mutant suspensors contained 15–150 cells whereas wild-type suspensors were composed of only six to eight cells. Development of the mutant endosperm continued to a late nuclear or early cellular stage even in the absence of further development of the embryo proper. These results suggest that the missing gene product in mutant 50B is required for development of the embryo proper but not for continued growth of the suspensor or endosperm tissue. The pattern of abnormal development observed in this mutant provides further evidence that continued growth of the suspensor during normal development is inhibited by the developing embryo proper and that the full developmental potential of cells in the suspensor is expressed only when this inhibitory effect is removed through a mutation or experimental treatment that is lethal only to cells of the embryo proper.  相似文献   

2.
The role of the suspensor in the early development of the dicot embryo has been described as merely an anchor or, conversely, as the major route of nutrients into the embryo. In order to further elucidate the role of the suspensor we have examined protein synthesis in early 0.2-mm and late heart stage 0.5-mm Phaseolus vulgaris (var. Taylor's Horticultural) embryos in tissue culture. Protein synthesis was examined in embryos and suspensors. Our results showed that in 0.2-mm embryos virtually all protein synthesis was dependent on an attached suspensor. Maximum protein synthesis in 0.5-mm embryos was observed when embryos were cultured attached to the suspensor. The levels were moderately decreased when the embryo was cultured detached from or without the suspensor. Gibberellic acid at 10(-6) to 10(-7) M elicited the same protein diversity and greater [35S]methionine incorporation than did the attached suspensor in 0.2-mm embryos. Embryos of 0.5 mm did not appear to be differentially responsive to various gibberellin concentrations.  相似文献   

3.
The development of the suspensor in two species ?? Sempervivum arachnoideum and Jovibarba sobolifera ?? was investigated using cytochemical methods, light and electron microscopy. Cytological processes of differentiation in the embryo-suspensor were compared with the development of embryo-proper. The mature differentiated suspensor consists of a large basal cell and three to four chalazal cells. The basal cell produces haustorial branched invading ovular tissues. The walls of the haustorium and the micropylar part of the basal cell form the wall ingrowths typical for a transfer cells. The ingrowths also partially cover the lateral wall and the chalazal wall separating the basal cell from the other embryo cells. The dense cytoplasm filling the basal cell is rich in: numerous polysomes lying free or covering rough endoplasmic reticulum (RER), active dictyosomes, microtubules, bundles of microfilaments, microbodies, mitochondria, plastids and lipid droplets. Cytochemical tests (including proteins, insoluble polysaccharides and lipids are distributed in the suspensor during different stages of embryo development) showed the presence of high amounts of macromolecules in the suspensor cells, particularly during the globular and heart-shaped phases of embryo development. The protein bodies and lipid droplets are the main storage products in the cells of the embryo-proper. The results of Auramine 0 indicate that a cuticular material is present only on the surface walls of the embryo-proper, but is absent from the suspensor cell wall. The ultrastructural features and cytochemical tests indicate that in the two species ?? S. arachnoideum and J. sobolifera ?? the embryo-suspensor is mainly involved in the absorption and transport of metabolites from the ovular tissues to the developing embryo-proper.  相似文献   

4.
The role of the suspensor in the early development of the dicot embryo has not yet been defined. It has been described as merely an anchor and also as the major route of nutrients into the embryo. In order to further elucidate the role of the suspensor, early 0.2-mm and late heart stage 0.5-mm Phaseolus vulgaris (var. Taylor's Horticultural) embryos have been examined in tissue culture. It is known that Phaseolus embryos in culture at low osmotic potential will germinate precociously and that embryos in culture at high osmotic potential will either fail to grow or form callus. Optimum sucrose concentrations for continued, normal embryonic development of 0.2 mm and 0.5 mm P. vulgaris in tissue culture with Gamborg B5 medium were determined to be 12 and 6%, respectively. Protein content was examined in embryos and suspensors. Results showed that both 0.2- and 0.5-mm embryos required an attached suspensor for maximum protein content. Protein levels were substantially decreased when the embryo was cultured detached from or without the suspensor. Gibberellic acid at 10(-6) to 10(-7) M restored the protein content to that of freshly excised embryos.  相似文献   

5.
I. Hakman  P. Rennie  L. Fowke 《Protoplasma》1987,140(2-3):100-109
Summary Somatic embryos in embryogenic callus cultures derived from Immature zygotic embryos ofPicea glauca (White spruce) were examined by light and electron microscopy. Somatic embryos consist of an embryonic region of small densely cytoplasmic cells subtended by a suspensor consisting of long highly vacuolated cells. Mitotic figures are frequent in the embryonic cells but are not observed in the suspensor. Cell divisions in the embryonic region apparently produce rows of cells which elongate to form the suspensor. The presence of abundant polysomes, coated membranes and dictyosomes in the cytoplasm of embryonic and upper suspensor cells suggests rapid growth of the embryo. In contrast the basipetal suspensor cells appear to be senescing. While only a few scattered microfilaments are present in the meristematic cells, the upper suspensor cells contain numerous bundles of longitudinally oriented microfilaments. These bundles correspond to actin cables observed in light microscope preparations stained with rhodamine labelled phalloidin and are oriented parallel to the direction of active streaming in these cells.  相似文献   

6.
The suspensor is a specialized basal structure that differentiates early in plant embryogenesis to support development of the embryo proper. Suspensor differentiation in Arabidopsis is maintained in part by the TWIN1 (TWN1) gene, which suppresses embryogenic development in suspensor cells: twn1 mutants produce supernumerary embryos via suspensor transformation. To better understand mechanisms of suspensor development and further investigate the function of TWN1, we have characterized late-embryo and post-embryonic development in the twn1 mutant, using seedling culture, microscopy, and genetics. We report here that the twn1 mutation disrupts cotyledon number, arrangement, and morphology and occasionally causes partial conversion of cotyledons into leaves. These defects are not a consequence of suspensor transformation. Thus, in addition to its basal role in suspensor differentiation, TWN1 influences apical pattern and morphology in the embryo proper. To determine whether other genes can similarly affect both suspensor and cotyledon development, we looked for twinning in Arabidopsis mutants previously identified by their abnormal cotyledon phenotypes. One such mutant, amp1, produced a low frequency of twin embryos by suspensor transformation. Our results suggest that mechanisms that maintain suspensor identity also function later in development to influence organ formation at the embryonic shoot apex. We propose that TWN1 functions in cell communication pathways that convey local positional information in both the apical and basal regions of the Arabidopsis embryo.  相似文献   

7.
Nicos G. Marinos 《Protoplasma》1970,70(3-4):261-279
Summary The structural relationships of the pea embryo to its immediate organic environment have been studied under the light and electron microscopes during a phase of development just preceding the period of rapid embryo growth. The following observations are reported: a) Following fertilization the suspensor elongates and displaces the embryo from the micropylar to the opposite end of the embryo sac that has, by this time, developed a large chamber that is eventually occupied by the cotyledons and a narrow tubular arm that contains the elongated suspensor and later the radicle of the enlarging embryo. b) The embryo and the suspensor are ensheathed by an extra-embryonic wall that subsequently becomes attached to the boundary wall of the embryo sac by means of crosslinking walls. These structures are essential in the precise positioning of the embryo within the embryo sac. c) The thin layer of endospermic cytoplasm that lines all extra-embryonic walls and the boundary of the embryo sac is highly motile and has certain characteristic ultrastructural features,e.g., large and intricate mitochondria, a dense population of ribosomes, a specialized form of smooth ER and an organelle that may be a type of plastid. d) The ovular tissue and the boundary wall of the embryo sac, particularly in the vicinity of the embryo, are structurally specialized. Relatively large intercellular spaces in the former are associated with a greatly increased surface of the boundary wall by means of extensive protrusions into the endospermic cytoplasm, many large and complex mitochondria are associated with these protrusions. It is suggested that this organization may indicate sites of nutrient entry into the embryo sac. Some ideas regarding the possible role of the described structures are discussed but it is emphasized that no experimental evidence is available at this stage to provide an unequivocal basis of interpretation.Supported by a grant from the Australian Research Grants Committee.  相似文献   

8.
The suspensor plays an active role during the early embryo development of flowering plants. In orchids, the suspensor cells are highly vacuolated without structural specializations, and the possible mechanism(s) that enable the suspensor to serve as the nutrient uptake site is virtually unknown. Here, we used the fluorescent tracer CFDA to characterize the pathway for symplastic transport in the suspensor cells of developing embryos and to provide direct visual evidence that the orchid suspensor has unique physiological properties. The embryo proper uptakes the fluorescent dye through the suspensor. CF could first be detected throughout the suspensor cell and then subsequently in the embryo proper. A plasmolysis experiment clearly indicates that suspensor cells have a more negative osmotic potential than the adjoining testa cells. It is proposed that the preferential entry of CFDA into the suspensor cell of the Nun orchid is aided by the more negative osmotic potential of the suspensor than neighboring cells, providing a driving force for the uptake of water from the apoplast into the symplast.  相似文献   

9.
The method of non-enzymatic, manual microdissection was established to isolate zygotes and young embryos in Triticum aestivum L. The distribution of membrane-bound calcium and activated calmodulin in the isolated zygotes and young embryos was visualized by chlorotetracycline (CTC) and fluphenanize (FPZ) fluorescence probe respectively. The CTC fluorescence was polar distributed in the zygote protoplast. The distribution of the CFC and FPZ fluorescence from twocelled embryos to multicellular embryos was observed. In the young pear-shaped embryos the CTC and FPZ fluorescence of the embryos was slightly higher than that of the suspensor. In a pear-shaped embryo beginning with differentiation the CTC fluorescence was restricted to several-layer of cells between embryo and suspensor and the several ventral cells of the embryo. In the embryos with newly differentiated plumule the basal part of the embryo possessed a higher CTC fluorescence, while the FPZ fluorescence was only distributed in the basal part. It indicated that the distribution of CTC and FPZ fluorescence was in coincidence with the sites that plumule and radicle were beginning to differentiate. The technique of isolated zygotes and the possible function of calcium and calmodulin during embryo development are discussed.  相似文献   

10.
The presence of an attached organ to somatic embryos of angiosperms connecting the embryo to the supporting tissue has been a subject of controversy. This study shows that 67% of the morphologically normal somatic embryos of Feijoa sellowiana possess this type of organ and that its formation was not affected by culture media composition. Histological and ultrastructural analysis indicated that the attached structures of somatic embryos displayed a great morphological diversity ranging from a few cells to massive and columnar structures. This contrast with the simple suspensors observed in zygotic embryos which were only formed by five cells. As well as the suspensor of zygotic embryos, somatic embryo attached structures undergo a process of degeneration in later stages of embryo development. Other characteristic shared by zygotic suspensors and somatic embryo attached structures was the presence of thick cell walls surrounding the cells. Elongated thin filaments were often associated with the structures attached to somatic embryos, whereas in other cases, tubular cells containing starch grains connected the embryo to the supporting tissue. These characteristics associated with the presence of plasmodesmata in the cells of the attached structures seem to indicate a role on embryo nutrition. However, cell proliferation in the attached structures resulting into new somatic embryos may also suggest a more complex relationship between the embryo and the structures connecting it to the supporting tissue.  相似文献   

11.
Summary The ultrastructural changes in the cotyledon, radicle and suspensor haustorium ofPelargonium, containing either normal or mutant plastids, are investigated from the heart stage of embryogenesis to the mature seed. The fine structure of parenchymatous cells from the cotyledon and radicle is essentially similar whereas that of the suspensor haustorium is very different.The cotyledon and radicle develop into one massive storage tissue possessing numerous lipid and several protein bodies per cell, and well developed starch grains. The suspensor haustorium has no storage function, rather it acts as a transitory tissue which dies off as the seed matures. The extensive chloroplast development suggests that, in addition to its traditional role, the suspensor haustorium also acts as a photosynthetic booster for the developing embryo.The development of surviving mutant embryos is similar to normal ones except that in cotyledon and radicle cells plastids develop only to vesicles, which associate into loose prolamellar bodies and sometimes small fenestrated thylakoids, and in the suspensor haustorium cells, only to small compact grana.  相似文献   

12.
13.
Cell and tissue patterning in plant embryo development is well documented. Moreover, it has recently been shown that successful embryogenesis is reliant on programmed cell death (PCD). The cytoskeleton governs cell morphogenesis. However, surprisingly little is known about the role of the cytoskeleton in plant embryogenesis and associated PCD. We have used the gymnosperm, Picea abies, somatic embryogenesis model system to address this question. Formation of the apical-basal embryonic pattern in P. abies proceeds through the establishment of three major cell types: the meristematic cells of the embryonal mass on one pole and the terminally differentiated suspensor cells on the other, separated by the embryonal tube cells. The organisation of microtubules and F-actin changes successively from the embryonal mass towards the distal end of the embryo suspensor. The microtubule arrays appear normal in the embryonal mass cells, but the microtubule network is partially disorganised in the embryonal tube cells and the microtubules disrupted in the suspensor cells. In the same embryos, the microtubule-associated protein, MAP-65, is bound only to organised microtubules. In contrast, in a developmentally arrested cell line, which is incapable of normal embryonic pattern formation, MAP-65 does not bind the cortical microtubules and we suggest that this is a criterion for proembryogenic masses (PEMs) to passage into early embryogeny. In embryos, the organisation of F-actin gradually changes from a fine network in the embryonal mass cells to thick cables in the suspensor cells in which the microtubule network is completely degraded. F-actin de-polymerisation drugs abolish normal embryonic pattern formation and associated PCD in the suspensor, strongly suggesting that the actin network is vital in this PCD pathway.  相似文献   

14.
The initiation of somatic embryos and their propagation in the long-term proliferating embryonal suspensor mass of Larix sibirica were studied. It was found that the increase in the number of somatic embryos in the embryogenic culture occurred as a result of cleavage of the globules of the somatic embryo and the suspensor; it less often occurred as the result of budding of the suspensor and the separation of the embryonal tubes of the suspensor. In the case of long-term proliferating cell lines (more than 8 years), the rate of cleavage did not weaken. A conclusion on the identity of morphogenic processes underlying the development of zygotic and somatic embryos of conifers is made, which is confirmed by the concept of T.B. Batygina (1999) on the parallelism of their development in vivo and in vitro.  相似文献   

15.
Summary Embryos of Phaseolus coccineus in different stages of development (from 0.5 to 5 mm in length) were grown in vitro. Both intact embryos (with suspensor) and embryos deprived of suspensor were studied. It was found that removal of the suspensor has no effect on the development of embryos which have reached a length of 5 mm. With younger embryos, removal of the suspensor reduces embryo development, the negative effect being the greater the younger the embryo. It was shown that gibberellic acid (GA3) concentrations of 10-8 to 10-6M can replace the suspensor in heart-shaped and early cotyledonary embryos (0.5 to 1.5 mm in length), whereas they reduce the development of suspensor-deprived embryos of later stages (embryos 2 to 3 mm in length) as compared with intact embryos of similar size grown on hormone-free medium. GA3 concentrations of 10-5 and 10-4M are generally inhibitory and may stimulate callus formation in some embryos. The present data and those of Alpi et al. (1975) concur in ascribing a major role to gibberellins in characterizing the physiological function of the suspensor in early embryogenesis in Phaseolus coccineus.Abbreviation GA gibberellic aid  相似文献   

16.
Coombs  J.  Baldry  C. W. 《Planta》1975,127(2):153-162
Summary Gibberellins and auxins were extracted from embryos and suspensors of Phaseolus coccineus L. at two stages of development: A) heart-shaped embryo and B) cotyledonary embryo with suspensor in the initial stage of degeneration. The time interval between the two stages was 5–6 days.In both embryos and suspensors, gibberellin (GA)-like activity was found in three fractions: F-1 (ethyl acetate fraction at pH 8.0), F-2 (free GAs) and F-3 (bound GAs). At stage A, the total GA activity in the suspensor was about 30 times greater than in the embryo and the bound GAs contributed by about 90% to the total GA content. A dramatic decrease in level of bound GA-like substances was found in suspensors at stage B, when the level of total GAs in the embryo had increased to 10 times that at stage A. This might suggest a transport of GAs from the suspensor to the embryo. In both embryo and suspensor, qualitative changes in GAs with shift in activity of the fractions tested occurred at the two developmental stages.The methanolic extracts of stage A suspensors showed two inhibitors, one much more active than the other, and two large peaks of growth promoting activity at Rf 0.4–0.7; in stage A embryos, the general activity of the extracts was lower and the promoting effect was spread over Rf 0.3–0.9.The present results seem to support the view that the suspensor plays a role in embryogenesis by acting as a site of synthesis of growth regulators needed by the embryo.Abbreviations F-1 ethyl acetate fraction at pH 8.0 - F-2 free gibberellins - F-3 bound gibberellins - GA gibberellic acid - Stage A heart-shaped embryo - stage B cotyledonary embryo with suspensor in the initial stage of degeneration  相似文献   

17.
In Arabidopsis thaliana, zygotic embryo divisions are highly regular, but it is not clear how embryo patterning is established in species or culture systems with irregular cell divisions. We investigated this using the Brassica napus microspore embryogenesis system, where the male gametophyte is reprogrammed in vitro to form haploid embryos in the absence of exogenous growth regulators. Microspore embryos are formed via two pathways: a zygotic-like pathway, characterized by initial suspensor formation followed by embryo proper formation from the distal cell of the suspensor, and a pathway characterized by initially unorganized embryos lacking a suspensor. Using embryo fate and auxin markers, we show that the zygotic-like pathway requires polar auxin transport for embryo proper specification from the suspensor, while the suspensorless pathway is polar auxin transport independent and marked by an initial auxin maximum, suggesting early embryo proper establishment in the absence of a basal suspensor. Polarity establishment in this suspensorless pathway was triggered and guided by rupture of the pollen exine. Irregular division patterns did not affect cell fate establishment in either pathway. These results confirm the importance of the suspensor and suspensor-driven auxin transport in patterning, but also uncover a mechanism where cell patterning is less regular and independent of auxin transport.  相似文献   

18.
Summary Fertilized ovules from sugar beet, Beta vulgaris L., of different intra- and interspecific crosses have been grown under in situ and in vitro conditions and investigated by light microscopy. Selected anatomical parameters were observed and entered in a computer program for statistical treatment. After a few days in culture the cells of the inner integument epidermis develop reticulate wall thickenings and their content of tannins decrease. Likewise, the starch content in the outer integument decreases and no real seed coat is formed. The funiculus tissue increases its metabolic activity, i.e., abundant accumulation of protein and starch. Callus or callus-like proliferations develop in the nucellus and the suspensor, but only rarely in the embryo or endosperm. However, the embryo may show an irregular morphology. Very rapid metabolism of starch in the suspensor may be related to the ability of the embryo to survive the first days in culture. Generally, the cellular responses, most significant in the maternal sporophytic tissue and the suspensor rather than in the embryo and endosperm, can be explained as structural adaptations to alternative pathways of nutrient supply.  相似文献   

19.
ABSTRACT: Background Our previous work found that mouse embryos could invade malignant cancer cells. In the process of implantation, embryo trophoblast cells express matrix metalloproteinases and the invasive ability of trophoblast cells is proportional to matrix metalloproteinase-9 protein expression. So the purpose of this study is to observe the effects of mouse embryos on human ovarian cancer cells in the co-culture environment in vitro and explore the possible mechanism of matrix metalloproteinase-9. Methods Several groups of human ovarian cancer cells HO8910PM were co-cultured with mouse embryos for different time duration, after which the effects of mouse embryos on morphology and growth behavior of HO8910PM were observed under the light microscope real-time or by H.E staining. Apoptosis was detected under laser confocal microscope by Annexin V-EGFP/PI staining in situ. Invasion ability of tumor cells was studied by transwell experiments. After matrix metalloproteinase 9 (MMP -9) activity was inhibited by MMP-9 Inhibitor I, the interaction between mouse embryos and human ovarian cancer cells HO8910PM was observed. Results Mouse embryos were able to invade co-cultured human ovarian cancer cell layer which extended in the bottom of the culture dish, and gradually pushed away tumor cells to form their own growth space. The number of apoptosis tumor cells surrounding the embryo increased under laser confocal microscope. After co-cultured with mouse embryos, tumor cells invasive ability was lowered compared with the control group. After MMP-9 activity was inhibited, the interaction between mouse embryos and HO8910PM cells had no significant difference compared with the normal MMP-9 activity group. Conclusion Mouse embryos were able to invade human ovarian cancer cells in vitro and form their own growth space, promote apoptosis of human ovarian cancer cells and lower their invasive ability. The mouse embryo was still able to invade human ovarian cancer cells after MMP-9 activity was inhibited.  相似文献   

20.
Plant growth and development rely on sugar transport between source and sink cells and between different organelles. The plastid-localized sugar transporter GLUCOSE-6-PHOSPHATE TRANSLOCATER1 (GPT1) is an essential gene in Arabidopsis (Arabidopsis thaliana). Using a partially rescued gpt1 mutant and cell-specific RNAi suppression of GPT1, we demonstrated that GPT1 is essential to the function of the embryo suspensor and the development of the embryo. GPT1 showed a dynamic expression/accumulation pattern during embryogenesis. Inhibition of GPT1 accumulation via RNAi using a suspensor-specific promoter resulted in embryos and seedlings with defects similar to auxin mutants. Loss of function of GPT1 in the suspensor also led to abnormal/ectopic cell division in the lower part of the suspensor, which gave rise to an ectopic embryo, resulting in twin embryos in some seeds. Furthermore, loss of function of GPT1 resulted in vacuolar localization of PIN-FORMED1 (PIN1) and altered DR5 auxin activity. Proper localization of PIN1 on the plasma membrane is essential to polar auxin transport and distribution, a key determinant of pattern formation during embryogenesis. Our findings suggest that the function of GPT1 in the embryo suspensor is linked to sugar and/or hormone distribution between the embryo proper and the maternal tissues, and is important for maintenance of suspensor identity and function during embryogenesis.

Specific expression of a sugar transporter that localizes to the plastids of cells in the embryo suspensor affects auxin activity and embryo development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号