首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ADPglucose: α-1,4-glucan α-4-glucosyltransferases (starch synthetases) from leaves of Vitis vinifera and leaves and kernels of Zea mays were chromatographed on DEAE-cellulose columns. One form of the enzyme was present in grape leaves having activity both in the presence and absence of primer. Two forms were present in both leaves and kernels of maize. The second peak of activity in maize leaves and the first peak in maize kernels synthesized a polyglucan in the absence of primer. A peak of branching enzyme (Q-enzyme) occurred between the two starch synthetase peaks with both tissues. When fractions containing starch synthetase and branching enzyme were added to the first leaf starch synthetase peak, up to 100-fold activation of the unprimed reaction occurred. Branching enzyme did not stimulate the unprimed activity of the first kernel peak and no branching enzyme could be detected in this peak. The unprimed product was a branched polyglucan with mainly α-1,4-links.  相似文献   

2.
Concentrations of ADPglucose:α-1,4-glucan-4-glucosyltransferase (starch synthase) and α-1,4 glucan: α-1,4-glucan-6-glycosyltransferase (branching enzyme) from developing seeds of Pisum sativum were measured. Primed starch synthase activity increased from 8 to 14 days after anthesis and decreased by 50 % at 26 days. Citrate-stimulated starch synthase activity was highest at 10 days after anthesis decreasing to low levels by 22 days. Branching enzyme activity increased from 8 to 18 days after anthesis and decreased little by 26 days. Two fractions of starch synthase were recovered by gradient elution from DEAE-cellulose of extracts from 12- and 18-day-old seeds. The two fractions differed in primer specificity, Km for ADPG and relative amounts of citrate-stimulated activity. A major and minor fraction of branching enzyme were observed in extracts from both 12- and 18-day-old seeds. Marked differences in the relative abilities ofthe two branching enzyme fractions to stimulate phosphorylase and to branch amylose as well as pH optima were found. Although the content of the starch synthase and branching enzyme fractions varied with seed age, little difference was seen in the properties of chromatographically similar fractions. Therefore, the changes in starch synthase and branching enzyme activity during pea seed development resulted from changes in the concentrations of a few enzyme forms, but not the appearance of different enzyme forms.  相似文献   

3.
An α-glucosidase (α-d-glucoside glucohydrolase, EC 3.2.1.20) was isolated from germinating millet (Panicum miliaceum L.) seeds by a procedure that included ammonium sulfate fractionation, chromatography on CM-cellulofine/Fractogel EMD SO3, Sephacryl S-200 HR and TSK gel Phenyl-5 PW, and preparative isoelectric focusing. The enzyme was homogenous by SDS-PAGE. The molecular weight of the enzyme was estimated to be 86,000 based on its mobility in SDS-PAGE and 80,000 based on gel filtration with TSKgel super SW 3000, which showed that it was composed of a single unit. The isoelectric point of the enzyme was 8.3. The enzyme readily hydrolyzed maltose, malto-oligosaccharides, and α-1,4-glucan, but hydrolyzed polysaccharides more rapidly than maltose. The Km value decreased with an increase in the molecular weight of the substrate. The value for maltoheptaose was about 4-fold lower than that for maltose. The enzyme preferably hydrolyzed amylopectin in starch, but also readily hydrolyzed nigerose, which has an α-1,3-glucosidic linkage and exists as an abnormal linkage in the structure of starch. In particular, the enzyme readily hydrolyzed millet starch from germinating seeds that had been degraded to some extent.  相似文献   

4.
Starch branching enzyme (SBE) catalyzes the cleavage of α-1,4-linkages and the subsequent transfer of α-1,4 glucan to form an α-1,6 branch point in amylopectin. We determined the crystal structure of the rice branching enzyme I (BEI) in complex with maltopentaose at a resolution of 2.2 Å. Maltopentaose bound to a hydrophobic pocket formed by the N-terminal helix, carbohydrate-binding module 48 (CBM48), and α-amylase domain. In addition, glucose moieties could be observed at molecular surfaces on the N-terminal helix (α2) and CBM48. Amino acid residues involved in the carbohydrate bindings are highly conserved in other SBEs, suggesting their generally conserved role in substrate binding for SBEs.  相似文献   

5.
Wall-bound α-glucosidase (EC 3.2.1.20) has been solubilized from suspension-cultured rice cells with Sumyzyme C and Pectolyase Y-23 and isolated by a procedure including fractionation with ammonium sulfate, Sephadex G-100 column chromatography, CM-cellulose column chroma-tography, Sephadex G-200 column chromatography, and preparative disc gel electrophoresis. The molecular weight of the enzyme was 64,000. The enzyme readily hydrolyzed maltose, maltotriose, and amylose, but hydrolyzed isomaltose and soluble starch more slowly. The Michaelis constant for maltose of the enzyme was estimated to be 0.272 mm. The enzyme produced panose as the main α- glucosyltransferred product from maltose.  相似文献   

6.
Starch is a complex branched glucose polymer whose branch molecular weight distribution (the chain-length distribution, CLD) influences nutritionally important properties such as digestion rate. Chain-stopping in starch biosynthesis is by starch branching enzyme (SBE). Site-directed mutagenesis was used to modify SBEIIa from Zea mays (mSBEIIa) to produce mutants, each differing in a single conserved amino-acid residue. Products at different times from in vitro branching were debranched and the time evolution of the CLD measured by size-exclusion chromatography. The results confirm that Tyr352, Glu513, and Ser349 are important for mSBEIIa activity while Arg456 is important for determining the position at which the linear glucan is cut. The mutant mSBEIIa enzymes have different activities and suggest the length of the transferred chain can be varied by mutation. The work shows analysis of the molecular weight distribution can yield information regarding the enzyme branching sites useful for development of plants yielding starch with improved functionality.  相似文献   

7.
In this study a branching enzyme (BE, α-1,4  α-1,6 glycosyltransferase) was used to modify starch granules of different structures at high temperature and at extreme starch dry matter content (30–40%, w/v) to restrict temperature-induced swelling. As opposed to diluted systems, such conditions led to stabilization of the granular structure for low-phosphate starch types at the highest BE activity. Bright field/polarized light and scanning electron microscopy confirmed maintenance of granular structure. The product compared to the control had significantly increased degree of branching as identified by shorter branch-length of the α-1,4 chains assessed by chromatography and larger proportion of α-1,6 links to α-1,4 links as assessed by 1H nuclear magnetic resonance spectroscopy. Size exclusion chromatography demonstrated the presence of uniform molecules with smaller size. Further the polysaccharide product was 40% more soluble at 25 °C than the corresponding heat treated control. Both of these observations were supported by 13C solid-state MAS NMR. Hence, significant chain transfer took place in the semi-solid state starch permitting conservation of the main granular organization in the final product. A hypothetic model is presented to account for the observed phenomenon.  相似文献   

8.
Suspension cultures of rice (Oryza sativa L.), initiated from seed, produced significant amounts of starch. Starch accumulated in the cultured cells throughout the growth phase and reached a maximum of 7% of the cell dry weight at stationary phase. Starch was present in compound granules which were birefringent under polarized light. Suspension culture starch had a higher amylose content and a lower gelatinization temperature than rice grain starch. Additionally, starch branching enzyme, an enzyme involved in starch biosynthesis, was characterized by anion exchange chromatography in culture cells and endosperm. Culture cells had at least one major form of starch branching enzyme which differed from the multiple enzyme forms present in endosperm.  相似文献   

9.
Tapioca starch was modified using branching enzyme (BE) isolated from Bacillus subtilis 168 and Bacillus stearothermophilus maltogenic amylase (BSMA), and their molecular fine structure and susceptibility to amylolytic enzymes were investigated. By BE treatment, the molecular weight decreased from 3.1 × 108 to 1.7 × 106, the number of shorter branch chains (DP 6–12) increased, the number of longer branch chains (DP >25) decreased, and amylose content decreased from 18.9% to 0.75%. This indicated that α–1,4 linkages of amylose and amylopectin were cleaved, and moiety of glycosyl residues were transferred to another amylose and amylopectin to produce branched glucan and BE-treated tapioca starch by forming α–1,6 branch linkages. The product was further modified with BSMA to produce highly-branched tapioca starch with 9.7% of extra branch points. When subject to digestion with human pancreatic α-amylase (HPA), porcine pancreatic α-amylase (PPA) and glucoamylase, highly-branched tapioca starch gave significantly lowered α-amylase susceptibility (7.5 times, 14.4 times and 3.9 times, respectively), compared to native tapioca starch.  相似文献   

10.
An extracellular α-glucosidase produced by Aspergillus niveus was purified using DEAE-Fractogel ion-exchange chromatography and Sephacryl S-200 gel filtration. The purified protein migrated as a single band in 5% PAGE and 10% SDS–PAGE. The enzyme presented 29% of glycosylation, an isoelectric point of 6.8 and a molecular weight of 56 and 52 kDa as estimated by SDS-PAGE and Bio-Sil-Sec-400 gel filtration column, respectively. The enzyme showed typical α-glucosidase activity, hydrolyzing p-nitrophenyl α-d-glucopyranoside and presented an optimum temperature and pH of 65°C and 6.0, respectively. In the absence of substrate the purified α-glucosidase was stable for 60 min at 60°C, presenting t 50 of 90 min at 65°C. Hydrolysis of polysaccharide substrates by α-glucosidase decreased in the order of glycogen, amylose, starch and amylopectin. Among malto-oligosaccharides the enzyme preferentially hydrolyzed malto-oligosaccharide (G10), maltopentaose, maltotetraose, maltotriose and maltose. Isomaltose, trehalose and β-ciclodextrin were poor substrates, and sucrose and α-ciclodextrin were not hydrolyzed. After 2 h incubation, the products of starch hydrolysis measured by HPLC and thin layer chromatography showed only glucose. Mass spectrometry of tryptic peptides revealed peptide sequences similar to glucan 1,4-alpha-glucosidases from Aspergillus fumigatus, and Hypocrea jecorina. Analysis of the circular dichroism spectrum predicted an α-helical content of 31% and a β-sheet content of 16%, which is in agreement with values derived from analysis of the crystal structure of the H. jecorina enzyme.  相似文献   

11.
王忠华    俞挺捷 《植物学报》2008,25(6):741-752
稻米淀粉的形成是影响水稻产量和品质的决定性因素之一。因此, 开展稻米淀粉形成过程中所涉及关键酶的研究是非常必要的。随着分子生物学技术的快速发展, 有关稻米淀粉品质的研究也越来越深入, 并取得了较大进展。该文对水稻淀粉品质形成过程中的关键酶及其分子生物学研究进展进行了较为详尽的综述, 主要包括ADP葡萄糖焦磷酸化酶、淀粉合成酶、淀粉分支酶和淀粉去分支酶等, 并对该领域的发展趋势进行了展望。  相似文献   

12.
稻米淀粉品质形成的关键酶及其分子生物学研究进展   总被引:1,自引:0,他引:1  
稻米淀粉的形成是影响水稻产量和品质的决定性因素之一。因此,开展稻米淀粉形成过程中所涉及关键酶的研究是非常必要的。随着分子生物学技术的快速发展,有关稻米淀粉品质的研究也越来越深入,并取得了较大进展。该文对水稻淀粉品质形成过程中的关键酶及其分子生物学研究进展进行了较为详尽的综述,主要包括ADP葡萄糖焦磷酸化酶、淀粉合成酶、淀粉分支酶和淀粉去分支酶等,并对该领域的发展趋势进行了展望。  相似文献   

13.
1. A morphological mutant of Neurospora crassa, smco 9, (R2508) that exhibits colonial morphology when grown on sucrose or on maltose, showed a partial reversal of this morphology toward that of the wild type when it was grown on potato starch or on isomaltose. 2. A common feature of both potato starch and isomaltose is the presence of alpha-1, 6 glucosidic linkages. This suggested that these morphological effects might be due to differences in alpha-1,4 glucan: alpha-1,4 glucan 6 glycosyltransferase, (EC 2.4.1.18) commonly known as "the branching enzyme". 3. The branching enzyme was purified from wild type, Neurospora crassa, and from the semicolonial mutant, R2508, both grown on sucrose or on potato starch. It has a molecular weight of 140,000 as estimated by gel filtration on a Bio Gel A 1.5 m column. This enzyme plus phosphorylase a in an unprimed reaction catalyzes the synthesis of a branched polysaccharide in vitro. 4. No branching enzyme activity was apparent in extracts of the mutant R2508, grown on potato starch until a thermolabile inhibitor was removed by fractionation on a DEAE column. 5. This inhibitor has a molecular weight greater than 100,000 as estimated on a P-100 polyacrylamide gel column. The specificity of the inhibitor is not absolute in that it inhibits glycogen synthetase in addition to the branching enzyme in Neurospora.  相似文献   

14.
The modified starch gels prepared from partial enzyme treatments (1, 3, and 6 U/g starch; 2-h incubation) of the corn and rice starch pastes using Thermus aquaticus 4-α-glucanotransferase (TAαGT) were investigated for their molecular characteristics, microstructures, and physicochemical properties. Unlike the native and partially modified normal starches, the native and partially modified waxy starches could not form gels strong enough for textural analysis after 24 h for gel setting. Features of the partially modified normal starches were the specific apparent amylose contents and maximum iodine absorption wavelength (λmax, ∼567 nm), as well as the tri-modal molecular weight profiles and flatter side-chain distributions. Also, the partially modified normal starch gels possessed fractured surfaces with discontinuous crystalline fibrous assembly that differed from the native starch gels’ porous continuous network, which resulted in more brittle, rigid, and resilient gels compared with the native gels.  相似文献   

15.
Two major forms of branching enzyme from developing kernels of maize have been detected after DEAE-cellulose chromatography. Branching-enzyme I, which contained 24% of the activity based on a phosphorylase-stimulation assay, but 74% of the activity based on the branching of amylose as monitored by change in spectra of the iodine-glucan complex, eluted with the column wash and was unassociated with starch-synthase activity. Branching-enzyme II was bound to DEAE-cellulose and was coeluted with both primed and unprimed starch-synthase activities. Both fractions were further purified by chromatography on aminoalkyl-Sepharose columns. Single peaks were observed for both fractions by gel filtration on BioGel A1.5m columns and native molecular weights were estimated at 70,000–90,000 for both enzymes. Subunit molecular weights of branching-enzymes I and II were estimated by dodecyl sodium sulfate-gel electrophoresis at 89,000 and 80,000, respectively. Thus both enzymes are primarily monomeric. Branching-enzymes I and II could be distinguished by chromatography on DEAE-cellulose or 4-aminobutyl-Sepharose, and by disc-gel electrophoresis with activity staining. Branching-enyme I had a lower ratio of activity (phosphorylase stimulation-amylose branching; based on enzyme units). The ratio varied from 30–60 as compared to about 300–500 for branching-enzyme II. Likewise, branching-enzyme I had a lower Km value for amylose than branching- enzyme II, the values being 160 and 500 μg/ml, respectively. Both enzymes could introduce further branches into amylopectin, as decreases in the overall absorption and wavelength maxima of the iodine complexes were observed. Combined action of the branching enzymes and rabbit-muscle phosphorylase a (12:1 ratio based on enzyme units) resulted in similar patterns of incorporation of d-glucose into the growing α-d-glucan and the synthesis of high molecular-weight polymers. However, the α-d-glucans differed, as shown by spectra of iodine complexes and average unit-chain length. Branching-enzyine II was separated into two fractions (IIa and IIb) by chromatography on 4-aminobutyl-Sepharose. These Fractions differed only in the branching of amylopectin, fractional IIb being more active than IIa.  相似文献   

16.
Boyer CD  Preiss J 《Plant physiology》1981,67(6):1141-1145
Soluble starch synthase and starch-branching enzymes in extracts from kernels of four maize genotypes were compared. Extracts from normal (nonmutant) maize were found to contain two starch synthases and three branching enzyme fractions. The different fractions could be distinguished by chromatographic properties and kinetic properties under various assay conditions. Kernels homozygous for the recessive amylose-extender (ae) allele were missing branching enzyme IIb. In addition, the citrate-stimulated activity of starch synthase I was reduced. This activity could be regenerated by the addition of branching enzyme to this fraction. No other starch synthase fractions were different from normal enzymes. Extracts from kernels homozygous for the recessive dull (du) allele were found to contain lower branching enzyme IIa and starch synthase II activities. Other fractions were not different from the normal enzymes. Analysis of extracts from kernels of the double mutant ae du indicated that the two mutants act independently. Branching enzyme IIb was absent and the citrate-stimulated reaction of starch synthase I was reduced but could be regenerated by the addition of branching enzyme (ae properties) and both branching enzyme IIa and starch synthase II were greatly reduced (du properties). Starch from ae and du endosperms contains higher amylose (66 and 42%, respectively) than normal endosperm (26%). In addition, the amylopectin fraction of ae starch is less highly branched than amylopectin from normal or du starch. The above observations suggest that the alterations of the starch may be accounted for by changes in the soluble synthase and branching enzyme fractions.  相似文献   

17.
18.
Soluble starch synthases and branching enzymes have been partially purified from developing sorghum seeds. Two major fractions and one minor fraction of starch synthase were eluted on DEAE-cellulose chromatography. The minor enzyme eluted first and was similar to the early eluting major synthase in citrate-stimulated activity, faster reaction rates with glycogen primers than amylopectin primers, and in Km for ADP-glucose (0.05 and 0.08 mM, respectively). The starch synthase peak eluted last had no citrate-stimulated activity, was equally active with glycogen and amylopectin primers, and had the highest Km for ADP-glucose (0.10 mM). Four fractions of branching enzymes were recovered from DEAE-cellulose chromatography. One fraction eluted in the buffer wash; the other three co-eluted with the three starch synthases. All four fractions could branch amylose or amylopectin, and stimulated α-glucan synthesis catalysed by phosphorylase. Electrophoretic separation and activity staining for starch synthase of crude extracts and DEAE-cellulose fractions demonstrated complex banding patterns. The colour of the bands after iodine staining indicated that branching enzyme and starch synthase co-migrated during electrophoresis.  相似文献   

19.
The structure of dextran synthesized from maltotetraose by dextrin dextranase (EC 2.4.1.2) from Acetobacter capsulatus ATCC 11894 was analyzed. When the Acetobacter dextran (AD) was acetolyzed, glucose and maltose were produced. AD was allowed to react with α-amylases. AD was digested by bacterial saccharifying α-amylase and bacterial liquefying α-amylase, and glucose, maltose, and maltotriose were produced. The structure of the fraction obtained from dextranase-digested AD by activated charcoal chromatography, which did not contain glucose, isomaltose, and isomaltotriose, was investigated by methylation analysis, and the ratio of 2,3,4,6-tetra-O-methyl-: 2,3,4-tri-O-methyl-: 2,3,6-tri-O-methyl-: 2,3-di-O-methyl-alditol acetate was estimated as 22.9:46.8:15.5:14.8. This result indicated the existence of α-1,4 branches and that of α-1,4 linkages in α-1,6 glucosyl linear chains. Native AD was calculated to be constructed with 6.23 branching points and 6.53 α-1,4 linked glucosyl residues per 100 glucosyl units. Though AD was digested slightly by rat intestinal acetone powder, high molecular weight polymers remained. Therefore AD could be used as a dietary fiber.  相似文献   

20.
A thermophilic extracellular -amylase from Bacillus licheniformis   总被引:13,自引:0,他引:13  
A strain of Bacillus licheniformis isolated from soil produced an extracellular α-amylase(s) with unusual characteristics. The enzyme was purified 126-fold by starch adsorption, DEAE-cellulose treatment, and CM-cellulose column chromatography. Four active protein bands were detected by disc electrophoresis in poly-acrylamide gel although the enzyme behaved as a single peak during both ultracen-trifugation and chromatography using CM-cellulose and Sephadex G-100. The enzyme showed a very broad pH-activity curve and had substantial activity in the alkaline range. The optimal temperature was 76 °C at pH 9.O. The enzyme was stable between pH 6 and 11 at 25 °C, and below 60 °C at pH 8.0. Using Sephadex G-100 gel filtration, a molecular weight of 22,500 was estimated for the enzyme. The action pattern on amylose and amylopectin is unique in that the predominant product during all stages of hydrolysis is maltopentaose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号