首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marchantia polymorpha has recently become a prime model for cellular, evo‐devo, synthetic biological, and evolutionary investigations. We present a pseudomolecule‐scale assembly of the M. polymorpha genome, making comparative genome structure analysis and classical genetic mapping approaches feasible. We anchored 88% of the M. polymorpha draft genome to a high‐density linkage map resulting in eight pseudomolecules. We found that the overall genome structure of M. polymorpha is in some respects different from that of the model moss Physcomitrella patens. Specifically, genome collinearity between the two bryophyte genomes and vascular plants is limited, suggesting extensive rearrangements since divergence. Furthermore, recombination rates are greatest in the middle of the chromosome arms in M. polymorpha like in most vascular plant genomes, which is in contrast with P. patens where recombination rates are evenly distributed along the chromosomes. Nevertheless, some other properties of the genome are shared with P. patens. As in P. patens, DNA methylation in M. polymorpha is spread evenly along the chromosomes, which is in stark contrast with the angiosperm model Arabidopsis thaliana, where DNA methylation is strongly enriched at the centromeres. Nevertheless, DNA methylation and recombination rate are anticorrelated in all three species. Finally, M. polymorpha and P. patens centromeres are of similar structure and marked by high abundance of retroelements unlike in vascular plants. Taken together, the highly contiguous genome assembly we present opens unexplored avenues for M. polymorpha research by linking the physical and genetic maps, making novel genomic and genetic analyses, including map‐based cloning, feasible.  相似文献   

2.
The nad7 gene, encoding subunit 7 of NADH dehydrogenase, is mitochondrially encoded in seed plants. In the liverwort, Marchantia polymorpha, only a pseudogene is located in the mitochondrial genome. We have now identified the functional nad7 gene copy in the nuclear genome of Marchantia, coding for a polypeptide of 468 amino acids. The nuclear-encoded nad7 has lost the two group II introns present in the mitochondrial pseudogene copy. Instead, a typical nuclear intron is found to split an exon encoding the presumptive mitochondrial targeting signal peptide and the mature subunit 7 of NADH dehydrogenase. These results suggest that RNA-mediated gene transfer from the mitochondrial into the nuclear genome occurs not only in seed plants but also in bryophytes.  相似文献   

3.
The invasion of the land by plants, or terrestrialization, was one of the most critical events in the history of the Earth. The evolution of land plants included significant transformations in body plans: the emergence of a multicellular diploid sporophyte, transition from gametophyte-dominant to sporophyte-dominant life histories, and development of many specialized tissues and organs, such as stomata, vascular tissues, roots, leaves, seeds, and flowers. Recent advances in molecular genetics in two model basal plants, bryophytes Physcomitrella patens and Marchantia polymorpha, have begun to provide answers to several key questions regarding land plant evolution. This paper discusses the evolution of the genes and regulatory mechanisms that helped drive such significant morphological innovations among land-based plants.  相似文献   

4.
Having diverged from the lineage that lead to flowering plants shortly after plants have established on land, mosses, which share fundamental processes with flowering plants but underwent little morphological changes by comparison with the fossil records, can be considered as an evolutionary informative place. Hence, they are especially useful for the study of developmental evolution and adaption to life on land. The transition to land exposed early plants to harsh physical conditions that resulted in key physiological and developmental changes. MicroRNAs (miRNAs) are an important class of small RNAs (sRNAs) that act as master regulators of development and stress in flowering plants. In recent years several groups have been engaged in the cloning of sRNAs from the model moss Physcomitrella patens. These studies have revealed a wealth of miRNAs, including novel and conserved ones, creating a unique opportunity to broaden our understanding of miRNA functions in land plants and their contribution to the latter??s evolution. Here we review the current knowledge of moss miRNAs and suggest approaches for their functional analysis in P. patens.  相似文献   

5.
Potassium or Na+ efflux ATPases, ENA ATPases, are present in all fungi and play a central role in Na+ efflux and Na+ tolerance. Flowering plants lack ENA ATPases but two ENA ATPases have been identified in the moss Physcomitrella patens, PpENA1 and PpENA2. PpENA1 mediates Na+ efflux in Saccharomyces cerevisiae. To propose a general function of ENA ATPases in bryophytes it was necessary to demonstrate that these ATPases mediate Na+ efflux in planta and that they exist in more bryophytes than P. patens. For these demonstrations (1) we cloned a third ATPase from P. patens, PpENA3, and studied the expression pattern of the three PpENA genes; (2) we constructed and studied the single and double Δppena1 and Δppena2 mutants; and (3) we cloned two ENA ATPases from the liverwort Marchantia polymorpha, MpENA1 and MpENA2, and expressed them in S. cerevisiae. The results from the first two approaches revealed that the expression of ENA ATPases was greatly enhanced at high pH and that Na+ efflux at high pH depended on PpENA1. The ENA1 ATPase of M. polymorpha suppressed the defective growth of a S. cerevisiae mutant at high K+ or Na+ concentrations, especially at high K+.  相似文献   

6.
The nad7 gene, encoding subunit 7 of NADH dehydrogenase, is mitochondrially encoded in seed plants. In the liverwort, Marchantia polymorpha, only a pseudogene is located in the mitochondrial genome. We have now identified the functional nad7 gene copy in the nuclear genome of Marchantia, coding for a polypeptide of 468 amino acids. The nuclear-encoded nad7 has lost the two group II introns present in the mitochondrial pseudogene copy. Instead, a typical nuclear intron is found to split an exon encoding the presumptive mitochondrial targeting signal peptide and the mature subunit 7 of NADH dehydrogenase. These results suggest that RNA-mediated gene transfer from the mitochondrial into the nuclear genome occurs not only in seed plants but also in bryophytes. Received: 11 March 1997 / Accepted: 20 August 1997  相似文献   

7.
8.
9.
10.
The plant hormone auxin (indole-3-acetic acid [IAA]) has previously been suggested to regulate diverse forms of dormancy in both seed plants and liverworts. Here, we use loss- and gain-of-function alleles for auxin synthesis- and signaling-related genes, as well as pharmacological approaches, to study how auxin regulates development and dormancy in the gametophyte generation of the liverwort Marchantia polymorpha. We found that M. polymorpha possess the smallest known toolkit for the indole-3-pyruvic acid (IPyA) pathway in any land plant and that this auxin synthesis pathway mainly is active in meristematic regions of the thallus. Previously a Trp-independent auxin synthesis pathway has been suggested to produce a majority of IAA in bryophytes. Our results indicate that the Trp-dependent IPyA pathway produces IAA that is essential for proper development of the gametophyte thallus of M. polymorpha. Furthermore, we show that dormancy of gemmae is positively regulated by auxin synthesized by the IPyA pathway in the apex of the thallus. Our results indicate that auxin synthesis, transport, and signaling, in addition to its role in growth and development, have a critical role in regulation of gemmae dormancy in M. polymorpha.  相似文献   

11.
Dichlorophen (2, 2'-methylene-bis(4 chlorophenol)) has beenused frequently as a commercial eradicates of bryophytes. Usingthe moss Rhytidiadelphus squarrosus and the thalloid liverwortMarchantia polymorpha, it has been shown that dichlorophen inducesloss of intracellular potassium and magnesium, inhibits photosynthesisand, depending on concentration, either stimulates or depressesthe production of CO2 in the dark, suggesting that death maybe caused by membrane damage. Sensitivity of the moss appearsto be related to the age of the tissue but to be unaffectedby light before, during or after exposure. Rhytidiadelphus squarrosus, Marchantia polymorpha, dichlorophen, membrane damage, inhibition of growth, photosynthesis and respiration  相似文献   

12.
13.
In the last few years, next-generation sequencing techniques have started to be used to identify new viruses infecting plants. This has allowed to rapidly increase our knowledge on viruses other than those causing symptoms in economically important crops. Here we used this approach to identify a virus infecting Physcomitrium patens that has the typical structure of the double-stranded RNA endogenous viruses of the Amalgaviridae family, which we named Physcomitrium patens amalgavirus 1, or PHPAV1. PHPAV1 is present only in certain accessions of P. patens, where its RNA can be detected throughout the cell cycle of the plant. Our analysis demonstrates that PHPAV1 can be vertically transmitted through both paternal and maternal germlines, in crosses between accessions that contain the virus with accessions that do not contain it. This work suggests that PHPAV1 can replicate in genomic backgrounds different from those that actually contain the virus and opens the door for future studies on virus–host coevolution.  相似文献   

14.
15.
It is generally believed that bryophytes are the earliest land plants. However, the phylogenetic relationships among bryophytes, including mosses, liverworts and hornworts, are not clearly resolved. To obtain more information on the earliest land plants, we determined the complete nucleotide sequence of the chloroplast genome from the hornwort Anthoceros formosae. The circular double-stranded DNA of 161 162 bp is the largest genome ever reported among land plant chloroplasts. It contains 76 protein, 32 tRNA and 4 rRNA genes and 10 open reading frames (ORFs), which are identical with the chloroplast genome of the other green plants analyzed. The major difference is a larger inverted repeat than that of the liverwort Marchantia, Anthoceros contains an excess of ndhB and rps7 genes and the 3′ exon of rps12. The genes matK and rps15, commonly found in the chloroplast genomes of land plants, are pseudogenes. The intron of rrn23 is the first finding in the known chloroplast genomes of land plants. A striking feature of the hornwort chloroplast is that more than half of the protein-coding genes have nonsense codons, which are converted into sense codons by RNA editing. Maximum-likelihood (ML) analysis, based on 11 518 amino acid sites of 52 proteins encoded in the chloroplast genomes of the green plants, placed liverworts as the sister to all other land plants.  相似文献   

16.
Extant bryophytes are regarded as the closest living relatives of the first land plants, but relationships among the bryophyte classes (mosses, liverworts and hornworts) and between them and other embryophytes have remained unclear. We have recently found that plant mitochondrial genes with positionally stable introns are well suited for addressing questions of plant phylogeny at a deep level. To explore further data sets we have chosen to investigate the mitochondrial genes nad4 and nad7, which are particularly rich in intron sequences. Surprisingly, we find that in these genes mosses share three group II introns with flowering plants, but none with the liverwort Marchantia polymorpha or other liverworts investigated here. In mitochondria of Marchantia, nad7 is a pseudogene containing stop codons, but nad7 appears as a functional mitochondrial gene in mosses, including the isolated genus Takakia. We observe the necessity for strikingly frequent C-to-U RNA editing to reconstitute conserved codons in Takakia when compared to other mosses. The findings underline the great evolutionary distances among the bryophytes as the presumptive oldest division of land plants. A scenario involving differential intron gains from fungal sources in what are perhaps the two earliest diverging land plant lineages, liverworts and other embryophytes, is discussed. With their positionally stable introns, nad4 and nad7 represent novel marker genes that may permit a detailed phylogenetic resolution of early clades of land plants.  相似文献   

17.
Dr. Horst Völker 《Protoplasma》1972,75(1-2):139-153
Zusammenfassung Die Cytokinese in jungen Brutkörpern vonMarchantia polymorpha wurde licht- und elektronenmikroskopisch untersucht. Die Teilungswand entsteht aus einer einseitigen oder einer irisblendenartigen Invagination des Plasmalemma der Mutterzelle. Mikrotubuli markieren die Zuwachsfront der jungen Zellwand. Ein Einbau von Golgi-Vesikeln in die wachsende Wand konnte nicht sicher nachgewiesen werden. Die beobachtete Primordialwandbildung entspricht nicht der typischen Cytokinese höherer Pflanzen, sondern ähnelt eher furchungsähnlichen Teilungen niederer Eukarionten. Die phylogenetische Bedeutung dieses Zellteilungstypus, der zwischen der zentripetalen Septenbildung der Prokarionten und der zentrifugalen Zellplattenbildung der höheren Eukarionten steht, wird diskutiert.
Light and electron microscopic studies of cytokinesis in young gemmae ofMarchantia polymorpha L.
Summary Cytokinesis in young gemmae ofMarchantia polymorpha was studied both with light and electron microscope. The crosswall is formed by invagination of the plasmalemma either from one side or by annular ingrowth. Microtubules are found oriented rectangular to the growing septum. There is no clear evidence, whether or not the new wall is formed by coalescence of golgi vesicles. This kind of crosswall formation rather resembles the cleavage of lower algae than the cellplate formation of higher plants. ThusMarchantia may represent an intermediate stage of cell division between those plants and the annular ingrowth of the septum in procaryonta.


Herrn Professor Dr.Wilhelm Halbsguth, meinem verehrten Lehrer, zum 60. Geburtstag gewidmet.  相似文献   

18.
19.
This comprehensive overview of the xyloglucan endotransglucosylase/hydrolase (XTH) family of genes and proteins in bryophytes, based on research using genomic resources that are newly available for the moss Physcomitrella patens, provides new insights into plant evolution. In angiosperms, the XTH genes are found in large multi‐gene families, probably reflecting the diverse roles of individual XTHs in various cell types. As there are fewer cell types in P. patens than in angiosperms such as Arabidopsis and rice, it is tempting to deduce that there are fewer XTH family genes in bryophytes. However, the present study unexpectedly identified as many as 32 genes that potentially encode XTH family proteins in the genome of P. patens, constituting a fairly large multi‐gene family that is comparable in size with those of Arabidopsis and rice. In situ localization of xyloglucan endotransglucosylase activity in this moss indicates that some P. patens XTH proteins exhibit biochemical functions similar to those found in angiosperms, and that their expression profiles are tissue‐dependent. However, comparison of structural features of families of XTH genes between P. patens and angiosperms demonstrated the existence of several bryophyte‐specific XTH genes with distinct structural and functional features that are not found in angiosperms. These bryophyte‐specific XTH genes might have evolved to meet morphological and functional needs specific to the bryophyte. These findings raise interesting questions about the biological implications of the XTH family of proteins in non‐seed plants.  相似文献   

20.
A series of ent-sesquiterpenoids corresponding to the optical antipodes of those in higher plants have been isolated from the liverwort Marchantia polymorpha. These sesquiterpenoids provide yet another example of the peculiar stereospecificity of the biogenesis of the liverwort sesquiterpenoids and suggest a special taxonomic position of the liverworts in the plant kingdom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号