首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Simultaneous epidural and cortical depth recordings of the auditory middle latency reponse (MLR) were obtained from 18 anesthetized guinea pigs. Microelectrodes were advanced at a right angle to the cortical surface at sites shown to be optimal for recording surface MLRs.Transcortical polarity reversals of waves A (14 msec) and B (24 msec) of the MLR were recorded in depth penetrations initiated at sites on the temporal lobe with large amplitude surface potentials. In 6 of 18 penetrations yielding phase inversions, wave polarities changed abruptly as microelectrodes were advanced into the cortex. In the remaining penetrations, the reversals were preceded by gradual decreases in wave latencies at progressively deep sites. As electrodes were advanced beyond the depth at which polarity reversals were encountered, decreases in amplitude and only minor changes in latency were observed.Surface and depth MLR activity were temporarily eliminated immediately after electrolytic lesions were made at polarity reversal sites. Recovery of responses occurred within 30–60 min. Lesions produced in penetrations initiated at sites with no surface MLR activity had no effect. Histologic examination confirmed the location of the phase reversal sites as being within grey matter of the temporal lobe.These results are consistent with previous investigations in experimental animals which demonstrated transcortical polarity reversals, and provide evidence for dipolar generating systems of the early components of the MLR at the cortical level.  相似文献   

2.
Visual evoked potentials (VEPs) to pattern reversal vertical bar stimuli of 3 different sizes (1, 2, 4 c/deg) were recorded from 19 scalp derivations in 50 controls. The stimuli were presented on a full-field (FF) screen of 24° visual angle, and on left and right half-fields (HF) of 12° radius. In 15 controls partial HF stimuli were presented on the central 3 and 6° and as hemiannular stimuli of 12° with occlusion of the central 3 and 6°.An antero-posterior polarity reversal of the N1-P1-N2 sequence was observed for FF VEPs. A tangential polarity reversal was observed for HF VEPs. Also with central or hemiannular stimuli polarity reversals of all VEP components were observed within the scalp.Variants of VEP distribution, absence of prominence of some of the ipsi- or contralateral VEP components were observed in 8–40% of controls.The FF and HF VEP distribution, and the variant VEP asymmetries were partly dependent on the pattern spatial frequency.  相似文献   

3.
We recorded visual evoked responses in eight patients with Parkinson's disease, using a depth electrode either at or below the stereotactic target in the ventral part of the globus pallidus internus (GPi), which is located immediately dorsal to the optic tract. Simultaneously, scalp visual evoked potentials (VEPs) were also recorded from a mid-occipital electrode with a mid-frontal reference electrode. A black-and-white checkerboard pattern was phase reversed at 1 Hz; check size was 50 min of arc. Pallidal VEPs to full field stimulation showed an initial positive deflection, with a latency of about 50 ms (P50), followed by a negativity with a mean latency of 80 ms (N80). The mean onset latency of P50 was about 30 ms. P50 and N80 were limited to the ventralmost of the GPi and the ansa lenticularis. Left half field stimulation evoked responses in the right ansa lenticularis region while right half field stimulation did not, and vice versa. These potentials thus seemed to originate posterior to the optic chiasm. The scalp VEPs showed typical triphasic wave forms consisting of N75, P100 and N145. The location of the recording electrode in the ansa lenticularis region did not modify the scalp VEP. These results suggest that P50 and N80 are near-field potentials reflecting the compound action potentials from the optic tract. Therefore, N75 of the scalp VEPs may represent an initial response of the striate cortex but not of the lateral geniculate nucleus.  相似文献   

4.
Replicable oscillatory potentials, time-locked to pattern stimuli (9.0° central; counterphase reversal at 2.13 Hz) were dissociated from conventional, broad-band VEPs recorded in healthy volunteers at occipital scalp locations by high-pass digital filtering at 17.0–20.0 Hz. Nine consecutive wavelets were identified with a 56.4 ± 8.4 msec mean latency of the first replicable wavelet and mean peak-to-peak amplitude varying between 0.9 and 2.0 μV. The first 2 wavelets had significantly shorter latencies than wave N70 of unfiltered VEP, whereas the last 2 wavelets had longer latencies than N145. Latency and amplitude values varied as a function of contrast and spatial frequency of the stimulus, with shorter latencies and larger amplitudes at 60–90% contrast level and tuning of amplitude at 5.0 c/deg. All wavelets were correlated with wave P100 of unfiltered VEP, while a correlation with N70 of VEP was observed only for those wavelets with latencies in the range of wave P100. Two patients with documented brain lesions involving the visual system are described as examples of oscillatory responses occurring irrespective of filter bandpass and instead of the expected conventional VEP when the generation of these is interfered with by brain pathology. A substantial cortical contribution to the origin of the oscillatory response is conceivable. It is suggested that the oscillatory response to pattern-reversal stimulation reflects events in the visual system that are parallel to, and partly independent of, the conventional VEP, with potential application in research or for clinical purposes.  相似文献   

5.
We recorded somatosensory evoked potentials (SEPs) in scalp EEGs during stimulation of the median nerve, the ulnar nerve and the individual digits in 3 normal subjects and in 1 epilepsy patients. In this patient we also measured SEPs from chronically indwelling subdural grid electrodes during electrocorticography (ECoG). We applied dipole modelling techniques to study the 3-dimensional intracerebral locations and time activities of the neuronal sources underlying stimulation of different peripheral receptive fields. The sources underlying median nerve SEPs were located an average of 10.8 mm lateral inferior to those underlying ulnar nerve SEPs. Digit SEP sources showed a somatotopic arrangement from lateral inferior to medial superior in the order thumb, index finger, middle finger, ring finger and little finger, with some overlap or reversal for adjacent digits. The average distance between thumb and little finger was 12.5 mm. Thumb, index finger and middle finger were clustered around median nerve cortical representation, whereas ring finger and little finger were arranged around ulnar nerve cortex. In the epilepsy patient, the source localizations obtained in scalp EEGs showed good agreement with those on ECoGs. We conclude that SEPs recorded in scalp EEGs can be used to study functional topography of human somatosensory cortex non-invasively.  相似文献   

6.
Recordings were performed in the thalamus of 13 patients suffering from either abnormal movements or intractable pain, with the aim of delimiting the region to be destroyed or stimulated in order to diminish the syndrome. In 11 of these patients averaged evoked potentials were recorded simultaneously from the scalp and specific thalamus (VP) hand area levels following median nerve stimulation. These recordings were done during the operation or afterwards when an electrode was left in place for a program of stimulation.The latencies of onsets and peaks on the scalp ‘P15’ were compared with those of the VP wave; a clear correspondence was found. Moreover, when increased stimulation was used, both waves began to develop in parallel. Thus in the contralateral ‘P15’ a component exists due to the field produced by the thalamic response. To explain the presence of an ipsilateral scalp ‘P15’ wave, we propose that a second wave having the same latency and a slightly shorter peak exists on the scalp due to a field produced by a brain-stem response. This double origin of ‘P15’ is also shown by the different changes which the ipsilateral and contralateral waves present during changes in alertness.The scalp ‘N18–N20’ is also composed of at least 2 components. The first peak appears on the scalp with a latency shorter than that of the negativity which develops in the thalamus. The N wave, moreover, increases in latency with rapid stimulus repetition. We propose with others that ‘N18’ is a cortical event reflecting the arrival of the thalamo-cortical volley. The second component, ‘N20,’ has a peak latency closely correlated to that of the thalamic negativity. This component was present alone in ‘N’ when rapid stimulation (> 4/sec) was used, which did not change the thalamic response. It must be a field produced by the thalamic negativity.  相似文献   

7.
We recorded middle-latency (20–70 msec) auditory evoked potentials (MLAEPs) to monaural and binaural clicks in 30 normal adults (ages 20–49 years) at 32 scalp locations all referred to a balanced non-cephalic reference. Our goal was to define the MLAEP components that were present at comparable latencies and comparable locations across the subject population. Group and individual data were evaluated both as topographic maps and as MLAEPs at selected electrode locations.Three major components occurred between 20 and 70 msec, two well-known peaks centered at the vertex, and one previously undefined peak focused over the posterior temporal area. Pa is a 29 msec positive peak centered at the vertex and present with both monaural and binaural stimulation, Pb is a 53 msec positive peak also centered at the vertex but seen consistently only with binaural and right ear stimulation. TP41 is a 41 msec positive peak focused over both temporal areas. TP41 has not been identified in previous MLAEP studies that concentrated on central scalp locations and/or used active reference electrode sites such as ears or mastoids.Available topographic, intracranial, pharmacologic, and lesion studies indicate that Pa, Pb and TP41 are of neural origin. Whether Pa and/or Pb are produced in Heschl's gyrus, primary auditory cortex, remains unclear. TP41 is probably produced by auditory cortex on the posterior lateral surface of the temporal lobe. It should prove of considerable value in experimental and clinical evaluation of higher level auditory function in particular and of cortical function in general.  相似文献   

8.
The binaural interaction component (BIC) of the brain-stem auditory evoked potential (BAEP) was studied in 13 normally hearing adults by subtracting the response to binaural clicks from the algebraic sum of monaural responses. Eight or 16 electrodes on the head and neck were referred to a non-cephalic site, the binaural stimuli were delivered either simultaneously or with an inter-aural time difference (Δt) of 0.2–1.6 msec, and masking noise was presented to the non-stimulated ear.With simultaneous binaural clicks a BIC was identifiable in every subject, the most consistent peaks being a scalp-positive potential (P1) peaking approximately 0.2 msec after wave V and a scalp negativity (N1) 0.7 msec later. Similar potentials were identifiable in 6/7 subjects with Δt fo 0.4 msec, 5/7 at 0.8 msec but only 1/7 at 1.2 msec. This suggests that the BIC may be associated with sound localization mechanisms which are sensitive to a similar range of Δt. On increasing Δt from 0.0 to 0.8 msec, the BIC was progressively delayed by approximately half the inter-aural time difference, with no suggestion of increasing temporal dispersion. This supports the notion of a ‘delay line coincidence detection’ mechanism in which the BIC represents the output of binaurally responsive neurones, probably in the superior olivary complex, which are ‘tuned’ to a particular Δt by the relative lengths of presynaptic axons relaying input from either ear.The distribution of the BIC in sagittal and coronal electrode chains was compared with that of binaural BAEP components I–VI and found to bear the closest resemblance to wave IV. It is suggested that both components may originate largely in the lateral lemnisci.  相似文献   

9.
Multichannel recordings of visual evoked potentials (VEPs) have proved to be useful in the evaluation of visual field defects. We studied the topographic distribution of transient VEPs in 15 migraine patients (8 with visual aura and 7 without) and 15 age-matched controls during the migraine-free interval. All the subjects included in the study had normal visual fields. VEPs were recorded from 9 electrodes placed on the posterior scalp. Stimuli were full-field and hemifield reversing square wave grating patterns of medium spatial frequency (4 c/deg). The groups did not show significant differences in latencies and amplitudes of the major components (N70, P100) recorded from the midline. However, migraine patients with visual hemianopic aura showed definite asymmetries in the VEP amplitude distribution. Significantly reduced, absent or polarity-invered VEP responses were recorded ipsilateral to the side of the prodromic visual symptoms. Direct comparison of affected and unaffected hemispheres by partial field stimulation confirmed these findings. According to the VEP cortical generator theory, these abnormalities suggest a functional anomaly consistent with the clinical syndrome and detectable also in the migraine-free interval. None of the migraine patients without aura or the controls showed VEP amplitude asymmetries. We conclude that multichannel VEP recordings may discriminate between different subtypes of migraine and contribute important physiopathological information to the study of this disease.  相似文献   

10.
Electrophysiological age and sex differences in visual pattern responsivity were investigated. Pattern reversal evoked potentials (PREPs) and visual evoked potentials (VEPs) to patterned and unpatterned flashes were recorded from 20 normal subjects in each of 4 groups: young females and males aged 25–35 years and older females and males aged 55–70 years. PREP waves N70-P100 and P100-N150 from the older women were significantly larger than those from subjects in the other groups; mean amplitudes for the young females, young males and older males were not different. A similar effect, unusually large potentials for the older women, was obtained for VEPs, but only for VEPs elicited by patterned flashes and recorded from occipital scalp, i.e., an area overlying visual cortex which is sensitive to lines and edges. Our findings suggest that the visual system of older females is unusually responsive to patterned stimuli.  相似文献   

11.
Trigeminal somatosensory evoked potentials were recorded over the scalp using non-cephalic reference sites following mechanical taps to the face. A negative wave form, Nf17, was recorded bilaterally with its highest amplitude over the frontal scalp contralateral to the side of stimulation. A localized negative form, Np25, was recorded over the centro-parietal scalp contralateral to the side of stimulation. Np25 had an onset latency of 16.46 msec. The location and restricted spatial distribution of Np25 suggest that it represents the initial activation of the face area of the primary sensory cortex. The widespread bilateral nature of Nf17 and its latency of onset preceding that of Np25 suggest that Nf17 may be a ‘far-field’ potential reflecting activity in subcortical sensory pathways subserving the face.  相似文献   

12.
A topographical study was made of SEPs following stimulation of the right posterior tibial nerve at the ankle, with and without concurrent tactile stimulation of the soles of either foot or the palm of the right hand. Effects of the interfering stimulus were best demonstrated by subtracting the wave forms to derive ‘difference’ potentials.The majority of SEP components were significantly attenuated by tactile stimulation of the ipsilateral foot, and the difference wave form was of similar morphology to the control response. Components of opposite polarity peaking at 39 msec were consistent with the field of a cortical generator with dipolar properties, situated in the contralateral hemisphere just posterior to the vertex with the positive poles oriented towards the ipsilateral side. By analogy with median SEP findings, these potentials were believed to originate in the foot region of area 3b where neurones are mainly concerned with cutaneous sensory processing.When the tactile stimulus was applied to the contralateral foot, difference potentials maximally recorded just posterior to the vertex were of smaller amplitude but similar morphology to ipsilateral foot difference components. This suggested the possibility that input from the two lower extremities may converge at cortical or subcortical level, the effect being manifested in the response of certain neurones in area 3b. With both contralateral foot and ipsilateral hand stimulation, other difference potentials were present which suggested that there may be cortical regions responding to combinations of sensory stimuli applied to various parts of the body surface.  相似文献   

13.
We have used single-unit recording techniques to map the spatial distribution of the primary somatosensory (SI) cortical influences on thalamic somatosensory relay nuclei in the rat. A total of 193 microelectrode penetrations were made to record single neurons in tracks through the medial and lateral ventroposterior (VPL and VPM), ventrolateral (VL), posterior (Po), and reticular (nRt) thalamic nuclei. Single units were classified according to their (1) location within the nuclei, (2) receptive fields, and (3) response to standardized microstimulation in deep layers of the SI cortical forepaw areas. The SI stimulation produced short-latency (1- to 7-msec) excitatory responses in different percentages of neurons recorded in the following thalamic nuclei: VPL, 42.0%; Po, 25.0%; nRt, 16.4%; VL, 13.6%; and VPM, 9.9%. Within the VPL, the highest proportion of responsive neurons was found in the anterior region. Although most of the VL region was unresponsive, the caudal subregion bordering the rostral VPL showed some responsiveness (13.6% of neurons). In general, the spatial pattern of corticothalamic influences appeared to reciprocate the known thalamocortical connection patterns, but with a heterogeneity that was unpredicted.

The same parameters of SI cortical stimulation were used in studies of corticofugal modulation of afferent transmission through the VPL thalamus. A condition—test (C-T) paradigm was implemented in which the cortical stimulation (C) was delivered at a range of time intervals before test (T) mechanical vibratory stimulation was applied to digit 4 of the contralateral forepaw. The time course of cortical effects was analyzed by measuring the averaged evoked unit responses of thalamic neurons to the T stimuli, and plotting them as a function of C-T intervals from 5 to 50 msec. Of the 20 VPL neurons tested during SI stimulation, the average response to T stimulation was decreased a mean of 36%, with the suppression peaking (at 49% inhibition of the afferent response) about 15 msec after the C stimulus. Considerable rostrocaudal variation was observed, however. Whereas neurons in the rostral VPL (near VL) were strongly inhibited (-69%), neurons in the middle and caudal VPL exhibited facilitations at long and short C-T intervals, respectively. This study establishes a specific projection system from the forepaw region of SI cortex to different subregions of the VPL thalamus, producing specific temporal patterns of sensory modulation.  相似文献   

14.
Somatosensory evoked potential (SEP) studies were performed in 14 patients with peripheral vascular disease who received epidural spinal cord stimulation (SCS) for chronic pain relief of the lower limbs. Signals were amplified and filtered between 20–2000 Hz and 200–2000 Hz to better identify activities in the high frequency range. In 7 patients bit-colour maps were also computed. In all the patients a homogeneous short-latency scalp evoked potential with a prevalent diphasic shape (P1-N1) was recorded. In all our scalp records, even with the wide bandpass, small short-latency positive deflections were observed on the descending front of the first major positive wave and they were better defined as a series of up to 6 wavelets, preceding the major negative scalp wave in the tracings filtered through the narrow bandpass. They appeared in an interval ranging from 5.5 to 15.6 msec. Bit-colour maps showed consistent positive fields, with a maximum at the vertex, starting mainly at about 5.5 msec; in 3 patients, a prominent positivity between 8.5 and 10.5 msec was recorded followed by smaller components preceding the major positive-negative (Pl-Nl) complex. More synchronous volleys during direct SCS produced clear short-latency SEPs. Although they were of larger amplitude, we regarded them as corresponding to those described by previous authors obtained by stimulation of nerves of the lower limbs, and probably arising from subcortical structures.  相似文献   

15.
Determination of conduction times of the peripheral and central parts of the sensory pathway using evoked somatosensory potentials. Acta physiol. pol., 1985, 36 (3): 216-223. Simultaneous recording of the somatosensory evoked potentials (SEP) from Erb's point, neck and scalp allows investigation of the peripheral and central conduction times. The early components of the SEP produced by stimulation of the median nerve at the wrist were recorded using standardized electrode locations in 15 normal subjects. The difference of the latencies between the first peak of the cortical response (N20) and the peak of the neck response (N14) reflects, probably, the conduction time between the dorsal column nuclei and the cortex. Its value was 6 +/- 0.7 msec. The conduction time difference (between peak Erb's point response (N9) and N14) was 5.5 +/- 0.5 msec and it reflected the peripheral conduction time. For diagnostic application the lower limit of the response amplitudes was determined also for every component.  相似文献   

16.
Responses of 98 auditory cortical neurons to electrical stimulation of the medial geniculate body (MGB) were recorded (45 extracellulary, 53 intracellularly) in experiments on cats immobilized with tubocurarine. Responses of the same neurons to clicks were recorded for comparison. Of the total number of neurons, 75 (76%) responded both to MGB stimulation and to clicks, and 23 (24%) to MGB stimulation only. The latent period of extracellularly recorded action potentials of auditory cortical neurons in response to clicks varied from 7 to 28 msec (late responses were disregarded), and that to MGB stimulation varied from 1.5 to 12.5 msec. For EPSPs these values were 8–13 and 1–4 msec respectively. The latent period of IPSPs arising in response to MGB stimulation varied from 2.2 to 6.5 msec; for 34% of neurons it did not exceed 3 msec. The difference between the latent periods of responses to clicks and to MGB stimulation varied for different neurons from 6 to 21 msec. Responses of 11% of neurons to MGB stimulation, recorded intracellularly, consisted of sub-threshold EPSPs, while responses of 23% of neurons began with an EPSP which was either followed by an action potential and subsequent IPSP or was at once cut off by an IPSP; 66% of neurons responded with primary IPSPs. Neurons responding to MGB stimulation by primary IPSPs are distributed irregularly in the depth of the cortex: there are very few in layers III and IV and many more at a depth of 1.6–2 mm. Conversely, excited neurons are predominant in layer III and IV, and they are few in number at a depth of 1.6–2 mm. It is concluded that the afferent volley reaching the auditory cortex induces excitation of some neurons therein and, at the same time, by the principle of reciprocity, induces inhibition of others. This afferent inhibition takes place with the participation of inhibitory interneurons, and in some cells the inhibition is recurrent. The existence of reciprocal relationships between neurons in different layers of the auditory cortex is postulated.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 1, pp. 23–31, January–February, 1972.  相似文献   

17.
In the present study we characterized the field potentials in the anterior cingulate cortex (ACC) evoked by electrical stimulation of the medial thalamus (MT), and elucidated the synaptic organization of the ACC. Male Sprague Dawley rats were maintained in general anesthesia by alpha-chloralose (50 mg/kg, i.v.). Tungsten micro-electrodes were used for electric stimulation and recordings. The field potentials and multiple unit activities in the ACC were evoked by electric stimulation of the MT where the nociceptive responses were identified. A MT-evoked positive-negative potential was recorded on the medial frontal surface. The polarity of the surface negative potential was reversed between 0.5 to 1.0 mm in the deep layer of the ACC. Maximum evoked negative potential appeared at about 4 mm anterior to the bregma and 1 mm lateral to the midline. The maximum evoked positive potential occurred at about 3 mm anterior to the bregma and 1 mm lateral to the midline. The evoked multiple unit activities coincided with the deep negative field potential at a latency between 16 ms and 24 ms at a depth between 0.5 mm and 1.5 mm in the ACC. These electrophysiological findings confirmed that nociceptive information in the MT is transmitted to the ACC and trans-synaptically activates deeper and more superficial layers of cortical neurons.  相似文献   

18.
We have used single-unit recording techniques to map the spatial distribution of the primary somatosensory (SI) cortical influences on thalamic somatosensory relay nuclei in the rat. A total of 193 microelectrode penetrations were made to record single neurons in tracks through the medial and lateral ventroposterior (VPL and VPM), ventrolateral (VL), posterior (Po), and reticular (nRt) thalamic nuclei. Single units were classified according to their (1) location within the nuclei, (2) receptive fields, and (3) response to standardized microstimulation in deep layers of the SI cortical forepaw areas. The SI stimulation produced short-latency (1- to 7-msec) excitatory responses in different percentages of neurons recorded in the following thalamic nuclei: VPL, 42.0%; Po, 25.0%; nRt, 16.4%; VL, 13.6%; and VPM, 9.9%. Within the VPL, the highest proportion of responsive neurons was found in the anterior region. Although most of the VL region was unresponsive, the caudal subregion bordering the rostral VPL showed some responsiveness (13.6% of neurons). In general, the spatial pattern of corticothalamic influences appeared to reciprocate the known thalamocortical connection patterns, but with a heterogeneity that was unpredicted. The same parameters of SI cortical stimulation were used in studies of corticofugal modulation of afferent transmission through the VPL thalamus. A condition-test (C-T) paradigm was implemented in which the cortical stimulation (C) was delivered at a range of time intervals before test (T) mechanical vibratory stimulation was applied to digit 4 of the contralateral forepaw. The time course of cortical effects was analyzed by measuring the averaged evoked unit responses of thalamic neurons to the T stimuli, and plotting them as a function of C-T intervals from 5 to 50 msec. Of the 20 VPL neurons tested during SI stimulation, the average response to T stimulation was decreased a mean of 36%, with the suppression peaking (at 49% inhibition of the afferent response) about 15 msec after the C stimulus. Considerable rostrocaudal variation was observed, however. Whereas neurons in the rostral VPL (near VL) were strongly inhibited (-69%), neurons in the middle and caudal VPL exhibited facilitations at long and short C-T intervals, respectively. This study establishes a specific projection system from the forepaw region of SI cortex to different subregions of the VPL thalamus, producing specific temporal patterns of sensory modulation.  相似文献   

19.
We have recorded early components of somatosensory evoked magnetic fields with a sensitive 7-channel first-order gradiometer using a wide recording passband (0.05–2000 Hz) and high sampling frequency (8000 Hz). The left median nerve was stimulated at the wrist and responses were recorded over the right hemisphere. The responses typically consisted of a N20m peaking at 18–20 msec, a small P22m peaking at 21–23 msec and a P27m peaking at 29–31 msec. The topography of N20m could be explained by a tangential current dipole in the posterior wall of the central sulcus (probably in area 3b). The equivalent dipoles of P27m were located on average 10 mm antero-medially to the sources of N20m. This suggests that P27m may get a contribution from the anterior wall of the central sulcus. An increase of stimulus repetition rate from 2 to 5 Hz decreased the amplitude of P27m more than that of N20m, which implies that these two deflactions are generated by different neural netwoks.  相似文献   

20.
Introduction of the virtual electrode polarization (VEP) theory suggested solutions to several century-old puzzles of heart electrophysiology including explanation of the mechanisms of stimulation and defibrillation. Bidomain theory predicts that VEPs should exist at any stimulus strength. Although the presence of VEPs for strong suprathreshold pulses has been well documented, their existence at subthreshold strengths during diastole remains controversial. We studied cardiac membrane polarization produced by subthreshold stimuli in 1) rabbit ventricular muscle using high-resolution fluorescent imaging with the voltage-sensitive dye pyridinium 4-[2-[6-(dibutylamino)-2-naphthalenyl]-ethenyl]-1-(3-sulfopropyl)hydroxide (di-4-ANEPPS) and 2) an active bidomain model with Luo-Rudy ion channel kinetics. Both in vitro and in numero models show that the common dog-bone-shaped VEP is present at any stimulus strength during both systole and diastole. Diastolic subthreshold VEPs exhibited nonlinear properties that were expressed in time-dependent asymmetric reversal of membrane polarization with respect to stimulus polarity. The bidomain model reveals that this asymmetry is due to nonlinear properties of the inward rectifier potassium current. Our results suggest that active ion channel kinetics modulate the transmembrane polarization pattern that is predicted by the linear bidomain model of cardiac syncytium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号