首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A relatively simple, very sensitive bioluminescence-enhanced detection system for protein blotting and nucleic acid hybridization is described. The method utilizes antibodies conjugated with alkaline phosphatase or nucleotide probes complexed with alkaline phosphatase. Then the alkaline phosphatase takes part in a reaction by releasing D -luciferin (Photinus pyralis) from D -luciferin-O-phosphate. Liberated D -luciferin reacts with luciferase, ATP and oxygen under light emission. Light is measured using the Argus-100 a photon counting camera system or photographic films. Bound alkaline phosphatase conjugated antibodies or hybridized nucleotide probes can be visualized. The limit of detection is at present 5 to 50 fg of protein (IgG), corresponding, for example to 30 to 300 × 10?21 mol. This means a much higher sensitivity of the detection system in comparison to systems used at present. Experiments concerning nucleic acid hybridization and visualization of the emitted light by a photon counting camera (Argus-100) are under investigation.  相似文献   

2.
It is estimated that over two thirds of all new crystal structures of proteins are determined via the protein selenium derivatization (selenomethionine (Se‐Met) strategy). This selenium derivatization strategy via MAD (multi‐wavelength anomalous dispersion) phasing has revolutionized protein X‐ray crystallography. Through our pioneer research, similarly, Se has also been successfully incorporated into nucleic acids to facilitate the X‐ray crystal‐structure and function studies of nucleic acids. Currently, Se has been stably introduced into nucleic acids by replacing nucleotide O‐atom at the positions 2′, 4′, 5′, and in nucleobases and non‐bridging phosphates. The Se derivatization of nucleic acids can be achieved through solid‐phase chemical synthesis and enzymatic methods, and the Se‐derivatized nucleic acids (SeNA) can be easily purified by HPLC, FPLC, and gel electrophoresis to obtain high purity. It has also been demonstrated that the Se derivatization of nucleic acids facilitates the phase determination via MAD phasing without significant perturbation. A growing number of structures of DNAs, RNAs, and protein–nucleic acid complexes have been determined by the Se derivatization and MAD phasing. Furthermore, it was observed that the Se derivatization can facilitate crystallization, especially when it is introduced to the 2′‐position. In addition, this novel derivatization strategy has many advantages over the conventional halogen derivatization, such as more choices of the modification sites via the atom‐specific substitution of the nucleotide O‐atom, better stability under X‐ray radiation, and structure isomorphism. Therefore, our Se‐derivatization strategy has great potentials to provide rational solutions for both phase determination and high‐quality crystal growth in nucleic‐acid crystallography. Moreover, the Se derivatization generates the nucleic acids with many new properties and creates a new paradigm of nucleic acids. This review summarizes the recent developments of the atomic site‐specific Se derivatization of nucleic acids for structure determination and function study. Several applications of this Se‐derivatization strategy in nucleic acid and protein research are also described in this review.  相似文献   

3.
Summary The stochastic model of molecular evolution was used to makea priori predictions for the total number of one-step nucleotide changes required to account for a given number of amino acid substitutions between two homologous proteins. These predictions are now found to be concordant with empirical data summarized by Dayhoff, Eck and Park (1969). Correction factors are derived for adjusting the leg lengths of phylogenetic trees. It is shown that the operations of constructing the phylogenetic tree and applying the correction algorithm are not commutative with respect to obtaining the leg lengths. The effect of this on certain published phylogenies is discussed. It is suggested that, as a first approximation, at any given point in evolutionary time, enthalpic (selective) forces determine the number and position of those codon sites which are free to vary, whereas within these variable sites, entropic (random) processes determine the course of evolution at the molecular level.  相似文献   

4.
We present alternative and improved protocols for in situ analysis of single copy genes in prokaryotes. Primed in situ amplification (PRINS) and cycle PRINS were used to detect, via the incorporation of a fluorescein labelled nucleotide, the presence of specific genes carried on both high and low copy number plasmids in individual cells of Escherichia coli and a marine bacterium, SW5. The optimised protocols described enabled a significant reduction in non-specific signals whilst maintaining high fluorescent activity via labelled nucleotide incorporation. In addition, nucleic acids were amplified linearly and were retained within the permeabilised microbial cells. These methods provide considerable advances in sensitivity, specificity and reliability compared to current protocols for bacterial in situ nucleic acid amplification.  相似文献   

5.
SYNOPSIS. Glaucoma chattoni strain A has been grown in the chemically defined medium previously used for Colpidium campylum and Tetrahymena pyriformis. It was necessary to modify the amino acid, nucleotide and other components of the medium in order to obtain optimum growth. The modified medium contained 17 amino acids, nucleic acid components, fatty acids, stigmasterol, sodium acetate, a mixture of B-vitamins and several inorganic salts.  相似文献   

6.
The CCA‐adding enzyme synthesizes the CCA sequence at the 3′ end of tRNA without a nucleic acid template. The crystal structures of class II Thermotoga maritima CCA‐adding enzyme and its complexes with CTP or ATP were determined. The structure‐based replacement of both the catalytic heads and nucleobase‐interacting neck domains of the phylogenetically closely related Aquifex aeolicus A‐adding enzyme by the corresponding domains of the T. maritima CCA‐adding enzyme allowed the A‐adding enzyme to add CCA in vivo and in vitro. However, the replacement of only the catalytic head domain did not allow the A‐adding enzyme to add CCA, and the enzyme exhibited (A, C)‐adding activity. We identified the region in the neck domain that prevents (A, C)‐adding activity and defines the number of nucleotide incorporations and the specificity for correct CCA addition. We also identified the region in the head domain that defines the terminal A addition after CC addition. The results collectively suggest that, in the class II CCA‐adding enzyme, the head and neck domains collaboratively and dynamically define the number of nucleotide additions and the specificity of nucleotide selection.  相似文献   

7.
Summary In a North Carolina population of Diamorpha smallii, densities were artificially manipulated by thinning stands to predetermined densities. Individuals in areas of high density produce fewer seeds than individuals at low density in the same habitat. Three components of fecundity, the number of flowers per plant, the number of fruits per plant, and the number of seeds per fruit, were negatively correlated with density. The relationship of components of fecundity to density were used to develop a model of population regulation for this species. These results and predictions from the model are discussed in relation to other density studies.  相似文献   

8.
A model has been developed that permits the prediction of mRNA nucleic acid sequence from the sequences of the translated proteins. The model relies on the information obtained from the comparison of protein sequences in related species to reduce the number of possible codons for those amino acids where mutations are observed. The predictions so obtained have been tested by applying the model to proteins whose mRNA sequences are known. The model's predictions have been found to be 100% accurate if three or more different amino acids are known at a given position and if the protein sequences are restricted to relatively closely related species (within the same class). The use of this model may permit a reduction of the mRNA sequence degeneracy and therefore be helpful in the synthesis of cDNA probes or for the prediction of restriction endonuclease sites. Computer programs have been developed to ease the use of the model.  相似文献   

9.
Pyrimidine metabolism was investigated at various stages ofsomatic embryo development of white spruce (Picea glauca). The contribution of thede novo and the salvage pathways of pyrimidine biosynthesis to nucleotide and nucleic acid formation and the catabolism of pyrimidine was estimated by the exogenously supplied [6-14C]orotic acid, an intermediate of thede novo pathway, and with [2-14C]uridine and [2-14C]uracil, substrates of the salvage pathways. Thede novo pathway was very active throughout embryo development. More than 80 percnt; of [6-14C]orotic acid taken up by the tissue was utilized for nucleotide and nucleic acid synthesis in all stages of this process. The salvage pathways of uridine and uracil were also operative. Relatively high nucleic acid biosynthesis from uridine was observed, whereas the contribution of uracil salvage to the pyrimidine nucleotide and nucleic acid synthesis was extremely limited. A large proportion of uracil was degraded as 14CO2, probably via β-ureidopropionate. Among the enzymes of pyrimidine metabolism, orotate phosphoribosyltransferase was high during the initial phases of embryo development, after which it gradually declined. Uridine kinase, responsible for the salvage of uridine, showed an opposite pattern, since its activity increased as embryos developed. Low activities of uracil phosphoribosyltransferase and non-specific nucleoside phosphotransferase were also detected throughout the developmental period. These results suggest that the flux of thede novo and salvage pathways of pyrimidine nucleotide biosynthesisin vivo is roughly controlled by the amount of these enzymes. However, changing patterns of enzyme activity during embryo development that were measuredin vitro did not exactly correlate with the flux estimated by the radioactive precursors. Therefore, other fine control mechanisms, such as the fluctuation of levels of substrates and/or effectors may also participate to the real control of pyrimidine metabolism during white spruce somatic embryo development.  相似文献   

10.
Prediction accuracies of estimated breeding values for economically important traits are expected to benefit from genomic information. Single nucleotide polymorphism (SNP) panels used in genomic prediction are increasing in density, but the Markov Chain Monte Carlo (MCMC) estimation of SNP effects can be quite time consuming or slow to converge when a large number of SNPs are fitted simultaneously in a linear mixed model. Here we present an EM algorithm (termed “fastBayesA”) without MCMC. This fastBayesA approach treats the variances of SNP effects as missing data and uses a joint posterior mode of effects compared to the commonly used BayesA which bases predictions on posterior means of effects. In each EM iteration, SNP effects are predicted as a linear combination of best linear unbiased predictions of breeding values from a mixed linear animal model that incorporates a weighted marker-based realized relationship matrix. Method fastBayesA converges after a few iterations to a joint posterior mode of SNP effects under the BayesA model. When applied to simulated quantitative traits with a range of genetic architectures, fastBayesA is shown to predict GEBV as accurately as BayesA but with less computing effort per SNP than BayesA. Method fastBayesA can be used as a computationally efficient substitute for BayesA, especially when an increasing number of markers bring unreasonable computational burden or slow convergence to MCMC approaches.  相似文献   

11.
Extraction of nucleic acids from red algae is complicated by the presence of phycocolloids. For this reason, methods used for nucleic acid isolation from other organisms are not always amenable to use with red algal preparations; modifications in some cases lead to protocols that are time consuming and complicated, often requiring large amounts of algal tissue for starting material. Here we describe the isolation of both RNA and DNA followed by fractionation and identification of nuclear, chloroplast, and mitochondrial DNAs from a single preparation of Polysiphonia boldii Wynne and Edwards using a simple method that yielded approximately 100 μg of total RNA and 20 μg of total DNA from 1 g of frozen powdered algae. The potent protein denaturant guanidinium thiocyanate and the detergent sarkosyl were used to gently lyse the cells and organelles and immediately inhibit nuclease activity in the extract. The nucleic acids were isolated by ultracentrifugation into a dense solution of CsCl; the RNA was recovered as a pellet and the DNA as a band within the CsCl solution. Agarose gel electrophoresis of the total RNA showed discrete ribosomal RNA bands, indicating little nonspecific degradation. The nuclear, chloroplast, and mitochondrial DNAs were fractionated by density gradient ultracentrifugation in the presence of the DNA binding dye, bisbenzimide H (Hoechst 33258), which binds preferentially to DNA with a high A + T:G + C ratio, thus altering its density to a greater degree than it does that of DNA with a lower nucleotide ratio. The three fractions were identified by Southern blot analysis using heterologous gene probes specific for the different genomes. The protocol should be applicable to different types of algae. The simple nucleic acid isolation step can be performed on multiple samples simultaneously without subsequent fractionation of DNA, allowing comparison of DNA from different individuals, populations, or species.  相似文献   

12.
T. G. Dewey 《Biopolymers》1990,29(14):1793-1799
A ligand binding model of counterion association in finite length polyelectrolytes is presented. This model introduces counterion condensation features into a binding formalism. It agrees well with the predictions of other finite length models and is consistent with experimental data on helix–coil melting transitions for short nucleic acid oligomers. This model uses a discrete charge distribution for the polyelectrolyte. An expression for the electrostatic self-energy of finite length polyelectrolytes is derived using the Euler–Maclaurin sum formula. This sum is shown to be accurate over a wide range of salt concentrations. This electrostatic term is used in an energy minimization analysis. The energy minimization is solved analytically using a Lagrange inversion formula. This general procedure gives a rapidly convergent series and requires no assumptions with regard to “limiting law” behavior. However, when used in the Manning minimization formalism [(1977) Biophysical Chemistry, 24 , 2086], the volume of the condensed phase becomes unrealistically large at low ionic strength. The ligand binding model does not have a condensed phase volume as a parameter. It provides a single expression that agrees both with Manning's theory and with the theory of Ramanathan and Woodbury [(1982) Journal of Chemical Physics 77 , 4133] under the respective conditions of these theories.  相似文献   

13.
Eleocytes (a type of coelomic cell) of the polychaete Nereis virens can store large amounts of adenine nucleotides at certain times. Since eleocytes have specific functions related to gametogenesis, we tested whether the presence of these large nucleotide stores in eleocytes is specific to gender or related to specific events during gametogenesis. Nucleotide pools in eleocytes isolated at different stages of sexual maturation from N. virens were analysed using high-performance liquid chromatography. Eleocytes from immature and male animals had extremely high concentrations of both AMP and ADP (each > 10 μmol/ml of packed cell volume). In eleocytes from male animals, the high nucleotide stores were maintained throughout the maturation phase and decreased at a late stage, while in female animals the nucleotides were degraded at an early stage of maturation. In male eleocytes, the decrease in the adenine nucleotide pool may be the result of its conversion to inosine which is then released by the eleocytes and reutilized by male germ cells for nucleic acid biosynthesis, as has been suggested previously. Our study shows that the time of degradation of the adenine nucleotide pool coincides with the period of spermatogonia proliferation which involves intense nucleic acid synthesis. ATP levels (0.4–1.5 μmol/ml packed cell volume) and the guanine nucleotide pool (GTP+GDP+GMP; 0.08–0.18 μmol/ml packed cell volume) were similar in both sexes, did not change during germ cell development and were decreased only in eleocytes from prespawning females. The GTP/GDP ratios were initially higher (up to 14) in eleocytes from females compared to ratios in eleocytes from immature (4–9) and male animals (up to 8), and decreased during the maturation phase of the animals. GTP levels were correlated with those of ATP; this correlation was much closer in eleocytes from females than from males. The results further support the hypothesis that the adenine nucleotide stores in the eleocytes are maintained as a supply of purine precursors for the growing germ cells.  相似文献   

14.
An individual-based model forDrosophila is formulated, based on competition amongst larvae consuming the same batch of food. The predictions of the model are supported by data for single speciesDrosophila populations reared in the laboratory. The model is used to build a simple discrete model for the dynamics ofDrosophila populations that are kept over a number of generations. The dynamics of a single species is shown to give either a stable equilibrium or fluctuations which can be periodic or chaotic. When the dynamics of a species in the absence of the other is periodic or chaotic, we found coexistence or two alternative states, on neither of which the species can coexist.  相似文献   

15.
Measuring seasonal productivity is difficult in multi-brooded species without labour-intensive ringing studies. Individual-based (IB) models have been used to estimate seasonal productivity with no direct knowledge of number of nesting attempts, but they are often based on simplified re-nesting probability (φR) step-functions instead of observed or more biologically plausible ones. We present a new, open-source IB seasonal productivity model parameterized from studies of Black Redstart Phoenicurus ochruros and Yellowhammer Emberiza citrinella. We examined how the φR function shape (empirical versus simplified) influenced (1) model performance, (2) re-nesting compensation and (3) population-level predictions of a simulated management intervention. Population-level predictions were made only for Yellowhammer as we had more detailed demographic data, such as survival rates, available. Pattern-oriented modelling revealed that IB models produced realistic within-population distributions of breeding parameters, and those specified with an observed or empirically derived φR function generally outperformed those specified with simpler step functions. Strength of re-nesting compensation differed depending on the φR function used. For Yellowhammers, type of φR function in IB models marginally influenced population-level predictions of a simulated management intervention (potential population growth rate increased between 23% and 29% relative to no management intervention). In contrast, a simple deterministic productivity model, which did not simulate re-nesting compensation, predicted a 41% increase in potential population growth. At a population level, choice of φR function may have less influence on IB model predictions, but choice of model itself (IB versus deterministic) may have substantial impact. We discuss how more biologically plausible φR functions might either be observed directly, derived from nest data, or estimated from proxy information such as moult or brood patch changes.  相似文献   

16.
A method is presented for the estimation of nucleotide diversity and genetic structure of populations from RAPD (random amplified polymorphic DNA) data. It involves a modification of the technique developed by Lynch and Crease (1990) for the case of restriction sites as survey data. As new elements the method incorporates (i) dominance correction, (ii) values of asexual reproduction of the populations sampled, and (iii) an analytical variance of the number of nucleotide substitutions per site. Sampling was carried out at two geographic scales for three aphid species. At a macrogeographic scale, populations of Rhopalosiphum padi did not show statistical genetic differentiation. Aphis gossypii and Myzus persicae, which were sampled at a microgeographic scale, showed a higher genetic differentiation than R. padi, it being statistically significant in M. persicae. The major sources of sampling variance within- and between-populations were found to be nucleotide (i.e., the number of alleles used as a function of the number of primers used) and population (i.e., sample size) sampling. Extremely low estimates of nucleotide diversity were obtained for the species studied here. This result is consistent with previous reports on genetic diversity for the same or other aphid species which were based on allozyme polymorphism, mitochondrial DNA variation and qualitative analyses of RAPDs.  相似文献   

17.

Background  

Joint alignment and secondary structure prediction of two RNA sequences can significantly improve the accuracy of the structural predictions. Methods addressing this problem, however, are forced to employ constraints that reduce computation by restricting the alignments and/or structures (i.e. folds) that are permissible. In this paper, a new methodology is presented for the purpose of establishing alignment constraints based on nucleotide alignment and insertion posterior probabilities. Using a hidden Markov model, posterior probabilities of alignment and insertion are computed for all possible pairings of nucleotide positions from the two sequences. These alignment and insertion posterior probabilities are additively combined to obtain probabilities of co-incidence for nucleotide position pairs. A suitable alignment constraint is obtained by thresholding the co-incidence probabilities. The constraint is integrated with Dynalign, a free energy minimization algorithm for joint alignment and secondary structure prediction. The resulting method is benchmarked against the previous version of Dynalign and against other programs for pairwise RNA structure prediction.  相似文献   

18.
Phylogenetic analyses frequently rely on models of sequence evolution that detail nucleotide substitution rates, nucleotide frequencies, and site-to-site rate heterogeneity. These models can influence hypothesis testing and can affect the accuracy of phylogenetic inferences. Maximum likelihood methods of simultaneously constructing phylogenetic tree topologies and estimating model parameters are computationally intensive, and are not feasible for sample sizes of 25 or greater using personal computers. Techniques that initially construct a tree topology and then use this non-maximized topology to estimate ML substitution rates, however, can quickly arrive at a model of sequence evolution. The accuracy of this two-step estimation technique was tested using simulated data sets with known model parameters. The results showed that for a star-like topology, as is often seen in human immunodeficiency virus type 1 (HIV-1) subtype B sequences, a random starting topology could produce nucleotide substitution rates that were not statistically different than the true rates. Samples were isolated from 100 HIV-1 subtype B infected individuals from the United States and a 620 nt region of the env gene was sequenced for each sample. The sequence data were used to obtain a substitution model of sequence evolution specific for HIV-1 subtype B env by estimating nucleotide substitution rates and the site-to-site heterogeneity in 100 individuals from the United States. The method of estimating the model should provide users of large data sets with a way to quickly compute a model of sequence evolution, while the nucleotide substitution model we identified should prove useful in the phylogenetic analysis of HIV-1 subtype B env sequences. Received: 4 October 2000 / Accepted: 1 March 2001  相似文献   

19.
Genomic RNA of plum pox virus (PPV) was used as a template for the synthesis of complementary DNA (cDNA). The generated cDNA molecules were subsequently cloned into pBR 322. A physical map covering 9700 bases of the PPV genome was constructed from 8, clones by hybridization and restriction endonuclease digestion. Clone pPPV-NAT 309, starting at the 3′-end, with an 866 bp insert was used in Northern- and Dot-hybridizations for the detection of single-stranded viral RNA in total nucleic acid as well as in sap preparations of PPV infected Nicotiana clevelandii. The nucleotide sequence of this clone was determined, the amino acid sequence of the coat protein C-terminal part was deduced and compared with four other coat proteins of potyviruses.  相似文献   

20.
Abstract

Recently, we introduced a novel exciplex-based approach for detection of nucleic acids using a model DNA-mounted exciplex system, consisting of two 8-mer ExciProbes hybridized to a complementary 16-mer DNA target. We now show, for the first time, that this approach can be used to detect DNA at the level of PCR product and plasmid, when the target sequence (5′-GCCAAACACAGAATCG-3′) was embedded in long DNA molecules (PCR products and ~3 Kbp plasmid). A remarkably stringent demand is made of the solvent conditions for this exciplex emission to occur, viz., emission is optimal for DNA at 80% tri-fluoroethanol, even in the plasmid situations, raising the question of the molecular structural basis of this system. We show that a perfectly matched plasmid target can be differentiated from target containing single nucleotide substitutions; hence, ExciProbes could be applied to SNP analysis. The effect of counter cations (Na+, K+, and Mg2+) and PCR additives on exciplex emission has been also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号