首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetics of the synthesis of adducts between salmon testis DNA and platinum(II) compounds were measured by their effects on DNA synthesis, circular dichroism, and ethidium bromide dependent fluorescence. Transient incorporation of [14C]cyanide into DNA adducts of of cis-diammineaquochloroplatinum(II) and respectively cis-diamminediaquoplatinum(II) compounds but not of trans-diammineaquochlorplatinum(II) was observed. A minimal kinetic scheme is derived, in which a transient monodentate DNA-platinum(II) adduct is formed in a bimolecular reaction between DNA and aquated platinum(II) compounds. Second-order rate constants are 2000-3000 M-1 min-1 for cis-diamminediaquoplatinum(II) and 280-400 M-1 min-1 for cis- and trans-diammineaquochloroplatinum(II), respectively. The dependence of pseudo-first-order rate constants is not linear for high concentrations of DNA, suggesting competitive formation of more than one primary adduct. The monodentate adducts inhibit DNA polymerase catalyzed DNA synthesis. The biomolecular reaction is followed by a rearrangement (rate constant 0.22 min-1) that gives rise to most of the decrease in the fluorescence intensity and that depends on the state of aquation of the DNA-bound platinum(II) complex. By exchange of coordinated water with a second nucleotide, the monodentate adduct can form cross-links in a reaction joining the rearrangement. Adducts containing a chloro group liberate it by hydrolysis prior to cross-linking. In the case of the trans-platinum(II) adduct, the hydrolysis is aided by the trans effect of the bound first nucleotide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Ring-substituted diaqua(1,2-diphenylethylenediamine)platinum(II) sulfate shows unusual kinetics in its reaction with salmon testis DNA. The mechanism for diaqua[meso-1,2-bis(2,6-dichloro-4- hydroxyphenyl)ethylenediamine]platinum(II) sulfate, [Pt(H2O)2(meso-6)]2+SO4(2-), a representative of this series, has been investigated and compared with that for cis-[Pt(NH3)2(H2O)2]2+. Reactions were followed by atomic absorption, analytical HPLC of Pt-DNA digests, arrest of enzymatic DNA synthesis/degradation, ultraviolet and fluorescence spectrophotometry. Except for the formation of monofunctional DNA adducts, the kinetics of the platinum(II) complexes are comparable. The pseudo-first-order rate constant for the attack of DNA by [Pt(H2O)2(meso-6)]2+ follows the concentration of DNA in a hyperbolic fashion, which is in contrast to the linear dependence for cis-[Pt(NH3)2(H2O)2]2+. The hyperbolic dependence is typical for a dissociable DNA/drug complex preceding the coordination reaction. By studying the binding of free ligand to DNA, and by correlating ligand structures and electrostatic charges with effects on adduct formation, both the phenyl residues and the positive charge of the platinum(II) complex are shown to be crucial for the stability of the dissociable complex. A non-intercalative mode of binding to the DNA backbone is suggested. At the high concentrations of DNA found in cell nuclei, the reaction of the dissociable complex can, principally, become rate-limiting in the attack of DNA and thus reduce the cytotoxic efficiency of a drug.  相似文献   

3.
[3H]dGMP-3'-labelled, activated salmon testis DNA and [32P]dGMP-5'-labelled open circular M13 DNA were reacted with cis-diamminedichloroplatinum(II), cis-diamminechloroaquaplatinum(II), cis-diamminediaquaplatinum(II) or trans-diamminechloroaquaplatinum(II). The reaction was arrested after arbitrary times by adjustment to slightly alkaline solution conditions. The platinum-containing DNA was digested with Escherichia coli DNA polymerase I. The progress of nucleotide release was measured by acid precipitation of undigested DNA. Solubilized nucleotides and adducts were analyzed by HPLC. The 3'-5'-exonuclease activity liberated single-coordinated dGMP-platinum(II) adducts from both cis- and trans-platinum(II) treated salmon testis DNA and a small fraction of adducts of cis-platinum(II) that coordinated two molecules of dGMP. The bisadduct was derived from non-neighboring guanine residues probably located at or close to 3'-termini. This nuclease activity neither cut between nor after neighboring guanine residues crosslinked by cis-platinum(II). No bisadduct was liberated for trans-platinum(II). The 5'-3'-exonuclease activity did not liberate any nucleotide adducts from cis-platinum(II)-treated DNa. However, it removed single-coordinated guanine adducts of trans-diamminedichloroplatinum(II). From the kinetics of the appearance of dGMP monoadducts and the inhibition of digestion, a reaction scheme is formulated for the reaction of platinum(II) complexes with DNA that confirms and extends the previously published one [W. Schaller, H. Reisner & E. Holler (1987) Biochemistry 26, 943-950]. The longevity of the dGMP monoadduct intermediate is discussed in the context of the efficiency of cis-diamminedichloroplatinum(II) as an antitumor drug.  相似文献   

4.
E Holler  R Bauer    F Bernges 《Nucleic acids research》1992,20(9):2307-2312
The question of whether monofunctional DNA platinum(II) adducts block synthesis of DNA by purified DNA polymerases of different types and origin has been investigated by comparing the time dependence of synthesis arrest and of DNA adduct formation. Activated salmon testis DNA is used as a suitable substrate for DNA synthesis allowing to probe inhibition by platinum(II) monoadducts for the variety of inherent template-primers. Reaction amplitudes are related to defined mixtures of dichloro and chloroaqua platinum(II) complexes. It is found that (i) all investigated DNA polymerases seem arrested (100% efficiency) at bifunctional DNA adducts. (ii) human DNA polymerase beta bypasses most of the monofunctional lesions of the three platinum(II) complexes investigated. (iii) Klenow fragment is blocked by monoadducts with increasing efficiency in the order cis-diamminechloroaquaplatinum(II) (0%) less than meso-[1,2-bis(2,6- dichloro-4-hydroxyphenyl)ethylenediamine] chloroaquaplatinum(II) (50%) less than trans-diamminechloro-aquaplatinum(II) (75%). (iv) Escherichia coli DNA polymerase I, Thermus aquaticus DNA polymerase, Physarum polycephalum DNA polymerase alpha, and calf thymus DNA polymerase alpha appear to be arrested by monoadducts. According to these examples, blocking efficiencies depend on the cis/trans-stereogeometry of fixation of the carrier ligands at platinum(II) residues, on the size/chemical nature of the platin(II) carrier ligand and on the type/origin of DNA polymerase.  相似文献   

5.
V Brabec  J Reedijk  M Leng 《Biochemistry》1992,31(49):12397-12402
The effects on thermal stability and conformation of DNA produced by the monofunctional adducts of chlorodiethylenetriamineplatinum(II) chloride ([Pt(dien)Cl]Cl) have been investigated. Oligodeoxyribonucleotide duplexes of varying lengths (9-20 base pairs) and of varying central trinucleotide sequences were prepared and characterized that contained site-specific and unique N(7)-guanine adducts. Included are adducts at the sequences of d(AGC), d(AGT), d(CGA), d(TGA), d(TGC), and d(TGT). All these monofunctional adducts decrease the melting temperature (Tm) of the duplexes. This destabilization effect exhibits a sequence-dependent variability. The highest lowering of Tm is observed for the modified duplexes containing the central sequence of pyrimidine-guanine-pyrimidine. The destabilization effect is reduced with decreasing concentrations of Na+. Polarography, circular dichroism, phenanthroline-copper, and chemical probes reveal conformational distortions spreading over several base pairs around the adduct. The effects of monofunctional platinum(II) adducts on conformational distortions in DNA exhibit a sequence-dependent variability similar to those on thermal stability of DNA. The influence of the monofunctional adduct formed by cis-diamminemonoaquamonochloroplatinum(II) on the stability of the oligonucleotide duplex has been also studied. This lesion decreases thermal stability of DNA in the same way as does the adduct of [Pt(dien)Cl]Cl.  相似文献   

6.
A series of site-specifically plantinated, covalently closed circular M13 genomes (7250 bp) was constructed in order to evaluate the consequences of DNA template damage induced by the anticancer drug cis-diamminedichloroplatinum(II) (cis-DDP). Here are reported the synthesis and characterization of genomes containing the intrastrand cross-linked adducts cis-[Pt(NH3)2[d(ApG)-N7(1),-N7(2)]], cis-[Pt-(NH3)2[d(GpCpG)-N7(1),-N7(3)]], and trans-[Pt(NH3)2[d(CpGpCpG)-N3(1),-N7(4)]]. These constructs, as well as the previously reported M13 genome containing a site-specifically placed cis-[Pt(NH3)2[d-(GpG)-N7(1),-N7(2)]] adduct, were used to study replication in vitro. DNA synthesis was initiated from a position approximately 177 nucleotides 3' to the individual adducts, and was terminated either by the adducts or by the end of the template, located approximately 25 nucleotides on the 5' side of the adducts. Analysis of the products of these reactions by gel electrophoresis revealed that, on average, bypass of the cis-DDP adducts occurred approximately 10% of the time and that the cis-[Pt(NH3)2[d(GpG)-N7(1),-N7(2)]] intrastrand cross-link is the most inhibitory lesion. The cis-[Pt(NH3)2[(GpCpG)-N7(1),-N7(3)]] adduct allowed a higher frequency of such translesion synthesis (ca. 25%) for two of the polymerases studied, modified bacteriophage T7 polymerase and Escherichia coli DNA polymerase I (Klenow fragment). These enzymes have either low (Klenow) or no (T7) associated 3' to 5' exonuclease activity. Bacteriophage T4 DNA polymerase, which has a very active 3' to 5' exonuclease, was the most strongly inhibited by all three types of cis-DDP adducts, permitting only 2% translesion synthesis. This enzyme is therefore recommended for replication mapping studies to detect the location of cis-DDP-DNA adducts in a heterologous population. The major replicative enzyme of E. coli, the DNA polymerase III holoenzyme, allowed less than 10% adduct bypass. Postreplication restriction enzyme cleavage studies established that the templates upon which translesion synthesis was observed contained platinum adducts, ruling out the possibility that the observed products were due to a small amount of contamination with unplatinated DNA. The effects on in vitro replication of a recently characterized adduct of trans-DDP [Comess, K. M., Costello, C. E., & Lippard, S. J. (1990) Biochemistry 29, 2102-2110] were also evaluated. This adduct provided a poor block both to DNA polymerases and to restriction enzymes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
In the reaction of the anticancer drug cis-diamminedichloroplatinum(II) (cis-DDP) with DNA, bifunctional intrastrand and interstrand cross-links are formed. In this work, we show that at 37 degrees C interstrand cross-links (ICL) are labile and rearrange into intrastrand cross-links. The ICL instability was first studied with a 10 base pairs (bp) double-stranded oligonucleotide containing a unique site-specific ICL resulting from chelation of the N7 position of two guanine residues on the opposite strands of DNA at the d(GC/GC) site by a cis-diammineplatinum(II) residue. The bonds between the platinum and the N7 of guanine residues within the interstrand adduct are cleaved. In 50 mM NaCl or NaClO4, this cleavage results in the formation of monofunctional adducts which subsequently form intrastrand cross-links. One cleavage reaction takes place per cross-linked duplex in either of both DNA strands. Whereas the starting cross-linked 10 bp duplex is hydrogen bonded, the two complementary DNA strands separate after the cleavage of the ICL. Under these conditions, the cleavage reaction is irreversible allowing its rate measurement (t1/2= 29+/-2 h) and closure of monofunctional adducts to intrastrand cross-links occurs within single-stranded DNA. Within a longer cross-linked oligonucleotide (20 bp), ICL are apparently more stable (t1/2= 120+/-12 h) as a consequense of monofunctional adducts closure back to ICL. We propose that the ICL cleavage is reversible in DNA and that these adducts rearrange finally into intrastrand cross-links. Our results could explain an 'ICL unhooking' in previously reported in vivo repair studies [Zhenet al. (1993)Carcinogenesis14, 919-924].  相似文献   

8.
The cancer chemotherapeutic drug cis-diamminedichloroplatinum(II) (cis-DDP) is active as a result of its bifunctional reactions with DNA. Many other platinum complexes also have therapeutic activity. Of current interest are complexes containing 1,2-diaminocyclohexane (DACH). The DACH ligand exists in three isomeric forms with reported differences in therapeutic activity in the order R,R greater than S,S greater than R,S-DACH-Pt. The reaction of the sulphate form of each of these three isomers with DNA has been characterized as a possible explanation for the apparent differences in antitumor activity. These reactions have been characterized by platinating pure DNA followed by enzyme digestion, HPLC separation and analysis by atomic absorption and nuclear magnetic resonance. The spectrum of adducts produced was similar for each isomer and similar to that reported for cis-DDP with adduction at d(GpG), d(ApG) and (dG)2. The R,S-isomer additionally demonstrated isomeric adducts at d(GpG) and d(ApG). The kinetics of formation of the various adducts was the same for each isomer; total platination of DNA was complete in 15 min as were bifunctional adducts at d(GpG) and (dG)2. However, rearrangement to bifunctional adducts took several hours in the case of adducts at d(ApG) sequences. These results did not provide a reason for the different activities of the isomers. It is suggested that the interaction of these adducts with metabolic processes such as DNA repair might explain these differences.  相似文献   

9.
The effects of cis dichlorodiammine platinum [cis Pt(II)], trans dichlorodiammine platinum (trans Pt(II)], cis tetrachlorodiammine platinum [cis Pt(IV)], trans tetrachlorodiammine platinum [trans Pt(IV)], and ethylenediaminedichloride platinum [Pt(II)en] on the absorption spectra, and thermal hyper- and hypochromicity of calf thymus DNA were investigated. Platinum-induced renaturation was studied as one parameter of interstrand cross-linking. Based on a DNA cross-linking hypothesis, the tumor-inhibitory platinum compounds cis Pt(II), cis Pt(IV) and Pt(II)en would be expected to induce renaturation following thermal denaturation, whereas the ineffective drugs, trans Pt(II) and trans Pt(IV) would not. All five bind to DNA in such a way as to induce renaturation. However, cis Pt(IV) requires at least a 3- to 4-fold longer incubation time than is required by the other compounds to form the coordination bonds necessary for renaturation. Maximum renaturation with all compounds was observed at a molar Pt/base ratio of 0.05 except cis Pt(IV), with which it was 0.25. The rate of the formation of the platinum-coordinated cross-links by fresh cis Pt(II) suggests two reactions or types of reactions occur. The first is rapid and destabilizes the DNA helix, whereas the second is slow and responsible for renaturation following thermal denaturation. These results suggest that cis Pt(IV) may be activated cellularly and that cross-linking is not the primary mechanism of action of the tumor-inhibitory platinum compounds.  相似文献   

10.
A Eastman 《Biochemistry》1985,24(19):5027-5032
Characterization of the adducts produced in DNA by the cancer chemotherapeutic drug cis-diamminedichloroplatinum(II) and a radiolabeled analogue, [3H]-cis-dichloro(ethylenediamine)platinum(II) ([3H]-cis-DEP) was recently reported [Eastman, A. (1983) Biochemistry 22, 3927]. Both drugs reacted at identical sites in DNA, most of which produced intrastrand cross-links. DNA-interstrand cross-links, which represent less than 1% of total platination, have now been characterized. DNA containing interstrand cross-links was enriched for on the basis of its renaturability after boiling. This DNA was digested to deoxyribonucleosides, and the adducts were separated by high-pressure liquid chromatography. A cross-link between two deoxyguanosines was observed to be the most prominent adduct. It is proposed that the major sequence in which this cross-link occurs is 5'-CG-3'. DNA that was incubated with [3H]-cis-DEP for 1 h showed low levels of interstrand cross-links. After removal of unreacted drug, their frequency increased significantly over 6 h with a maximum occurring at about 12 h. A similar phenomenon was seen in the case of intrastrand cross-links that contained adenine, in particular when the cross-link was between the terminal bases in an ANG trinucleotide sequence (N is any nucleotide). The primary site of reaction is at guanine, with a slow subsequent cross-link to the adenine. A model is presented that is consistent with the observation that adenine is always at the 5' terminus of these adducts. The proportion of adducts at ANG sequences also increased at elevated temperatures. This is discussed with regard to potential significance during hyperthermia treatment of patients.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The cytotoxic dinuclear platinum(II) complexes [[cis-Pt(NH(3))(2)](2)(mu-OH)(mu-pz)](NO(3))(2) (pz=pyrazolate) (1) and [[cis-Pt(NH(3))(2)](2)(mu-OH)(mu-1,2,3-ta-N1,N2)](NO(3))(2) (1,2,3-ta=1,2,3-triazolate) (2), were allowed to react with the hairpin-stabilized double-stranded oligonucleotide d(TATGGCATT(4)ATGCCATA), to determine the amounts of intrastrand and interstrand DNA adducts. The reaction kinetics was investigated by reversed-phase HPLC, and the resulting products were analyzed using mass spectroscopy combined with enzymatic digestion, and Maxam-Gilbert sequencing. The reaction of 1 results in the formation of the 1,2-intrastrand d(GG) adduct as the major final product. The two most abundant products of 2 were identified as isomeric 1,2-intrastrand d(GG) adducts differing probably in platinum coordination to the triazole ring. No GG-interstrand crosslinks were detected with either compound. d(GGC)-d(GCC) sequences of DNA do thus not appear to represent significant targets for forming interstrand crosslinks with either 1 or 2.  相似文献   

12.
Chemical reactivity of monofunctional platinum-DNA adducts   总被引:1,自引:0,他引:1  
J L Butour  N P Johnson 《Biochemistry》1986,25(16):4534-4539
Complexes formed in vitro between cis- or trans-PtCl2(NH3)2 (DDP) and DNA were found to contain monofunctional adducts that reacted with exogenous guanosine. [14C]Guo bound irreversibly to cis- and trans-DDP-DNA complexes to form bis-Gua adducts. The reaction was first order with respect to the concentration of both [14C]Guo and platinum-DNA complex, but the rate of the reaction varied nonlinearly as a function of the level of platinum binding on DNA. The reaction between [14C]Guo and these platinum-DNA complexes was used to probe the concentration and stability of the monofunctional adducts and to investigate their chemistry in situ. The concentration of monofunctional adducts was highest immediately after reaction of DDP with DNA for 2 h at 37 degrees C, at which time they represented greater than 15% of the cis-DDP-DNA lesions and on the order of 80% of the trans-DDP-DNA lesions. The cis-DDP-DNA complex reacted with [14C]Guo by two kinetically distinct processes, indicating two types of reactive adducts. The most reactive adduct represented 5% of the platinum lesions. These monofunctional adducts disappeared during the incubation of the platinum-DNA complexes in the absence of drug, probably as a result of chelation to DNA. The half-lives of this chelation at 37 degrees C, 10 mM NaClO4, were 15 and 30 h for the cis and trans complexes, respectively. Monofunctional adducts were formed on Gua bases in DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Interaction of novel bis(platinum) complexes with DNA.   总被引:3,自引:2,他引:1       下载免费PDF全文
Bis(platinum) complexes [[cis-PtCl2(NH3)]2H2N(CH2)nNH2] are a novel series of potential anticancer agents in which two cis-diamine(platinum) groups are linked by an alkyldiamine of variable length. These complexes are potentially tetrafunctional, a unique feature in comparison with known anticancer agents. Studies of DNA interactions of bis(platinum) complexes in comparison with cisplatin demonstrate significant differences. Investigations of interstrand crosslink formation in which crosslinking of a short DNA fragment is detected by gel electrophoresis under denaturing conditions demonstrate that interstrand crosslinks are 250 fold more frequent among bis(platinum) adducts than among cisplatin-derived adducts under the conditions examined. These investigations indicate that bis(platinum) adducts contain a high frequency of structurally novel interstrand crosslinks formed through binding of the two platinum centers to opposite DNA strands. Unlike cisplatin, bis(platinum) complex binding does not unwind supercoiled DNA. Studies with the E. coli UvrABC nuclease complex demonstrate that both linear and supercoiled DNA containing bis(platinum) adducts are subject to incision by the repair enzyme complex. Initial studies using UvrABC nuclease as a probe to define the base and sequence specificity for bis(platinum) complex binding suggest that the specificity of the bis(platinum)s is similar, but not identical, to that of cisplatin.  相似文献   

14.
The antitumor compound cis-[Pt(NH3)2Cl2] (cisplatin), conserves two ammine ligands during the reaction with its cellular target DNA. Modifications of these non-leaving groups change the antineoplastic properties of this compound and its genotoxic effects. It is therefore of interest to determine the influence of non-leaving groups on the structure and stability of DNA in vitro. We have investigated platinum-DNA adducts formed by cis-[Pt(R-NH2)2(NO3)2] (where R-NH2 = NH3, methylamine, cyclobutylamine, cyclopentylamine and cyclohexylamine) as a function of DNA binding. All compounds quantitatively reacted with DNA in less than 1 h at 37 degrees C. They formed bifunctional adducts with adjacent nucleotides judging from the displacement of the intercalating molecule ethidium bromide, ultraviolet absorption spectroscopy and circular dichroism. Substitution of a H on the NH3 ligand by alkyl groups dramatically destabilized the platinum-DNA complex. Thermal stability decreased progressively with an increasing number of carbon atoms, delta tm = -4.4 degrees C for 3 cyclohexylamine-platinum-DNA adducts/1000 nucleotides, conditions where cisplatin had no effect. DNA adducts with cyclobutylamine and cyclohexylamine ligands inhibited the hydrolysis of platinum-DNA complexes by S1 nuclease. Km for the digestion of DNA containing these lesions was 2.3 times greater than for cisplatin, indicating steric inhibition of enzyme-substrate complex formation. These results show that the non-leaving groups of substituted cis-Pt(II) compounds may destabilize DNA and interfere with protein-DNA interactions. These perturbations may have consequences for the genotoxic and antitumor activities of platinum compounds.  相似文献   

15.
A series of platinum(II) and (IV) monoadducts of the type [Pt(II)(DACH)LCl]NO3 and [Pt(IV)(DACH)trans-(X)2LCl]NO3 (where DACH=trans-1R,2R-diaminocyclohexane, L=adenine, guanine, hypoxanthine, cytosine, adenosine, guanosine, inosine, cytidine, 9-ethylguanine (9-EtGua), or 1-methylcytosine and X=hydroxo or acetato ligand) have been synthesized and characterized by elemental analysis and by 1H and 195Pt nuclear magnetic resonance (NMR) spectroscopy. The crystal structure of the model nucleobase complex [Pt(IV)(trans-1R,2R-diaminocyclohexane)trans-(acetate)2(9-EtGua)Cl]NO3.H2O was determined using a single crystal X-ray diffraction method. The compound crystallized in the monoclinic space group P2(1), with a=10.446(2) A, b=22.906(5) A, c=10.978(2) A, Z=4, and R=0.0718, based upon the total of 11,724 collected reflections. In this complex, platinum had a slightly distorted octahedron geometry owing to the presence of a geometrically strained five-member ring. The two adjacent corners of the platinum plane were occupied by the two amino nitrogen of DACH, whereas, the other two equatorial positions occupied by chloride ion and 9-ethylguanine. The remaining two axial positions were occupied by the oxygen atoms of acetato ligands. The DACH ring was in a chair configuration. An intricate network of intermolecular hydrogen bonds held the crystal lattice together. Some of these synthesized models of DACH-Pt-DNA adducts have good in vitro cytotoxic activity against the cisplatin-sensitive human cancer ovarian A2780 cell line (IC50=1-8 microM). Interestingly, a substituted nucleobase (9-ethylguanine) adduct was over 6-fold more potent than regular adducts. The cross-resistance factor against the 44-fold cisplatin-resistant 2780CP/clone 16 cells was about 3-9; thus, the cytotoxicity of adducts was indicative of low potency, but the resistance factors were also substantially low. These results suggest that DNA adducts of DACH-Pt are cytotoxic with low cross-resistance.  相似文献   

16.
DNA adducts of antitumor trans-[PtCl2 (E-imino ether)2].   总被引:1,自引:0,他引:1       下载免费PDF全文
It has been shown recently that some analogues of clinically ineffective trans-diamminedichloroplatinum (II) (transplatin) exhibit antitumor activity. This finding has inverted the empirical structure-antitumor activity relationships delineated for platinum(II) complexes, according to which only the cis geometry of leaving ligands in the bifunctional platinum complexes is therapeutically active. As a result, interactions of trans platinum compounds with DNA, which is the main pharmacological target of platinum anticancer drugs, are of great interest. The present paper describes the DNA binding of antitumor trans-[PtCl(2)(E-imino ether)(2)] complex (trans-EE) in a cell-free medium, which has been investigated using three experimental approaches. They involve thiourea as a probe of monofunctional DNA adducts of platinum (II) complexes with two leaving ligands in the trans configuration, ethidium bromide as a probe for distinguishing between monofunctional and bifunctional DNA adducts of platinum complexes and HPLC analysis of the platinated DNA enzymatically digested to nucleosides. The results show that bifunctional trans-EE preferentially forms monofunctional adducts at guanine residues in double-helical DNA even when DNA is incubated with the platinum complex for a relatively long time (48 h at 37 degrees C in 10 mM NaCIO(4). It implies that antitumor trans-EE modifies DNA in a different way than clinically ineffective transplatin, which forms prevalent amount of bifunctional DNA adducts after 48 h. This result has been interpreted to mean that the major adduct of trans-EE, occurring in DNA even after long reaction times, is a monofunctional adduct in which the reactivity of the second leaving group is markedly reduced. It has been suggested that the different properties of the adducts formed on DNA by transplatin and trans-EE are relevant to their distinct clinical efficacy.  相似文献   

17.
The dinuclear platinum complexes [[trans -PtCl (NH3)2]2[mu]-[NH2(CH2) n NH2]](NO3)2[1,1/t,t ( n = 4,6)] and [[cis-PtCl(NH3)2]2[mu];-[NH2(CH2) n NH2](NO3) 2[1,1/c,c ( n = 4,6)] exhibit antitumour activity comparable with cisplatin. 1,1/c,c complexes do not form 1,2 GG intrastrand adducts, the major adduct of cisplatin, with double-stranded DNA. This 1H NMR spectroscopy study shows that, in the absence of a complementary strand, 1,1/c,c ( n = 4,6) form a 1,2 GG (N7, N7) intrastrand adduct with r(GpG), d(GpG) and d(TGGT). Initial binding to r(GpG) (and also reaction with GMP) at 37 degrees C was slower for 1,1/c,c compared with 1,1/t,t, whereas the second binding step (adduct closure) was faster for 1,1/c,c. However, the 1H NMR spectra of the 1,1/c,c adducts at 37 degrees C show two H8 signals, one of which is broad and becomes sharper on increasing the temperature, indicating restricted rotation around the Pt-N7 bond. For the d(GpG)-1,1/c,c ( n = 4) adduct, 2D NMR spectroscopy assigned the broad H8 signal to the 3' G, which has syn base orientation and 60% S-type/40% N-type sugar conformation. The 5' G has anti base orientation and S-type sugar conformation. Apart from the restricted rotation around the 3' G, the structure is similar to that of 1,2 GG intrastrand adducts of 1,1/t,t. This steric hindrance may explain the inability of 1,1/c,c complexes to form 1,2 GG intrastrand adducts with sterically more demanding double-stranded DNA.  相似文献   

18.
Benzo[a]pyrene-7,8-quinone (BPQ) is one of the reactive metabolites of the widely distributed archetypal polycyclic aromatic hydrocarbon, benzo[a]pyrene (B[a]P). The formation of BPQ from B[a]P through trans-7,8-dihydroxy-7,8-dihydroB[a]P by the mediation of aldo-keto reductases and its role in the genotoxicity and carcinogenesis of B[a]P currently are under extensive investigation. Toxicity pathways related to BPQ are believed to include both stable and unstable (depurinating) DNA adduct formation as well as reactive oxygen species. We previously reported the complete characterization of four novel stable BPQ-deoxyguanosine (dG) and two BPQ-deoxyadenosine (dA) adducts (Balu et al., Chem. Res. Toxicol. 17 (2004) 827-838). However, the identification of BPQ-DNA adducts by 32P postlabeling methods from in vitro and in vivo exposures required 3'-monophosphate derivatives of BPQ-dG, BPQ-dA, and BPQ-deoxycytidine (dC) as standards. Therefore, in the current study, BPQ adducts of dGMP(3'), dAMP(3'), and dCMP(3') were prepared. The syntheses of the BPQ-3'-mononucleotide standards were carried out in a manner similar to that reported previously for the nucleoside analogs. Reaction products were characterized by UV, LC/MS analyses, and one- and two-dimensional NMR techniques. The spectral studies indicated that all adducts existed as diastereomeric mixtures. Furthermore, the structural identities of the novel BPQ-dGMP, BPQ-dAMP, and BPQ-dCMP adducts were confirmed by acid phosphatase dephosphorylation of the BPQ-nucleotide adducts to the corresponding known BPQ-nucleoside adduct standards. The BPQ-dGMP, BPQ-dAMP, and BPQ-dCMP adduct standards were used in 32P postlabeling studies to identify BPQ adducts formed in vitro with calf thymus DNA and DNA homopolymers. 32P postlabeling analysis revealed the formation of 8 major and at least 10 minor calf thymus DNA adducts. Of these BPQ-DNA adducts, the following were identified: 1 BPQ-dGMP adduct, 2 BPQ-dAMP adducts, and 3 BPQ-dCMP adducts. This study represents the first reported example of the characterization of stable BPQ-DNA adducts in isolated mammalian DNA and is expected to contribute significantly to the future BPQ-DNA adduct studies in vivo and thereby to the contribution of BPQ in B[a]P carcinogenesis.  相似文献   

19.
We report the use of anti-nucleoside antibodies to probe for local denaturation of calf thymus DNA upon binding of the antitumor drug cis-diamminedichloroplatinum(II), cis-DDP, and the biologically inactive analogues trans-diamminedichloroplatinum(II), trans-DDP, and chloro(diethylenetriamine)platinum(II) chloride, [Pt(dien)Cl]Cl. These antibodies specifically recognize each of the four DNA nucleosides. They bind well to denatured DNA, but not to native DNA in which the bases are less accessible owing to Watson-Crick duplex structure. At relatively high levels of modification (D/N approximately 0.1), cis-DDP causes significant disruption of DNA base pairing as reflected by the increased binding of anti-cytidine, anti-adenosine, and anti-thymidine antibodies. At lower levels of platinum adduct formation, however, all four anti-nucleoside antibodies bind more to DNA modified with trans-DDP. This result indicates that adducts formed by trans-DDP disrupt the DNA structure to a greater extent than those formed by cis-DDP at low D/N ratios. Modification of DNA by the monofunctional complex [Pt(dien)Cl]Cl does not affect its recognition by anti-nucleoside antibodies, demonstrating that base pair disruption is a consequence of bifunctional binding. The relative anti-nucleoside antibody recognition of cis-DDP-modified DNA is anti-cytosine greater than anti-adenosine approximately anti-thymidine much greater than anti-guanosine, consistent with the major adduct being an intrastrand d(GpG) cross-link. These results reveal that base pair disruption in a naturally occurring DNA modified by either cis-DDP or trans-DDP is sufficient to be detected by protein (antibody) binding. The relevance of these findings to current ideas about the molecular mechanism of action of cis-DDP is discussed.  相似文献   

20.
The sequence specificity of DNA damage caused by cis-diamminedichloroplatinum(II) (cisplatin) and four analogues in human (HeLa) cells was studied using Taq DNA polymerase and a linear amplification system. The primer extension is inhibited by the drug-DNA adducts, and hence the sites of these lesions can be analyzed on DNA sequencing gels. The repetitive alphoid DNA was used as the target DNA in human cells. A comparison was made between adduct formation in human cells and in purified DNA. The sequence-specific position and relative intensity of damage was similar in both systems for cisplatin, dichloro(ethylenediammine)platinum(II) (PtenCl2), and N-[3-N-(ethylenediamino)propyl]acridine-4-carboxamidedichloropl atinum(II) (4AcC3PtenCl2). However, no DNA damage could be detected in cells for trans-diamminedichloroplatinum(II) (transPt) or N-[3-N-(ethylenediamino)propyl]acridine-2-carboxamide-dichloroplat inum(II) (2AcC3PtenCl2) despite the ability of these latter analogues to damage purified DNA. Cisplatin, PtenCl2, and 4AcC3PtenCl2, which significantly damaged DNA inside cells, also show antitumor activity in mouse models. However, transPt and 2AcC3PtenCl2, which did not detectably damage DNA inside cells, did not show such antitumor activity. This correlation between intracellular DNA damaging ability and in vivo antitumor activity indicates the potential use of the human cells/Taq DNA polymerase/linear amplification technique as a convenient method for screening new cisplatin analogues for useful chemotherapeutic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号