首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antioxidants are known to exert a preventive activity against degenerative diseases. Here, we investigated the mechanism of action of three antioxidants: resveratrol, which causes differentiation of HL-60 cells, and hydroxytyrosol and pyrrolidine dithiocarbamate which, in the same model system, activate apoptosis. The expression profile of hydroxytyrosol-treated cells showed the up-regulation of several genes, including c-jun and egr1. Pyrrolidine dithiocarbamate activates both genes, while resveratrol increases uniquely egr1. A selective modulation of signalling pathway explained this finding. All antioxidants up-regulate Erk1/2, while only hydroxytyrosol and pyrrolidine dithiocarbamate activate c-Jun N-terminal kinase (JNK). Since JNK induces apoptosis by Bcl-2 phosphorylation, we investigated this event. Bcl-2 phosphorylation was increased by hydroxytyrosol and pyrrolidine dithiocarbamate and not by resveratrol. Our results indicate that the different phenotypical effects of antioxidants correlate with modulation of selective transduction pathways.  相似文献   

2.
It has been reported that beta amyloid induces production of radical oxygen species and oxidative stress in neuronal cells, which in turn upregulates β-secretase (BACE-1) expression and beta amyloid levels, thereby propagating oxidative stress and increasing neuronal injury. A series of resveratrol derivatives, known to be inhibitors of oxidative stress-induced neuronal cell death (oxytosis) were biologically evaluated against BACE-1 using homogeneous time-resolved fluorescence (TRF) assay. Correlation between oxytosis inhibitory and BACE-1 inhibitory activity of resveratrol derivatives was statistically significant, supporting the notion that BACE-1 may act as pivotal mediator of neuronal cell oxytosis. Four of the biologically evaluated resveratrol analogs demonstrated considerably higher activity than resveratrol in either assay. The discovery of some “hits” led us to initiate detailed docking studies associated with Molecular Dynamics in order to provide a plausible explanation for the experimental results and understand their molecular basis of action.  相似文献   

3.
Bae S  Lee EM  Cha HJ  Kim K  Yoon Y  Lee H  Kim J  Kim YJ  Lee HG  Jeung HK  Min YH  An S 《Molecules and cells》2011,32(3):243-249
Resveratrol is a plant phenolic phytoalexin that has been reported to have antitumor properties in several types of cancers. In particular, several studies have suggested that resveratrol exerts antiproliferative effects against A549 human non-small cell lung cancer cells; however, its mechanism of action remains incompletely understood. Deregulation of microRNAs (miRNAs), a class of small, noncoding, regulatory RNA molecules involved in gene expression, is strongly correlated with lung cancer. In this study, we demonstrated that resveratrol treatment altered miRNA expression in A549 cells. Using microarray analysis, we identified 71 miRNAs exhibiting greater than 2-fold expression changes in resveratrol-treated cells relative to their expression levels in untreated cells. Furthermore, we identified target genes related to apoptosis, cell cycle regulation, cell proliferation, and differentiation using a miRNA target-prediction program. In conclusion, our data demonstrate that resveratrol induces considerable changes in the miRNA expression profiles of A549 cells, suggesting a novel approach for studying the anticancer mechanisms of resveratrol.  相似文献   

4.
Resveratrol has been reported to have a wide variety of biological effects. However, little is known regarding its role on phosphorylation of histone H3, MAP kinase p38, SIR2 and p53 in type I diabetic nephropathy (DN). Hence, the present study was undertaken to examine changes in the above said parameters by resveratrol treatment. Male Sprague-Dawley rats were rendered diabetic using a single dose of streptozotocin (55 mg/kg, i.p.). DN was assessed by measurements of blood urea nitrogen and creatinine levels. Phosphorylation of histone H3, SIR2, p53 and MAP kinase p38 expression were examined by western blotting. This study reports that treatment of resveratrol prevents the decrease in the expression of SIR2 in diabetic kidney. It also prevents increase in p38, p53 expression and dephosphorylation of histone H3 in diabetic kidney. This is the first report which suggests that protection against development of diabetic nephropathy by resveratrol treatment involves change in phosphorylation of histone H3, expression of Sir-2, p53 and p38 in diabetic kidney.  相似文献   

5.
Resveratrol has been reported to have a wide variety of biological effects. However, little is known regarding its role on phosphorylation of histone H3, MAP kinase p38, SIR2 and p53 in type I diabetic nephropathy (DN). Hence, the present study was undertaken to examine changes in the above said parameters by resveratrol treatment. Male Sprague-Dawley rats were rendered diabetic using a single dose of streptozotocin (55 mg/kg, i.p.). DN was assessed by measurements of blood urea nitrogen and creatinine levels. Phosphorylation of histone H3, SIR2, p53 and MAP kinase p38 expression were examined by western blotting. This study reports that treatment of resveratrol prevents the decrease in the expression of SIR2 in diabetic kidney. It also prevents increase in p38, p53 expression and dephosphorylation of histone H3 in diabetic kidney. This is the first report which suggests that protection against development of diabetic nephropathy by resveratrol treatment involves change in phosphorylation of histone H3, expression of Sir-2, p53 and p38 in diabetic kidney.  相似文献   

6.
7.
8.
UVB radiation causes about 90% of non-melanoma skin cancers by damaging DNA either directly or indirectly by increasing levels of reactive oxygen species (ROS). Skin, chronically exposed to both endogenous and environmental pro-oxidant agents, contains a well-organised system of chemical and enzymatic antioxidants. However, increased or prolonged free radical action can overwhelm ROS defence mechanisms, contributing to the development of cutaneous diseases. Thus, new strategies for skin protection comprise the use of food antioxidants to counteract oxidative stress. Resveratrol, a phytoalexin from grape, has gained a great interest for its ability to influence several biological mechanisms like redox balance, cell proliferation, signal transduction pathways, immune and inflammatory response. Therefore, the potential of resveratrol to modify skin cell response to UVB exposure could turn out to be a useful option to protect skin from sunlight-induced degenerative diseases. To investigate into this matter, HaCaT cells, a largely used model for human skin keratinocytes, were treated with 25 or 100 µM resveratrol for 2 and 24 hours prior to UVB irradiation (10 to 100 mJ/cm2). Cell viability and molecular markers of proliferation, oxidative stress, apoptosis, and autophagy were analyzed. In HaCaT cells resveratrol pretreatment: reduces UVB-induced ROS formation, enhances the detrimental effect of UVB on HaCaT cell vitality, increases UVB-induced caspase 8, PARP cleavage, and induces autophagy. These findings suggest that resveratrol could exert photochemopreventive effects by enhancing UVB-induced apoptosis and by inducing autophagy, thus reducing the odds that damaged cells could escape programmed cell death and initiate malignant transformation.  相似文献   

9.

Background

Type 1 and type 2 diabetes are characterized by loss of β-cells; therefore, β-cell regeneration has become one of the primary approaches to diabetes therapy. Resveratrol, a naturally occurring polyphenolic compound, has been shown to improve glycaemic control in diabetic patients, but its action on pancreatic α-cells is not well understood.

Findings

Using mouse α-cells (αTC9), we showed that resveratrol induces expression of pancreatic β-cell genes such as Pdx1 and Ins2 in a SirT1-dependent manner. The mRNA and protein levels of insulin were further increased by histone deacetylase (HDAC) inhibition.

Conclusion

In summary, we provide new mechanistic insight into the anti-diabetic action of resveratrol through its ability to express β-cell genes in α-cells.
  相似文献   

10.
Recent studies from our laboratory have showed that resveratrol, a polyphenol found predominantly in grapes rendered strong cardioprotection in animal models of heart disease. The cardioprotection which was observed was primarily associated with the ability of resveratrol to reduce oxidative stress in these models. The aim of the current study was to corroborate the role of resveratrol as an inhibitor of oxidative stress and explore the underlying mechanisms of its action in heart disease. For this purpose, we used a cell model of oxidative stress, the hydrogen peroxide (H2O2) exposed adult rat cardiomyocytes, which was treated with and without resveratrol (30 μM); cardiomyocytes which were not exposed to resveratrol served as controls. Cell injury, cell death and oxidative stress measurements as well as the activities of the major endogenous antioxidants superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were carried out in control and H2O2 exposed cardiomyocytes, treated with and without resveratrol. Pharmacological blockade using specific blockers of the antioxidant enzymes were used to confirm their role in mediating resveratrol action in H2O2 exposed cardiomyocytes. The status of H2O2 and antioxidant enzymes in serum samples from spontaneously hypertensive rats (SHR) treated with and without resveratrol (2.5 mg/kg body weight) was also examined.Our results showed significant cell injury and death in H2O2 exposed cardiomyocytes which was prevented upon resveratrol treatment. SOD and CAT activities were decreased in H2O2 exposed adult rat cardiomyocytes; treatment with resveratrol significantly prevented this reduction. However, GPx activity was not altered in the H2O2 exposed cardiomyocytes in comparison to controls. Pharmacological blockade of SOD and/or CAT prevented the beneficial effect of resveratrol. In SHR, H2O2 levels were increased, but CAT activity was decreased, while SOD remained unchanged, when compared to WKY rats; resveratrol treatment significantly prevented the increase in H2O2 levels and the decrease in CAT activities in SHR.Based on our results, we conclude that treatment with resveratrol prevents oxidative stress induced cardiomyocyte injury mainly by preserving the activities of critical antioxidant enzymes. This may be a crucial mechanism by which resveratrol confers cardioprotection.  相似文献   

11.
12.
Epidemiological studies suggest that Mediterranean diets rich in resveratrol are associated with reduced risk of coronary artery disease. However, the mechanisms by which resveratrol exerts its vasculoprotective effects are not completely understood. Because oxidative stress and endothelial cell injury play a critical role in vascular aging and atherogenesis, we evaluated whether resveratrol inhibits oxidative stress-induced endothelial apoptosis. We found that oxidized LDL and TNF-alpha elicited significant increases in caspase-3/7 activity in endothelial cells and cultured rat aortas, which were prevented by resveratrol pretreatment (10(-6)-10(-4) mol/l). The protective effect of resveratrol was attenuated by inhibition of glutathione peroxidase and heme oxygenase-1, suggesting a role for antioxidant systems in the antiapoptotic action of resveratrol. Indeed, resveratrol treatment protected cultured aortic segments and/or endothelial cells against increases in intracellular H(2)O(2) levels and H(2)O(2)-mediated apoptotic cell death induced by oxidative stressors (exogenous H(2)O(2), paraquat, and UV light). Resveratrol treatment also attenuated UV-induced DNA damage (comet assay). Resveratrol treatment upregulated the expression of glutathione peroxidase, catalase, and heme oxygenase-1 in cultured arteries, whereas it had no significant effect on the expression of SOD isoforms. Resveratrol also effectively scavenged H(2)O(2) in vitro. Thus resveratrol seems to increase vascular oxidative stress resistance by scavenging H(2)O(2) and preventing oxidative stress-induced endothelial cell death. We propose that the antioxidant and antiapoptotic effects of resveratrol, together with its previously described anti-inflammatory actions, are responsible, at least in part, for its cardioprotective effects.  相似文献   

13.
The stilbene resveratrol exerts antiproliferative and proapoptotic actions on a number of different cancer cell lines, through diverse mechanisms, including antioxidant effects, enzyme, growth factor and hormone receptor binding, and nucleic acid direct or indirect interactions. Although resveratrol accumulates in the liver, its effect on hepatocellular carcinoma has not been extensively studied. We have used the human hepatocyte-derived cancer cell line HepG2 to address the possible action of resveratrol on cell growth and to examine some possible mechanisms of action. Our results indicate that the stilbene inhibits potently cell proliferation, reduces the production of reactive oxygen species and induces apoptosis, through cell cycle arrest in G1 and G2/M phases. Furthermore it modulates the NO/NOS system, by increasing iNOS and eNOS expression, NOS activity and NO production. Inhibition of NOS enzymes attenuates its antiproliferative effect. These data could be of value in possible prevention or adjuvant treatment of hepatocellular carcinoma, through an increased consumption of resveratrol-rich foods and beverages.  相似文献   

14.
Our recent studies showed that total body irradiation (TBI) induces long-term bone marrow (BM) suppression in part by induction of hematopoietic stem cell (HSC) senescence through NADPH oxidase 4 (NOX4)-derived reactive oxygen species (ROS). Therefore, in this study we examined whether resveratrol (3,5,4′-trihydroxy-trans-stilbene), a potent antioxidant and a putative activator of Sirtuin 1 (Sirt1), can ameliorate TBI-induced long-term BM injury by inhibiting radiation-induced chronic oxidative stress and senescence in HSCs. Our results showed that pretreatment with resveratrol not only protected mice from TBI-induced acute BM syndrome and lethality but also ameliorated TBI-induced long-term BM injury. The latter effect is probably attributable to resveratrol-mediated reduction of chronic oxidative stress in HSCs, because resveratrol treatment significantly inhibited TBI-induced increase in ROS production in HSCs and prevented mouse BM HSCs from TBI-induced senescence, leading to a significant improvement in HSC clonogenic function and long-term engraftment after transplantation. The inhibition of TBI-induced ROS production in HSCs is probably attributable to resveratrol-mediated downregulation of NOX4 expression and upregulation of Sirt1, superoxide dismutase 2 (SOD2), and glutathione peroxidase 1 expression. Furthermore, we showed that resveratrol increased Sirt1 deacetylase activity in BM hematopoietic cells; and Ex527, a potent Sirt1 inhibitor, can attenuate resveratrol-induced SOD2 expression and the radioprotective effect of resveratrol on HSCs. These findings demonstrate that resveratrol can protect HSCs from radiation at least in part via activation of Sirt1. Therefore, resveratrol has the potential to be used as an effective therapeutic agent to ameliorate TBI-induced long-term BM injury.  相似文献   

15.
16.
Resveratrol (3,5,4'-trihydroxystilbene) is a naturally occurring, multi-biofunctional chemical existing in grapes and various other plants as a polyphenol type, and it is one of the best known natural anticancer and antiatherosclerosis reagents. In this study, we investigated the antifungal action by resveratrol in Candida albicans, which is a human infectious fungi as an agent of candidiasis. Resveratrol displayed potent fungicidal activity in an energy-dependent manner, without any hemolytic effects against human erythrocytes. It was found that the serum-induced mycelial forms, which play a crucial role in the pathogenesis of C. albicans during host tissue invasion, were disrupted by resveratrol. To understand the correlation between lethal effects and resveratrol action, we examined the physiological changes of C. albicans. A significant accumulation of intracellular trehalose was induced by stress responses to resveratrol action, and a remarkable arrest of cell-cycle processes at the S-phase in C. albicans occured. Therefore, the fungicidal effects of resveratrol demonstrate that this compound is a potential candidate as an antifungal agent in treating infectious diseases by candidal infections.  相似文献   

17.
Hyperglycemia, a symptom of diabetes mellitus, induces hyperosmotic responses, including apoptosis, in vascular endothelial cells and leukocytes. Hyperosmotic shock elicits a stress response in mammalian cells, often leading to apoptotic cell death. In a previous report, we showed that hyperosmotic shock induced apoptosis in various mammalian cells. Importantly, apoptotic biochemical changes (i.e., caspase-3 activation and DNA fragmentation) were blocked by antioxidant pretreatment during hyperosmotic shock-induced cell death. In the present study, we report that resveratrol, a phytoalexin present in grapes with known antioxidant and anti-inflammatory properties, attenuates high glucose-induced apoptotic changes, including c-Jun N-terminal kinase (JNK) activation and caspase-3 activation in human leukemia K562 cells. Experiments with the cell permeable dye, 2',7'-dichlorofluorescein diacetate (DCF-DA), an indicator of reactive oxygen species (ROS) generation, revealed that high glucose treatment directly increased intracellular oxidative stress, which was attenuated by resveratrol. In addition, high glucose-treated K562 cells displayed a lower degree of attachment to collagen, the major component of vessel wall subendothelium. In contrast, cells pretreated with resveratrol followed by high glucose exhibited higher affinity for collagen. The results of this report collectively imply the involvement of oxidative stress in high glucose-induced apoptosis and alterations in attachment ability. Moreover, resveratrol blocks these events by virtue of its antioxidant property.  相似文献   

18.
19.
20.
Reactive oxygen species (ROS) is generated by oxidative stress and plays an important role in various cardiac pathologies. The SIRT1 signaling pathway and mitochondrial biogenesis play essential roles in mediating the production of ROS. SIRT1 activated by resveratrol protects cardiomyocytes from oxidative stress, but the exact mechanisms by which SIRT1 prevents oxidative stress, and its relationship with mitochondrial biogenesis, remain unclear. In this study, it was observed that after stimulation with 50 μM H2O2 for 6 h, H9C2 cells produced excessive ROS and downregulated SIRT1. The mitochondrial protein NDUFA13 was also downregulated by ROS mediated by SIRT1. Resveratrol induced the expression of SIRT1 and mitochondrial genes NDUFA1, NDUFA2, NDUFA13 and Mn-SOD. However, the production of these genes was reversed by SIRT1 inhibitor nicotinamide. These results suggest that resveratrol inhibits ROS generation in cardiomyocytes via SIRT1 and mitochondrial biogenesis signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号