首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Citric acid was produced with immobilized Yarrowia lipolytica yeast in repeated batch-shake-flask and air-lift fermentations. In active and passive immobilization methods calcium alginate, -carrageenan, polyurethane gel, nylon web and polyurethane foams were tested as carriers in repeated-batch fermentations. The highest citric acid productivity of 155 mg l–1 h–1 was reached with alginate-bead-immobilized cells in the first batch. A decrease in bead diameter from 5–6 mm to 2–3 mm increased the volumetric citric acid productivity threefold. In an air-lift bioreactor the highest citric acid productivity of 120 mg l–1 h–1 with a product concentration of 16.4 g l–1 was obtained with cells immobilized in -carrageenan beads. Offprint requests to: H. Kautola  相似文献   

2.
The autolysis of chlamydospore-like cells in Phanerochaete chrysosporium immobilized in polyurethane foam correlated with the production of manganese peroxidase (MnP). The maximum specific activity of MnP was 1055 U g dry mycelium–1 in the immobilized culture, compared with 260 U g dry mycelium–1 in the submerged culture. Scattered mycelial pellets were formed in the immobilized culture in which almost all of the chlamydospore-like cells were subject to autolysis. However, highly crowded pellets were formed in the free culture, in which only the chlamydospore-like cells in the exterior were subject to autolysis. We propose that the enhanced production of MnP in immobilized cultures of P. chrysosporium is due to increased autolysis of the chlamydospore-like cells.  相似文献   

3.
Gluconic acid was produced in repeated batch processes with Aspergillus niger AM-11, immobilized in pumice stone particles using an unconventional oxygenation of culture media based on the addition of H2O2, decomposed by catalase to O2 and water. The highest gluconic acid productivity of 8.2 g l–1 h–1 was reached with 30 g immobilized mycelium per 150 ml, 10% (w/v) glucose, at 24 °C and pH 6.5, with O2 at 100% saturation. The immobilized mycelium was successfully reused up to 8 times in 1-h batches with only a slight loss (11%) of gluconic acid productivity.  相似文献   

4.
Summary Rhizopus oryzae was immobilized in polyurethane foam cubes. The effects of the cube size on cell immobilization, cell growth and L(+)-lactic acid production were studied. By the natural attachment method, R. oryzae could be easily immobilized in the polyurethane foam cubes larger than 2.5 × 5 × 5 mm3. The use of small cubes for R. oryzae immobilization was very effective to increase the productivity of L(+)-lactic acid by the immobilized cells. Although it was difficult for smaller cubes to be completely full of the mycelia, increasing the inoculum size in immobilizations was effective to increase the immobilization ratio (a ratio of the number of the cubes containing cells to the total number of cubes).  相似文献   

5.
Continuous production of lignin-degrading enzymes by Bjerkandera adusta immobilized on polyurethane foam gave maximum activities of 220 U lignin peroxidase ml–1, 150 U manganese peroxidase ml–1, 50 U laccase ml–1 and 6.2 U protease ml–1 at the retention time of 24 h for 60 days. Protease secretion destabilized the produced lignin peroxidase, manganese peroxidase and laccase.  相似文献   

6.
Summary Direct alcoholic fermentation of dextrin or soluble starch with selected amylolytic yeasts was studied in both batch and immobilized cell systems. In batch fermentations, Saccharomyces diastaticus was capable of fermenting high dextrin concentrations much more efficiently than Schwanniomyces castellii. From 200 g·l–1 of dextrin S. diastaticus produced 77 g·l–1 of ethanol (75% conversion efficiency). The conversion efficiency decreased to 59% but a higher final ethanol concentration of 120 g·l–1 was obtained with a medium containing 400 g·l–1 of dextrin. With a mixed culture of S. diastaticus and Schw. castellii 136 g·l–1 of ethanol was produced from 400 g·l–1 of dextrin (67% conversion efficiency). S. diastaticus cells attached well to polyurethane foam cubes and a S. diastaticus immobilized cell reactor produced 69 g·l–1 of ethanol from 200 g·l–1 of dextrin, corresponding to an ethanol productivity of 7.6g·l–1·h–1. The effluent from a two-stage immobilized cell reactor with S. diastaticus and Endomycopsis fibuligera contained 70 g·l–1 and 80 g·l–1 of ethanol using initial dextrin concentrations of 200 and 250 g·l–1 respectively. The corresponding values for ethanol productivity were 12.7 and 9.6 g·l–1·h–1. The productivity of the immobilized cell systems was higher than for the batch systems, but much lower than for glucose fermentation.  相似文献   

7.
Summary Penicillium variabile P16 immobilized on polyurethane sponge produced gluconic acid in presence of rock phosphate, the latter being simultaneously solubilized during five repeated batches. A total production of 42, 60, and 90 g gluconic acid/l was obtained for 3, 7, and 14 g rock phosphate/l, respectively. Accordingly, soluble phosphorus concentration increased with gluconic acid production, reaching a maximum of 350 mg/l at the 3d batch in medium supplemented with 14 g rock phosphate/l.  相似文献   

8.
A Pseudomonas sp. strain NGK1 (NCIM 5120) capable of utilizing 2-methylnaphthalene (2-MN) was immobilized in various matrices namely, polyurethane foam (PUF), alginate, agar and polyvinyl alcohol (PVA) (1.5 × 1012 c.f.u. g–1 beads). The degradation rates of 25 and 50 mM 2-MN by freely suspended cells (2 × 1011 c.f.u. ml–1) and immobilized cells in batches, semi-continuous with shaken culture and continuous degradation in a packed-bed reactor were compared. The PUF-immobilized cells achieved higher degradation of 25 and 50 mM of 2-MN than freely suspended cells and the cells immobilized in alginate, agar or PVA. The PVA- and PUF-immobilized cells could be reused for more than 30 and 20 cycles respectively, without losing any degradation capacity. The effect of dilution rates on the rate of degradation of 25 and 50 mM 2-MN with freely suspended and immobilized cells were compared in the continuous system. Increase in dilution rate increased the degradation rate only up to 1 h–1 in free cells with 25 mM 2-MN and no significant increase was observed with 50 mM 2-MN. With immobilized cells, the degradation rate increased with increase in dilution rate up to 1.5 h–1 for 25 mM and 1 h–1 for 50 mM 2-MN. These results revealed that the immobilized cell systems are more efficient than freely suspended cells for biodegradation of 2-MN.  相似文献   

9.
A photobioreactor was constructed using either anchored polyurethane foam strips (1 × 1 × 40 cm, PU-strips) fixed on a stainless-steel ring to prevent flotation, or free-floating polyurethane foam blocks (1 × 1 × 1 cm, PU-blocks) as biomass supporting materials (BSM). The cyanobacterium,Scytonema sp. TISTR 8208, which produces an antibiotic, was immobilized onto PU-strips or -blocks. The free-floating PU-blocks could immobilize only about 70% of the total cells, while the anchored PU-strips could immobilize as much as 97%. PU-strips were chosen as the BSM and we named this type of reactor, seaweed-type bioreactor (STB). Optimal physical conditions for antibiotic production were determined in the STB. Inoculum density was 0.4 g l–1 and cells were sparged with air containing 5% CO2 circulated at the gas flow rate of 250 ml min–1 and illuminated at a light intensity of 200 mol photon m–2 s–1. The production of antibiotic could be increased 3-fold.Author for correspondence  相似文献   

10.
The impact of insoluble phosphorus such as aluminum and rock phosphate on alkaline phosphatase activity of polyurethane foam immobilized cyanobacteria was assessed. Polyurethane foam immobilized Nodularia recorded the highest alkaline phosphatase activity of 9.04 (m. mol p-nitrophenol released h–1 mg–1 protein) in vitro. A higher concentration of aluminum phosphate was recorded a 25% reduction in alkaline phosphatase activity, ammonia content, and available phosphorus in culture filtrate of polyurethane foam immobilized cyanobacteria. In general, immobilized cyanobacteria exhibited a higher alkaline phosphatase activity in rock phosphate than aluminum phosphate.  相似文献   

11.
Flotation or cell recovery in foams (proportion of the total cells in the medium transferred to the foam) and flotation efficiency (proportion of the cells transferred from an initial volume of medium equal to the residual volume after flotation) are functions of time, aeration rate, initial volume of medium, and initial concentration of cells. Cell recovery reached constant values (around 96.4 ± 6.3%) and flotation efficiency decreased (owing to increases in the liquid content of the foam), with increases in air flow rate (above 6–7 ml air s–1) and volumes of medium (above 11 ml) added to the column. Increases in concentration of cells in the medium led to increases in the concentration of cells in the foam.  相似文献   

12.
Cells of the propionate-tolerant strain Propionibacterium acidipropionici P200910, immobilized in calcium alginate beads, were tested for propionic and acetic acid production both in a semidefined laboratory medium and in corn steep liquor in batch, fed-batch, and continuous fermentation. Cell density was about 9.8 × 109 cells/g (wet weight) of beads, and beads were added to the medium at 0.1 g (wet weight) beads/ml. Beads could be reused for several consecutive batch fermentations; propionic acid production in the tenth cycle was about 50%–70% of that in the first cycle. In batch culture complete substrate consumption (glucose in semidefined medium, lactate in corn steep liquor) and maximum acid production were seen within 36 h, and acid yields from the substrate were higher than in free-cell fermentations. Fed-batch fermentations were incubated up to 250 h. Maximum propionic acid concentrations obtained were 45.6 g/l in corn steep liquor and 57 g/l in semidefined medium; this is the highest concentration achieved to date in our laboratory. Maximum acetic acid concentrations were 17 g/l and 12 g/l, respectively. In continuous fermentation of semidefined medium, dilution rates up to 0.31 h–1 could be used, which gave higher volumetric productivities (0.96 g l–1 h–1 for propionic acid and 0.26 g l–1 h–1 for acetic acid) than we have obtained with free cells. Corn steep liquor shows promise as an inexpensive medium for production of both acids by immobilized cells of propionibacteria.Journal paper no. J- 15614 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project no. 3122  相似文献   

13.
The activity of 6-phosphogluconate dehydrogenase, aspartate kinase and phosphoenolpyruvate carboxylase has been studied at different dilution rates in aerobic continuous culture of Corynebacterium glutamicum. 6-Phosphogluconate dehydrogenase and aspartate kinase reached their maximum values at the lower dilution rates (0.02–0.06 h–1), when L-lysine was produced. The phosphoenolpyruvate carboxylase activity seemed to be independent of metabolite synthesis. The production of L-lysine was also studied in non-growing cells in batch cultures. In these conditions, statistical analysis revealed significant differences in L-lysine titres when glucose or gluconic acid were used as carbon sources. Higher L-lysine concentration obtained with gluconic acid was found to be associated with a high 6-phosphogluconate dehydrogenase activity.  相似文献   

14.
Freely suspended and Ca-alginate-immobilized cells of Pimelobacter sp. were used for degradation of pyridine. When the pyridine concentration was up to 2 g l–1, freely suspended cells completely degraded pyridine regardless of the initial cell concentrations used. However, when the pyridine concentration increased to 4 g l–1, the initial cell concentration in freely suspended cell culture should be higher than 1.5 g dry cell weight l–1 for complete degradation of pyridine. In addition, a freely suspended cell culture with a high initial cell concentration resulted in a high volumetric pyridine-degradation rate, suggesting the potential use of immobilized cells for pyridine-degradation. When the immobilized cells were used for pyridine-degradation, neither specific pyridine-degradation rate nor tolerance against pyridine was improved. However, a high volumetric pyridine-degradation rate in the range 0.082–0.129 g l–1 hr–1 could be achieved by the immobilized cells because of the high cell concentration. Furthermore, when the immobilized cells were reused in degrading pyridine at a concentration of 2–4 g l–1 they did not lose their pyridine-degrading activity for 2 weeks. Taken together, the data obtained here showed the feasibility of using immobilized cells for pyridine-degradation.  相似文献   

15.
Summary Permeabilization ofZymomonas mobilis with CTAB(Cetyltrimethylammoniumbromide) was investigated in order to obtain a stable process for sorbitol production in the immobilized system. The optimum conditions for sorbitol formation were treating cells with 0.2% CTAB at 4°C for 10 min. For the immobilized system permeabilized cells were treated with glutaraldehyde to improve the system with cross-linking of enzymes. In this way, no significant loss of enzyme activity was apparent during 30 day operation in a continuous process. The productivity of the continuous process at a dilution rate 0.2 h–1 was 6.51g/L-h for sorbitol. The CTAB-permeabilized cells could be used to produce sorbitol and gluconic acid simultaneously in the long term continuous process.  相似文献   

16.
Summary The possibility of using polyurethane foam as a support for the immobilization ofZymomonas mobilis cells to carry out sucrose conversion to ethanol was investigated. Sucrose hydrolysis efficiencies of 90% and higher, volumetric reactor productivity of 20 gL–1h–1 and final ethanol concentration of 6.3% (v/v) at a dilution rate of 0.4 h–1 show the good performance of polyurethane foams for whole cell immobilization.  相似文献   

17.
Conidia ofPenicillium variabile P16 were immobilized in polyurethane sponge and used in repeated-batch processes in a fluidized-bed reactor. Optimal conditions for production of glucose oxidase and catalase were: inoculum size, 10%; glucose concentration, 80 g L–1; Ca-carbonate concentration, 15 g L–1; temperature, 28°C and aeration rate, 4 VV–1 min–1. In an extended repeated-batch process, glucose oxidase activity was highest after the fourth batch and catalase activity was highest after the fifth batch. Scanning electron microscopy showed that the fungus grew only in the interior of carrier particles.  相似文献   

18.
Summary Growth of Propionibacterium acidi-propionici was studied on lactose as substrate and in acid whey permeate in a three-electrode poised-potential system with cobalt sepulchrate as artificial electron donor. In batch culture experiments in a stirred-tank reactor the substrate was fermented completely to propionic acid up to 6.5 g 1–1 lactose in a supplemented whey permeate medium. No acetic acid was produced during the growth of P. acidi-propionici. An electron flow of 80–100 mA was obtained and the electron balance was 101%. In continuously growing cultures with 3 g 1–1 of lactose as the substrate, propionate was formed as the only fermentation product up to a dilution rate (D) of 0.04 h–1. With D>0.04 h–1 the bacteria immobilized on the working electrode surface. It was examined whether an electron transfer occurred between the platinum working electrode and the immobilized cells. Correspondence to: W. Trösch  相似文献   

19.
Cells of the non-N2-fixing cyanobacterium Phormidium uncinatum were immobilized by adsorption into polyvinyl (PV-50) foam pieces. The effect of inoculum size as well as the initial inoculum/support ratio on the cell immobilization process was investigated. After 2 months of immobilization similar net O2-exchange activity was measured in immobilized and free-living cells. Polyvinyl-adsorbed cells also showed similar nitrate uptake capacity to free-living cells. Nitrogen starvation promoted a remarkable increase in nitrate uptake rate of both free-living and immobilized cells. A lab-scale photobioreactor packed with polyvinyl foam pieces colonized in situ by cells was used for nitrate removal in a continuous mode. In the best working conditions found, nearly 90% of nitrate supplied in the influent (50 mg l–1) was removed by cells having a residence time of 3–4 h. Correspondence to: J. L. Serra  相似文献   

20.
Distinct spatio-temporal variations of metal ions and Taxol production were observed for Taxus cuspidata cells immobilized on polyurethane foam. The Taxol content in the inner foam layer reached 215 μg g−1 at day 30, which was 40-fold higher than that in the outer foam layer, and the Ca2+ and Mg2+ contents were 5.3 and 3.7 times higher, while the K+ content was 5.5 times lower. Thus higher intracellular Ca2+ and Mg2+ contents and lower intracellular K+ content may favor the Taxol biosynthesis in immobilized Taxus cuspidata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号