首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In "The ends of a large RNA molecule are necessarily close", Yoffe et al. (Nucleic Acids Res 39(1):292-299, 2011) used the programs RNAfold [resp. RNAsubopt] from Vienna RNA Package to calculate the distance between 5' and 3' ends of the minimum free energy secondary structure [resp. thermal equilibrium structures] of viral and random RNA sequences. Here, the 5'-3' distance is defined to be the length of the shortest path from 5' node to 3' node in the undirected graph, whose edge set consists of edges {i, i + 1} corresponding to covalent backbone bonds and of edges {i, j} corresponding to canonical base pairs. From repeated simulations and using a heuristic theoretical argument, Yoffe et al. conclude that the 5'-3' distance is less than a fixed constant, independent of RNA sequence length. In this paper, we provide a rigorous, mathematical framework to study the expected distance from 5' to 3' ends of an RNA sequence. We present recurrence relations that precisely define the expected distance from 5' to 3' ends of an RNA sequence, both for the Turner nearest neighbor energy model, as well as for a simple homopolymer model first defined by Stein and Waterman. We implement dynamic programming algorithms to compute (rather than approximate by repeated application of Vienna RNA Package) the expected distance between 5' and 3' ends of a given RNA sequence, with respect to the Turner energy model. Using methods of analytical combinatorics, that depend on complex analysis, we prove that the asymptotic expected 5'-3' distance of length n homopolymers is approximately equal to the constant 5.47211, while the asymptotic distance is 6.771096 if hairpins have a minimum of 3 unpaired bases and the probability that any two positions can form a base pair is 1/4. Finally, we analyze the 5'-3' distance for secondary structures from the STRAND database, and conclude that the 5'-3' distance is correlated with RNA sequence length.  相似文献   

2.
R R Reed  N D Grindley 《Cell》1981,25(3):721-728
Resolvase, the product of the tnpR gene of the transposable element gamma delta, mediates a site-specific recombination between two copies of the element directly repeated on the same replicon. The resolution site, res, at which resolvase acts lies in the intercistronic region between the tnpA and tnpR genes. We have studied this site-specific recombination in vitro. In the absence of Mg2+, a resolvase-res complex is formed, which contains DNA molecules that have been cleaved at res. Our data suggest that in this complex resolvase is covalently attached to the 5' ends of the cleaved DNA, leaving free 3' hydroxyl groups. DNA cleavage is stimulated by the interaction of two res sites on the same substrate molecule and appears to be an intermediate step in normal res site recombination. We show that the DNA is cut within a region previously identified as containing the crossover point at the palindromic sequence 5'- (see formula in text) to generate 3' extensions of two bases.  相似文献   

3.
High sequence specificity of micrococcal nuclease.   总被引:58,自引:31,他引:27       下载免费PDF全文
The substrate specificity of micrococcal nuclease (EC 3.1.4.7.) has been studied. The enzyme recognises features of nucleotide composition, nucleotide sequence and tertiary structure of DNA. Kinetic analysis indicates that the rate of cleavage is 30 times greater at the 5' side of A or T than at G or C. Digestion of end-labelled linear DNA molecules of known sequence revealed that only a limited number of sites are cut, generating a highly specific pattern of fragments. The frequency of cleavage at each site has been determined and it may reflect the poor base overlap in the 5' T-A 3' stack as well as the length of contiguous A and T residues. The same sequence preferences are found when DNA is assembled into nucleosomes. Deoxyribonuclease 1 (EC 3.1.4.5.) recognises many of the same sequence features. Micrococcal nuclease also mimics nuclease S1 selectively cleaving an inverted repeat in supercoiled pBR322. The value of micrococcal nuclease as a "non-specific" enzymatic probe for studying nucleosome phasing is questioned.  相似文献   

4.
Nucleotide pyrophosphate transferase isolated from Streptomyces griseus is used to transfer pyrophosphate group from gamma-32P-ATP to the 3'-OH of tRNA, generating a strictly terminal label at its 3' end. Using yeast tRNAPhe as model compound, it is demonstrated that the labelled molecule is suitable for rapid gel sequencing by both enzymatic and chemical methods. RNA molecules terminated by pyrimidine nucleoside are poor pyrophosphate acceptors. To label RNAs of this kind, first guanosine 5'-phosphate 3'-(beta-32P)-pyrophosphate (pGpp) is prepared from gamma-32P-ATP and GMP by nucleotide pyrophosphate transferase. pGpp is then ligated to the 3' end of RNA by T4 RNA ligase. The complete nucleotide sequence of 5S RNA from Streptomyces griseus is established by rapid gel sequencing methods performed on 3'-(beta-32P)-pyrophosphate labelled molecule.  相似文献   

5.
K X Chen  N Gresh    B Pullman 《Nucleic acids research》1986,14(9):3799-3812
Theoretical computations are performed on the comparative binding energetics of mitoxantrone (MX), a newly synthesized intercalating anthraquinone antitumor drug, to six representative double-stranded tetranucleotides: d(GCGC)2, d(CGCG)2, d(ATAT)2, d(TATA)2, d(GTGT), d(ACAC), and d(CCGG)2. The computations are performed with the SIBFA procedure, which uses empirical formulas based on ab initio SCF computations. The best binding configuration of mitoxantrone locates its two side chains in the major groove. A considerable preference is elicited for intercalation of the chromophore ring in a pyrimidine (3'-5') purine sequence rather than the isomeric purine (3'-5') pyrimidine sequence. Contrary to the situation encountered with "simple" intercalators, in which this preference is generally attributed solely to differences in the energies of unstacking necessary to generate the intercalation sites, the preference is dictated in MX to a large extent by the intermolecular interaction energy term. This result is imposed by the interactions of the side chains of MX with the oligonucleotide.  相似文献   

6.
The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric nucleotide sequence called chi. In this study, site-directed mutations were made in the carboxyl-terminal nuclease domain of the RecB subunit, and their effects on RecBCD's enzymatic activities were investigated. Mutation of two amino acid residues, Asp(1067) and Lys(1082), abolished nuclease activity on both single- and double-stranded DNA. Together with Asp(1080), these residues compose a motif that is similar to one shown to form the active site of several restriction endonucleases. The nuclease reactions catalyzed by the RecBCD enzyme should therefore follow the same mechanism as these restriction endonucleases. Furthermore, the mutant enzymes were unable to produce chi-specific fragments that are thought to result from the 3'-5' and 5'-3' single-stranded exonuclease activities of the enzyme during its reaction with chi-containing double-stranded DNA. The results show that the nuclease active site in the RecB C-terminal 30-kDa domain is the universal nuclease active site of RecBCD that is responsible for DNA degradation in both directions during the reaction with double-stranded DNA. A novel explanation for the observed nuclease polarity switch and RecBCD-DNA interaction is offered.  相似文献   

7.
The nuclear extracts of plasmacytomas producing antibodies were found to contain factors which formed complexes with the promoter fragment of the gene for immunoglobulin kappa-chains. The corresponding complexes found in the extracts of nonlymphoid cells had a different mobility. Two approaches were proposed for determining the boundaries of the region necessary for protein factors to be bound to DNA using nuclease Ba131. A 5'-ATTTGCAT-3' octanucleotide sequence was shown to be necessary for interaction with the protein nuclear factor in the studied plasmacytoma lines. The protein completely lost its affinity if at least one nucleotide was removed or substituted at the 5'- or 3'-end of this sequence. The procedures proposed for determining the precise boundaries of the sequence necessary for protein binding to DNA do not require a preliminary protein purification. The principles on which the procedures are based, set no limitations to their application to other systems used for studying the interaction of proteins with DNA.  相似文献   

8.
9.
K X Chen  N Gresh    B Pullman 《Nucleic acids research》1986,14(22):9103-9115
Theoretical computations are performed on the comparative A-T versus G-C binding selectivities of two DNA intercalating molecules recently synthesized by Wilson et al. These are derivatives of phenanthrene and anthracene with side chains containing an hydroxy group bound to its C alpha carbon and a cationic amino group bound to its C beta carbon. We have optimized the binding energies of these phenanthrene and anthracene derivatives (1 and 2, respectively) to the double-stranded tetramers d(ATAT)2 and d(GCGC)2, the intercalation occurring in the central pyrimidine (3'-5') purine sequence. The sum of the intercalator-oligonucleotide intermolecular interaction energy plus the conformational energy variation of the intercalator upon binding were computed by the SIBFA procedures, which use empirical formulas based on ab initio SCF computations. Both compounds are found to bind more favourably to the AT sequence than to the GC one. Moreover, the affinity of 1 for the AT oligomer is computed to be larger than that of 2, whereas conversely that of 2 is larger than that of 1 for the GC oligomer. The AT versus GC binding selectivity of 1 is significantly larger than that of 2. These results are in excellent agreement with the experimental findings of Wilson et al. However, contrary to the suggestion of these authors the alpha-hydroxy group of the side chain of the intercalators does not seem to play a decisive role in determining the A-T specificity.  相似文献   

10.
Interleukin-6 (IL-6) activates (2'-5') A synthetase (2'-5' AS) gene expression in differentiating myeloleukemic M1 cells. Antibodies to type I interferon (IFN) inhibit 2'-5' AS induction but not differentiation. Analysis of the mechanism of 2'-5' AS induction shows that it does not result from increased IFN formation, but from a synergism between IL-6 and endogenously secreted IFN. IL-6 can activate expression of a CAT construct fused to the interferon response sequence (IRS) of the 2'-5' AS gene. In extracts of IL-6-treated M1 cells, changes in protein binding to IRS DNA can be demonstrated. One of the effects of IL-6 on M1 cells is, therefore, to induce DNA binding factors, some of which act on the same enhancer sequence as IFNs, resulting in a synergistic gene activation. M1 variants resistant to differentiation by IL-6 have lost the ability to induce the 2'-5' AS gene.  相似文献   

11.
We present the high-resolution solution structures of a self-complementary DNA decamer duplex featuring a single alpha-anomeric nucleotide per strand encompassed by a set of 3'-3' and 5'-5' phosphodiester linkages, d(GCGAAT-3'-3'-alphaT-5'-5'-CGC)2, alphaT, and its unmodified control, d(GCGAATTCGC)2, obtained by restrained molecular dynamics. Interproton distance and deoxyribose ring torsion angle restraints were deduced from homonuclear NOESY and DQF-COSY data, respectively. For both the control and alphaT duplexes, excellent global convergence was observed from two different (A- and B-) starting models. The final average structures of the two duplexes are highly homologous, and overall possess the traits characteristic of right-handed B-DNA duplexes. However, localized differences between the two structures stem from the enhanced conformational exchange in the deoxyribose ring of the cytidine following the 5'-5' linkage, the C3'- exo pseudorotation phase angle of the alpha-nucleotide, and unusual backbone torsions in the 3'-3' and 5'-5' phosphodiester linkages. The structural data reported here are relevant to the design of antisense therapeutics comprised of these modifications.  相似文献   

12.
13.
14.
Wojtuszewski K  Mukerji I 《Biochemistry》2003,42(10):3096-3104
HU, an architectural DNA-binding protein, either stabilizes DNA in a bent conformation or induces a bend upon binding to give other proteins access to the DNA. In this study, HU binding affinity for a bent DNA sequence relative to a linear sequence was investigated using fluorescence anisotropy measurements. A static bend was achieved by the introduction of two phased A4T4 tracts in a 20 bp duplex. Binding affinity for 20 bp duplexes containing two phased A-tracts in either a 5'-3' or 3'-5' orientation was found to be almost 10-fold higher than HU binding to a random sequence 20 bp duplex (6.1 vs 0.68 microM(-1)). The fluorescence technique of resonance energy transfer was used to quantitatively determine the static bend of the DNA duplexes and the HU-induced bend. DNA molecules were 5'-end labeled with fluorescein as the donor or rhodamine as the acceptor. From the efficiency of energy transfer, the end-to-end distance of the DNA duplexes was calculated. The end-to-end distance relative to DNA contour length (R/R(C)) yields a bend angle for the A-tract duplex of 45 +/- 7 degrees in the absence of HU and 70 +/- 3 degrees in the presence of HU. The bend angle calculated for the T4A4 tract duplex was 62 +/- 4 degrees after binding two HU dimers. Fluorescence anisotropy measurements reveal that HU binds in a 1:1 stoichiometry to the A4T4 tract duplex but a 2:1 stoichiometry to the T4A4 tract and random sequence duplex. These findings suggest that HU binding and recognition of DNA may be governed by a structural mechanism.  相似文献   

15.
The three dimensional crystal structure of T5 5'-3' exonuclease was compared with that of two other members of the 5'-3' exonuclease family: T4 ribonuclease H and the N-terminal domain of Thermus aquaticus DNA polymerase I. Though these structures were largely similar, some regions of these enzymes show evidence of significant molecular flexibility. Previous sequence analysis had suggested the existence of a helix-hairpin-helix motif in T5 exonuclease, but a distinct, though related structure is actually found to occur. The entire T5 exonuclease structure was then compared with all the structures in the complete Protein Data Bank and an unexpected similarity with gamma-delta (gamma delta) resolvase was observed. 5'-3' exonucleases and gamma delta resolvase are enzymes involved in carrying out quite different manipulations on nucleic acids. They appear to be unrelated at the primary sequence level, yet the fold of the entire catalytic domain of gamma delta resolvase is contained within that of the 5'-3'exonuclease. Different large-scale helical structures are used by both families to form DNA binding sites.  相似文献   

16.
Smith BA  Jackman JE 《Biochemistry》2012,51(1):453-465
The tRNA(His) guanylyltransferase (Thg1) catalyzes the incorporation of a single guanosine residue at the -1 position (G(-1)) of tRNA(His), using an unusual 3'-5' nucleotidyl transfer reaction. Thg1 and Thg1 orthologs known as Thg1-like proteins (TLPs), which catalyze tRNA repair and editing, are the only known enzymes that add nucleotides in the 3'-5' direction. Thg1 enzymes share no identifiable sequence similarity with any other known enzyme family that could be used to suggest the mechanism for catalysis of the unusual 3'-5' addition reaction. The high-resolution crystal structure of human Thg1 revealed remarkable structural similarity between canonical DNA/RNA polymerases and eukaryotic Thg1; nevertheless, questions regarding the molecular mechanism of 3'-5' nucleotide addition remain. Here, we use transient kinetics to measure the pseudo-first-order forward rate constants for the three steps of the G(-1) addition reaction catalyzed by yeast Thg1: adenylylation of the 5' end of the tRNA (k(aden)), nucleotidyl transfer (k(ntrans)), and removal of pyrophosphate from the G(-1)-containing tRNA (k(ppase)). This kinetic framework, in conjunction with the crystal structure of nucleotide-bound Thg1, suggests a likely role for two-metal ion chemistry in all three chemical steps of the G(-1) addition reaction. Furthermore, we have identified additional residues (K44 and N161) involved in adenylylation and three positively charged residues (R27, K96, and R133) that participate primarily in the nucleotidyl transfer step of the reaction. These data provide a foundation for understanding the mechanism of 3'-5' nucleotide addition in tRNA(His) maturation.  相似文献   

17.
In this paper we report a thermodynamic characterisation of stability and melting behaviour of four different triple helices at pH 6.0. The target duplex consists of 16 base pairs in alternate sequence of the type 5'-(purine)(m)(pyrimidine)(m)-3'. The four triplexes are formed by targeting the 16-mer duplex with an all pyrimidine 16-mer or 15-mer or 14-mer third strand. The 16-mer oligonucleotide contains a 3'-3' phosphodiester junction and corresponding triplex was named 16-mer P. The 14-mer oligonucleotide contains a non-nucleotide linker, the 1,2,3 propanetriol residue and the corresponding triplex was named 14-mer PT. For the 15-mer oligonucleotide both junctions were alternatively used and the relative triplexes were named 15-mer P and 15-mer PT, respectively. These linkers introduce the appropriate polarity inversion and let the third strand switch from one oligopurine strand of the duplex to the other. Thermal denaturation profiles indicate the initial loss of the third strand followed by the dissociation of the target duplex. Transition enthalpies, entropies and free energies were derived from differential scanning calorimetric measurements. The comparison of Gibbs energies reveals that a more stable triplex is obtained when in the third strand there is the lack of one nucleotide in the junction region and a propanetriol residue as linker was used. The thermodynamic data were discussed in light of molecular mechanics and dynamics calculations.  相似文献   

18.
19.
The complete nucleotide sequence of the beta-xylosidase gene (xynB) of Bacillus pumilus IPO and its flanking regions was established. A 1617-bp open reading frame for beta-xylosidase, a homodimer enzyme, was observed. The amino acid sequence of the N-terminal region and the molecular mass 62607 Da) of the beta-xylosidase subunit, deduced from the DNA sequence, agreed with the result obtained with the purified enzyme. The Shine-Dalgarno sequence was found 8 bp upstream of the initiation codon, ATG. The xylanase gene (xynA) of the same strain was 4.6 kbp downstream of the 3' end of xynB, and its DNA sequence was reported in our previous paper [Fukusaki, E., Panbangred, W., Shinmyo, A. & Okada, H. (1984) FEBS Lett. 171, 197-201]. The results of the Northern hybridization suggested that the mRNA of xynA and xynB were produced separately. The 5' and 3' ends of the xynA and xynB gene were mapped with nuclease S1. The '-10' regions for promoter sequences of both genes were similar to the consensus sequence for B. subtilis RNA polymerases, the '-35' regions were different from all the known promoters for B. subtilis RNA polymerases.  相似文献   

20.
We have studied the mechanisms of breakdown of 2'-5' oligoadenylates. We monitored the time-courses of degradation of ppp(A2'p5')nA (dimer to tetramer) and of 5'OH-(A2'p5')nA (dimer to pentamer) in unfractionated L1210 cell extract. The 5' triphosphorylated 2'-5' oligoadenylates are converted by a phosphatase activity. However, 2'-5' oligoadenylates are degraded mainly by phosphodiesterase activity which splits the 2'-5' phosphodiester bond sequentially at the 2' end to yield 5' AMP and one-unit-shorter oligomers. The nonlinear least-squares curve-fitting program CONSAM was used to fit these kinetics and to determine the degradation rate constant of each oligomer. Trimers and tetramers, whether 5' triphosphorylated or not, are degraded at the same rate, whereas 5' triphosphorylated dimer is rapidly hydrolyzed and 5'-OH dimer is the most stable oligomer. The interaction between degradation enzymes and the substrate strongly depends on the presence of a 5' phosphate group in the vicinity of the phosphodiester bond to be hydrolyzed; indeed, when this 5' phosphate group is present, as in pp/pA2'p5'A/or A2'/p5'A2'p5'A/, affinity is high and maximal velocity is low. Such a degradation pattern can control the concentration of 2'-5' oligoadenylates active on RNAse L either by limiting their synthesis (5' triphosphorylated dimer is the primer necessary for the formation of longer oligomers) and/or by converting them into inhibitory (e.g., monophosphorylated trimer) or inactive (e.g., nonphosphorylated oligomers) molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号