首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Baby hamster kidney (BHK) 21/C13 cell proteins, labeled with [35S]methionine, [14C]leucine or [3H]leucine in intact cells, were degraded in soluble, cell-free extracts by an ATP-stimulated process. The stimulatory effect of ATP appeared to require ATP hydrolysis and was mediated to a large extent by ubiquitin. Although the cell extracts contained endogenous ubiquitin, supplementation with exogenous ubiquitin increased ATP-dependent proteolysis by up to 2-fold. Furthermore, antibodies against the E1 ubiquitin conjugating enzyme specifically inhibited both conjugation of [125I]ubiquitin to endogenous proteins and ATP/ubiquitin-dependent proteolysis. Addition of purified E1 to antibody-treated extracts restored conjugation and proteolysis. Proteins containing the amino acid analogues canavanine and azatryptophan were also degraded in vitro by an ATP/ubiquitin-dependent process but at a rate up to 2-fold faster than normal proteins. These results indicate that soluble, cell-free extracts of BHK cells can selectively degrade proteins whose rates of degradation are increased in intact cells. Treatment of cell-free extracts with antibodies against the high molecular weight proteinase, macropain, also greatly inhibited the ATP/ubiquitin-dependent degradation of endogenous proteins. Proteolysis was specifically restored when purified macropain L was added to the antibody-treated extracts. Treatment of cell extracts with both anti-macropain and anti-E1 antibodies reduced ATP/ubiquitin-dependent proteolysis to the same extent as treatment with either antibody alone. Furthermore, proteolysis could be restored to the double antibody treated extracts only after addition of both purified E1 and macropain. These results provide strong evidence for an important role for macropain in the ATP/ubiquitin-dependent degradation of endogenous proteins in BHK cell extracts.  相似文献   

2.
Soluble extracts of cultured cells (BHK 21/C13) degraded a variety of exogenous proteins to acid-soluble peptides at pH 8.0. ATP stimulated this proteolytic activity up to 10-fold. The ATP effect was dependent on Mg2+ and was not elicited by nonhydrolyzable analogs of ATP. After the extract was fractionated on DEAE-cellulose, ATP-stimulated protease activity was in the fraction that bound to the resin and eluted in buffer containing 0.4 M NaCl. This activity had characteristics that were indistinguishable from those of the unfractionated extract but the degree of ATP stimulation was two- to three-fold lower. Although no protease activity was detected in the unbound fraction, reconstitution of this material with the bound fraction enhanced the ATP stimulation up to twofold. The component responsible for the enhancement of the ATP stimulation had properties similar to ubiquitin and purified ubiquitin enhanced the ATP-stimulated protease activity in the fractionated extract. Substrates whose amino groups were almost completely blocked by various chemical modifications were still degraded in an ATP-stimulated fashion, but the degradation of these substrates was not affected by ubiquitin. The protease activity isolated by ion-exchange chromatography was fractionated further by gel filtration chromatography on Sephacryl S-300. ATP-stimulated protease activity eluted with an apparent molecular weight of 750,000. Protease activity was enhanced up to eightfold by Mg2+-ATP but was not increased further by ubiquitin. An activity that hydrolyzed the synthetic peptide Z-Val-Leu-Arg-MNA coeluted with ATP-stimulated protease activity, but peptide hydrolysis was not affected by ATP. These and other catalytic and biochemical characteristics suggested that the protease might be related to the high-molecular-weight protease, macropain, recently purified by us from human erythrocytes (M. J. McGuire and G. N. DeMartino Biochim. Biophys. Acta (1986) 873, 279-289). Antibodies raised against macropain specifically reacted with proteins characteristic of macropain in the column fractions containing ATP-stimulated protease activity. These antibodies also specifically immunoprecipitated 70-100% of the ATP-stimulated protease activity as well as Z-Val-Leu-Arg-MNA hydrolyzing activity. Thus BHK cell extracts appear to contain both ubiquitin-mediated and ubiquitin-independent pathways for the ATP-stimulated degradation of proteins. Furthermore, at least one of these pathways appears to involve a high-molecular-weight, ATP-stimulated protease related to macropain.  相似文献   

3.
Protein degradation in rabbit reticulocytes is a nonlysosomal process requiring ATP. Recently, appreciable evidence has been presented that ATP is required for the covalent binding of the polypeptide ubiquitin to epsilon-amino groups on protein substrates. To test whether linkage of ubiquitin to substrates is required for ATP-dependent proteolysis, the amino groups of 3H-methyl-casein and denatured 125I-bovine serum albumin (BSA) were completely (93-99%) blocked by methylation, acetylation, carbamylation, or succinylation. In each case, the proteins lacking amino groups were still degraded by an ATP-stimulated process, although these various treatments altered absolute rates of proteolysis and reduced the magnitude of the ATP stimulation (two- to fourfold) below that seen measured with the unmodified substrates. When ubiquitin was removed by ion exchange chromatography, ATP still stimulated breakdown of casein and carbamylated casein twofold. The addition of ubiquitin in the presence of ATP caused a further twofold increase in the hydrolysis of unmodified casein but did not affect the degradation of casein lacking amino groups. Thus ubiquitin conjugation to substrates appears important in the breakdown of certain substrates (especially of BSA), but this reaction is not essential for ATP- stimulated proteolysis. The ATP-activated step that is independent of ubiquitin probably is also involved in the degradation of unblocked proteins, since both processes require Mg++ and ATP hydrolysis and are inhibited by hemin but not by protoporphyrin IX. These results suggest that ATP has distinct roles at different steps in the degradative pathway.  相似文献   

4.
A soluble ATP-dependent system for protein degradation has been demonstrated in reticulocyte lysates, but not in extracts of nucleated cells. We report that extracts of undifferentiated murine erythroleukemia (MEL) cells contain a labile ATP-stimulated proteolytic system. The addition of ATP to MEL cell extracts at alkaline pH enhances degradation of endogenous cell proteins and various radiolabeled exogenous polypeptides from 2-15-fold. Nonhydrolyzable ATP analogs had no effect. In reticulocytes, one role of ATP in proteolysis is for ubiquitin conjugation to protein substrates. MEL cells also contain ubiquitin and extracts can conjugate 125I-ubiquitin to cell proteins; however, this process in MEL cells seems unrelated to protein breakdown. After removal of ubiquitin from these extracts by DEAE- or gel chromatography, the stimulation of proteolysis by ATP was maintained and readdition of purified ubiquitin had no further effect. In addition, these extracts degraded in an ATP-dependent fashion casein whose amino groups were blocked and could not be conjugated to ubiquitin. After gel filtration or DEAE-chromatography of the MEL cell extracts (unlike those from reticulocytes), we isolated a high molecular weight (600,000) ATP-dependent proteolytic activity, which exhibits many of the properties of energy-dependent proteolysis seen in crude cell extracts. For example, both the protease and crude extracts are inhibited by hemin and N-ethylmaleimide and both hydrolyze casein, globin, and lysozyme rapidly and denatured albumin relatively slowly. The protease, like the crude extracts, is also stimulated by UTP, CTP, and GTP, although not as effectively as ATP. Also, nonhydrolyzable ATP analogs and pyrophosphate do not stimulate the protease. Thus, some mammalian cells contain a cytosolic proteolytic pathway that appears independent of ubiquitin and involves and ATP-dependent protease, probably similar to that found in Escherichia coli or mitochondria.  相似文献   

5.
Specific immunoadsorption of the high molecular weight multicatalytic protease, macropain, from postmicrosomal extracts of BHK fibroblasts inhibited ATP-dependent proteolysis of exogenous protein substrates. The immunoprecipitated macropain represented the latent (L) form of the protease because it had low protease activity but was activated by methods that activate purified macropain L. Reconstitution of the antibody-treated extracts with purified macropain L, but not macropain A, from bovine heart or human erythrocytes, completely restored ATP-dependent proteolysis, even though ATP did not directly activate either purified macropain L or the immunoprecipitated protease. Reconstituted ATP-dependent proteolysis was saturable with respect to added macropain and never exceeded the level of proteolysis present in the original extract. These results indicate that macropain L plays a key role in ATP-dependent proteolysis but suggest that the protease may require interaction with or modification by another cellular component to demonstrate this effect.  相似文献   

6.
Reticulocytes contain a nonlysosomal, ATP-dependent system for degrading abnormal proteins and normal proteins during cell maturation. Vanadate, which inhibits several ATPases including the ATP-dependent proteases in Escherichia coli and liver mitochondria, also markedly reduced the ATP-dependent degradation of proteins in reticulocyte extracts. At low concentrations (K1 = 50 microM), vanadate inhibited the ATP-dependent hydrolysis of [3H]methylcasein and denatured 125I-labeled bovine serum albumin, but it did not reduce the low amount of proteolysis seen in the absence of ATP. This inhibition by vanadate was rapid in onset, reversed by dialysis, and was not mimicked by molybdate. Vanadate inhibits proteolysis at an ATP-stimulated step which is independent of the ATP requirement for ubiquitin conjugation to protein substrates. When the amino groups on casein and bovine serum albumin were covalently modified so as to prevent their conjugation to ubiquitin, the derivatized proteins were still degraded by an ATP-stimulated process that was inhibited by vanadate. In addition, vanadate did not reduce the ATP-dependent conjugation of 125I-ubiquitin to endogenous reticulocyte proteins, although it markedly inhibited their degradation. In intact reticulocytes vanadate also inhibited the degradation of endogenous proteins and of abnormal proteins containing amino acid analogs. This effect was rapid and reversible; however, vanadate also reduced protein synthesis and eventually lowered ATP levels in the intact cells. Vanadate (10 mM) has also been reported to decrease intralysosomal proteolysis in hepatocytes. However, in liver extracts this effect on lysosomal proteases required high concentrations of vanadate (K1 = 500 microM) and was also observed with molybdate, unlike the inhibition of ATP-dependent proteolysis in reticulocytes.  相似文献   

7.
To produce ubiquitinated substrates for studies on ATP-dependent proteolysis, 125I-lysozyme was incubated in hemin-inhibited rabbit reticulocyte lysates. A portion of the labeled molecules became linked to ubiquitin in large covalent complexes. When these were partially purified and returned to uninhibited lysates containing ATP, the conjugated lysozyme molecules were degraded 10 times faster than free lysozyme. Purification of covalently modified lysozyme from hemin-inhibited lysates containing 125I-ubiquitin and 131I-lysozyme confirmed that both molecules were present in the complexes. The doubly labeled conjugates also permitted us to determine the fate of each molecule in uninhibited lysates. Besides degradation of lysozyme, there was a progressive release of intact lysozyme molecules from the complexes. This disassembly, which was the only fate of the complexes in the absence of ATP, proceeded through a series of smaller intermediates, several having molecular weights expected for ubiquitin-lysozyme conjugates, and eventually free lysozyme was regenerated. The behavior of labeled ubiquitin was similar, though not identical, to that of lysozyme. Even in lysates containing ATP ubiquitin emerged from the complex undegraded. Furthermore, ubiquitin was present in a greater number of species than was lysozyme. The demonstration that ubiquitin-lysozyme conjugates are rapidly degraded provides support for the hypothesis of Hershko, Rose, Ciechanover, and their colleagues that a key function of ubiquitin is to modify the proteolytic substrate. Further support for the hypothesis is presented in the following paper where we show that the conjugated lysozyme molecules are substrates for an ATP-dependent protease that does not degrade free lysozyme.  相似文献   

8.
Cleavage of the two carboxyl-terminal glycine residues from native ubiquitin yields the proteolysis-incompetent derivative des-Gly-Gly-ubiquitin. We report here that this derivative inhibits the ATP-dependent degradation of casein and is multi-ubiquitinated but not degraded by reticulocyte lysates. Inhibition of proteolysis diminished with increasing concentration of native ubiquitin, but was not reduced by increased casein concentration. Cleavage of the last four residues from ubiquitin yielded a derivative that was a weaker inhibitor of proteolysis and a poorer substrate for ubiquitination. These results suggest that the conjugation of ubiquitin to ubiquitin during polyubiquitin synthesis involves a specific conjugation system that recognizes ubiquitin and some of its derivatives, but not general proteolysis substrates, as ubiquitin acceptors.  相似文献   

9.
An inhibitory protein for the 20S proteasome (also known as macropain, the multicatalytic proteinase complex and 20S proteinase) has been purified from bovine red blood cells. The inhibitor has an apparent molecular weight of 31,000 on SDS-PAGE and appears to form multimers under nondenaturing conditions. This protein inhibited all three of the putatively distinct catalytic activities of proteasome A (the active form of the proteinase) characterized by the hydrolysis of synthetic peptides such as Z-VLR-MNA, Z-GGL-AMC or Suc-LLVY-AMC and Z-LLE-beta NA. The inhibitor also prevented the hydrolysis of large protein substrates such as casein, lysozyme and bovine serum albumin. Proteasome L (the latent form of the proteinase) does not degrade these large protein substrates, but does hydrolyze the three synthetic peptides at rates similar to those by proteasome A. The inhibitor inhibited only two of these peptidase activities of proteasome L (hydrolysis of Z-GGL-AMC and of Z-LLE-beta NA or Suc-LLVY-AMC); it had no effect on the hydrolysis of Z-VLR-MNA. The inhibitor was specific for inhibition of the proteasome and had no effect on the activity of any other proteinase tested including trypsin, chymotrypsin, papain, subtilisin and both isoforms of calpain. Kinetic analysis indicates that the inhibitor interacted with the proteasome by a mechanism involving tight-binding. Because the proteasome appears to be a key component of the ATP/ubiquitin-dependent pathway of intracellular protein degradation, the inhibitor may represent an important regulatory protein of this pathway.  相似文献   

10.
The presence of two distinct high-molecular-weight proteases with similar pH optima in the weakly alkaline region was shown in cytosol of the bovine brain cortex. They were separated by ammonium sulfate fractionation and each was further purified by DEAE-Sephacel Sephacryl S-300, DEAE-Cibacron Blue 3GA-agarose, heparin-agarose, and Sepharose 6B chromatography. The larger enzyme (Mr 1,400 kDa), which precipitates at 0–38% ammonium sulfate saturation, seems to be active in ATP+ubiquitin (Ub)-dependent proteolysis; it has low basal caseinolytic activity that is stimulated 3-fold by ATP, and when Ub is present ATP causes a 4.5-fold stimulation. A second proteinase was also found to be present (Mr 700 kDa) that precipitates at 38–80% ammonium sulfate saturation, is composed of multiple subunits ranging in Mr from 18 to 30 kDa, and degrades both protein and peptide substrates, demonstrating trypsin-, chymotrypsin- and cucumisin-like activities. Catalytic, biochemical, and immunological characteristics of this proteinase indicate that it is a multicatalytic proteinase complex (MPC), whose enzyme activity, in contrast to that of MPC from bovine pituitaries (1–3), is stimulated 1.7-fold by addition of ATP in the absence of ubiquitin at the early steps of purification; this property is lost during the course of further purification. Both proteinases are present in the nerve cells, since the primary chicken embryonic telencephalon neuronal cell culture extracts contain both ATP+Ub-dependent proteinase and MPC activities.Special issue dedicated to Dr. Paola S Timiras  相似文献   

11.
K Tanaka  A Ichihara 《FEBS letters》1988,236(1):159-162
The role of proteasomes, particles with latent multicatalytic proteinase, in ATP-dependent proteolysis in rat reticulocyte extracts was examined. Removal of proteasomes from the extracts by immunoprecipitation caused almost complete inhibition of ATP-dependent degradation of [3H]methylcasein, without affecting ATP-dependent proteolysis. Peptide fragments of [3H]casein, obtained by cyanogen bromide cleavage, were rapidly degraded in an ATP-independent fashion and this activity was not affected by removal of the proteasomes. These results suggest that proteasomes are involved in ATP-dependent proteolysis in the extracts and that they catalyze the initial cleavage of large proteins.  相似文献   

12.
Oxidatively modified proteins that accumulate in aging and many diseases can form large aggregates because of covalent cross-linking or increased surface hydrophobicity. Unless repaired or removed from cells, these oxidized proteins are often toxic, and threaten cell viability. Most oxidatively damaged proteins appear to undergo selective proteolysis, primarily by the proteasome. Previous work from our laboratory has shown that purified 20 S proteasome degrades oxidized proteins without ATP or ubiquitin in vitro, but there have been no studies to test this mechanism in vivo. The aim of this study was to determine whether ubiquitin conjugation is necessary for the degradation of oxidized proteins in intact cells. We now show that cells with compromised ubiquitin-conjugating activity still preferentially degrade oxidized intracellular proteins, at near normal rates, and this degradation is still inhibited by proteasome inhibitors. We also show that progressive oxidation of proteins such as lysozyme and ferritin does not increase their ubiquitinylation, yet the oxidized forms of both proteins are preferentially degraded by proteasome. Furthermore, rates of oxidized protein degradation by cell lysates are not significantly altered by addition of ATP, excluding the possibility of an energy requirement for this pathway. Contrary to earlier popular belief that most proteasomal degradation is conducted by the 26 S proteasome with ubiquitinylated substrates, our work suggests that oxidized proteins are degraded without ubiquitin conjugation (or ATP hydrolysis) possibly by the 20 S proteasome, or the immunoproteasome, or both.  相似文献   

13.
We have investigated the proteolytic degradation of [14C]methylcasein and 125I-labeled bovine serum albumin at pH 7.8 and 37 degrees C by lysates of rabbit reticulocytes purified from rabbit blood by two different procedures. (I) Lysates obtained from reticulocytes after removal of plasma and buffy coat as well as after washing of cells, degraded casein and albumin, and released from the two substrates 1.3%/h and 0.4%/h, respectively, of acid-soluble radioactivity. The activity towards both substrates was stimulated about 4-fold by ATP/Mg2+. Chromatography of whole blood on a column of cellulose prior to washing and lysis of cells had profound but differential effects on these activities in that stimulation of casein-degradation by ATP/Mg2+ was almost completely lost, whereas degradation of albumin, albeit at a low rate, was measurable in the presence of ATP/Mg2+ only. (II) Degradation of casein by these lysates is largely inhibited by a monospecific antibody against rabbit multicatalytic proteinase, whereas digestion of albumin is not affected by the antibody, either in the presence or absence of ATP/Mg2+. The latter activity is partially inhibited by a specific antibody against rabbit alpha 1-macroglobulin. (III) The immunoreactive amount of multicatalytic proteinase is about 1.2 micrograms per mg of lysate protein and almost identical in the two lysates. In contrast, the immunologically detectable levels of alpha 1-macroglobulin vary and are much lower in reticulocyte-lysates following chromatography on cellulose than in lysates from washed reticulocytes. (IV) Caseinolytic activity of multicatalytic proteinase, purified from rabbit reticulocyte lysate, is not activated by ATP/Mg2+ and the enzyme is proteolytically inactive towards albumin. On the other hand, a complex consisting of the proteinase inhibitor alpha 1-macroglobulin and the cysteine proteinase, cathepsin B, does degrade both substrates at pH 7.8, in an ATP/Mg2+-activated fashion. From these results it is concluded that the multicatalytic proteinase is an ATP-independent enzyme and a cellular constituent of rabbit reticulocytes whereas the activity stimulated by ATP/Mg2+ appears to be associated, at least in part, with a cysteine proteinase complexed to alpha 1-macroglobulin.  相似文献   

14.
Reticulocytes contain a nonlysosomal proteolytic pathway that requires ATP and ubiquitin. By DEAE chromatography and gel filtration, we were able to fractionate the ATP-dependent system into a 30-300-kDa fraction that catalyzes the ATP-dependent conjugation of ubiquitin to substrates ("Conjugation Fraction") and a high mass fraction (greater than 450 kDa) necessary for hydrolysis of the conjugated proteins. The latter contains two distinct proteases. One protease is unusually large, approximately 1500 kDa, and degrades proteins only when ATP and the conjugating fractions are added. This activity precipitates at 0-38% (NH4)2SO4 saturation and is essential for ATP-dependent proteolysis. Like crude extracts, it is labile in the absence of nucleotides and is inhibited by heparin, poly(Glu-Ala-Tyr), 3,4-dichloroisocoumarin, hemin, decavanadate, N-ethylmaleimide, and various peptide chloromethyl ketones. It lacks amino-peptidase and insulin-degrading activities and does not require tRNA for activity. The ubiquitin-conjugate degrading enzyme, which we suggest be named UCDEN, is inactive against substrates that cannot undergo ubiquitin conjugation. The smaller protease (670 kDa), which precipitates at 40-80% (NH4)2SO4 saturation, does not require ATP or ubiquitin and is therefore not required for ATP-dependent proteolysis. It is stimulated by N-ethylmaleimide and 3,4-dichloroisocoumarin and is stable at 37 degrees C. It hydrolyzes fluorometric tetrapeptides and proteins, including proteins which cannot be conjugated to ubiquitin. Thus, reticulocytes contain two large cytosolic proteases: one is essential for the degradation of ubiquitin conjugates, while the function of the other is uncertain.  相似文献   

15.
The effect in reticulocyte lysates of proteins with blocked amino groups on the ATP-dependent degradation of casein and serum albumin was studied in order to assess the extent to which proteins with blocked and with free amino groups share common paths of proteolytic degradation. Completely acetylated or succinylated casein and acetylated or succinylated serum albumin (reduced and carboxymethylated), in addition to other amino-modified proteins, inhibited the ATP-dependent proteolysis of both casein and reduced carboxymethylated serum albumin. Inhibition of serum albumin degradation by acetylated serum albumin was competitive, whereas inhibition of casein degradation by acetylated casein was largely competitive with evidence of mixed kinetics. The different amino-blocked proteins studied, which were largely unfolded under assay conditions, were similarly effective as inhibitors on a weight basis, with Ki values in the range 0.2-0.6 mg/ml; there was no correlation between the ability of the blocked proteins to serve as proteolysis substrates and their effectiveness as inhibitors. Studies of the effects of acetylated proteins on the conjugation of ubiquitin to serum albumin and casein demonstrated that the acetylated proteins blocked formation of ubiquitin-albumin conjugates and of selected casein conjugates; the steady state concentration of selected conjugates of endogenous lysate proteins was increased in the presence of amino-blocked proteins. The results suggest that proteins with blocked amino groups, which cannot serve as substrates for ubiquitin conjugation, can compete for binding to those ubiquitin conjugation factors that recognize and ubiquitinate potential substrates of the ubiquitin pathway. The similar inhibitory properties of the different blocked proteins in turn suggest that a common factor in binding to these conjugation factors may be recognition of the polypeptide backbone.  相似文献   

16.
Interaction of human erythrocyte multicatalytic proteinase with polycations   总被引:2,自引:0,他引:2  
The multicatalytic proteinase from human erythrocytes (macropain, proteasome) is a large enzyme composed of at least six distinct subunits ranging in molecular masses from 20 to 30 kDa. As its name implies, this proteinase appears to contain multiple catalytic sites with differing specificities toward peptide substrates. Several polycationic substances, including polylysines, polyarginine, protamine and histone H1 markedly stimulated caseinolytic activity of the proteinase. Activation was instantaneous, and involved increasing the Vmax of the proteinase for casein. Prolonged preincubation with polylysine at 37 degrees C resulted in autolytic inactivation of the proteinase. The polylysine concentrations required for half-maximal activation or autolytic inactivation were the same. A 23 kDa subunit of the proteinase disappeared at the same rate as loss of catalytic activity, and with the same pH dependence and polylysine concentration dependence. These results suggest that polylysine perturbs the structure of the multicatalytic proteinase, resulting in increased catalytic activity toward substrates; and, with prolonged exposure, allowing autoproteolytic inactivation to occur. The 23 kDa subunit appeared to be required for expression of caseinolytic activity, and may therefore be a catalytic subunit of the complex having activity against casein.  相似文献   

17.
A C Evans  K D Wilkinson 《Biochemistry》1985,24(12):2915-2923
The susceptibility of bovine serum albumin to degradation by the ubiquitin-dependent system of proteolysis depends on the severity of the iodination conditions [Wilkinson, K.D., & Audhya, T.K. (1981) J. Biol. Chem. 256, 9235-9241]. To evaluate if other modifications of the protein changed its susceptibility to degradation, chemically modified derivatives of bovine serum albumin have been synthesized, characterized, and tested as substrates for the ubiquitin-dependent system. Serum albumin was reduced or reduced and alkylated with iodoacetic acid or iodoacetamide. Only the alkylated derivatives exhibit saturation kinetics. Both alkylated proteins competitively inhibit the degradation of the other. These substrates are useful for assay of the intact proteolysis system in crude extracts and in assays for other substrates using competitive alternate substrate inhibition. The physical properties of these proteins suggest that charge, denaturation, or aggregation is not correlated with the degradation rate of these proteins by this system. However, the selectivity of the ubiquitin-dependent proteolysis depends strongly on the ATP concentration. At saturating substrate concentrations, both alkylated substrates are degraded equally. At low ATP concentrations, there is a 2.4-fold difference in the degradation rates of the alkylated proteins. The results presented here indicate that the ubiquitin-dependent protein degradation system is selective and responsive to ATP concentrations and that not all abnormal proteins are equally preferred substrates. Thus, the system may be more selective than previously thought.  相似文献   

18.
To investigate the existence of a ubiquitin-dependent protein degradation system in the brain, the proteolytic activity of the cerebral cortex was examined. The soluble extract of rat cerebral cortex degraded 125I-radiolabeled lysozyme in an ATP-dependent manner. The ATP-dependent proteolysis was suppressed with iodoacetamide, which inhibits ubiquitin conjugation, and was abolished by blocking of the amino residues of lysozyme. These results suggest the participation of ubiquitination in the proteolytic activity. An ATP-dependent 125I-ubiquitin-conjugating activity was detected in fraction II from the cerebral cortex. The presence of ATP-dependent proteolytic activity which acted preferentially on ubiquitinated lysozyme was demonstrated, using ubiquitin-125I-lysozyme conjugates as a substrate. The proteinase had a molecular mass of 1500 kDa and displayed nucleotide dependence and sensitivity to various proteinase inhibitors similar to those of the 26S proteinase complex found in reticulocytes. Dialysis of the soluble fraction caused a decrease in the proteolytic activity of ATP-dependent and preferential for ubiquitin-lysozyme conjugates and a reciprocal increase in the ATP-independent free 125I-lysozyme-degrading activity which was scarcely detected before dialysis. The former ATP-dependent proteolytic activity may play a physiological role in the brain.  相似文献   

19.
We have suggested that red blood cell proteolytic systems can degrade oxidatively damaged proteins, and that both damage and degradation are independent of lipid peroxidation (Davies, K. J. A., and Goldberg, A. L. (1987) J. Biol. Chem. 262, 8220-8226. These ideas have now been tested in cell-free extracts of rabbit erythrocytes and reticulocytes. Exposure to oxygen radicals or H2O2 increases the degradation of endogenous proteins in cell-free extracts, as in intact cells. Various radical-generating systems (acetaldehyde or xanthine + xanthine oxidase, ascorbic acid + iron, H2O2 + iron) and H2O2 alone enhanced the rates of proteolysis severalfold. Since these extracts were free of membrane lipids, protein damage and degradation must be independent of lipid peroxidation. An antioxidant buffer consisting of HEPES, glycerol, and dithiothreitol inhibited the increased proteolysis by 60-100%. Mannitol caused a 50-80% reduction in proteolysis suggesting that the hydroxyl radical (.OH), or a species with similar reactivity, may be the initiator of protein damage. When casein or bovine serum albumin were exposed to .OH (generated by H2O2 + Fe2+, or COCo radiation) these proteins were degraded up to 50 times faster than untreated proteins during subsequent incubations with red cell extracts. Mannitol inhibited this increase in proteolysis only if present during .OH exposure; mannitol did not affect the degradative system. Although ATP increased the degradation of untreated proteins 4- to 6-fold in reticulocyte extracts, it had little or no effect on the degradation of proteins exposed to .OH. ATP also did not stimulate hydrolysis of .OH-treated proteins in erythrocyte extracts. Leupeptin did not affect the degradative processes in either extract; thus lysosomal or Ca2+-activated thiol proteases were not involved. We propose that red cells contain a soluble, ATP-independent proteolytic pathway which may protect against the accumulation of proteins damaged by .OH or other active oxygen species.  相似文献   

20.
To clarify the role of ATP in proteolysis, we studied archaeal 20S proteasomes and the PAN (proteasome-activating nucleotidase) regulatory complex, a homolog of the eukaryotic 19S ATPases. PAN's ATPase activity was stimulated similarly by globular (GFPssrA) and unfolded (casein) substrates, and by the ssrA recognition peptide. Denaturation of GFPssrA did not accelerate its degradation or eliminate the requirement for PAN and ATP. During degradation of one molecule of globular or unfolded substrates, 300-400 ATP molecules were hydrolyzed. An N-terminal deletion in the 20S alpha subunits caused opening of the substrate-entry channel and rapid degradation of unfolded proteins without PAN; however, degradation of globular GFPssrA still required PAN's ATPase activity, even after PAN-catalyzed unfolding. Thus, substrate binding activates ATP hydrolysis, which promotes three processes: substrate unfolding, gate opening in the 20S, and protein translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号