首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mast cell stimulation by Ag is followed by the opening of Ca(2+)-activated K(+) channels, which participate in the orchestration of mast cell degranulation. The present study has been performed to explore the involvement of the Ca(2+)-activated K(+) channel K(Ca)3.1 in mast cell function. To this end mast cells have been isolated and cultured from the bone marrow (bone marrow-derived mast cells (BMMCs)) of K(Ca)3.1 knockout mice (K(Ca)3.1(-/-)) and their wild-type littermates (K(Ca)3.1(+/+)). Mast cell number as well as in vitro BMMC growth and CD117, CD34, and FcepsilonRI expression were similar in both genotypes, but regulatory cell volume decrease was impaired in K(Ca)3.1(-/-) BMMCs. Treatment of the cells with Ag, endothelin-1, or the Ca(2+) ionophore ionomycin was followed by stimulation of Ca(2+)-activated K(+) channels and cell membrane hyperpolarization in K(Ca)3.1(+/+), but not in K(Ca)3.1(-/-) BMMCs. Upon Ag stimulation, Ca(2+) entry but not Ca(2+) release from intracellular stores was markedly impaired in K(Ca)3.1(-/-) BMMCs. Similarly, Ca(2+) entry upon endothelin-1 stimulation was significantly reduced in K(Ca)3.1(-/-) cells. Ag-induced release of beta-hexosaminidase, an indicator of mast cell degranulation, was significantly smaller in K(Ca)3.1(-/-) BMMCs compared with K(Ca)3.1(+/+) BMMCs. Moreover, histamine release upon stimulation of BMMCs with endothelin-1 was reduced in K(Ca)3.1(-/-) cells. The in vivo Ag-induced decline in body temperature revealed that IgE-dependent anaphylaxis was again significantly (by approximately 50%) blunted in K(Ca)3.1(-/-) mice. In conclusion, K(Ca)3.1 is required for Ca(2+)-activated K(+) channel activity and Ca(2+)-dependent processes such as endothelin-1- or Ag-induced degranulation of mast cells, and may thus play a critical role in anaphylactic reactions.  相似文献   

2.
Studies in B cells from Lyn-deficient mice have identified Lyn as both a kinetic accelerator and negative regulator of signaling through the BCR. The signaling properties of bone marrow-derived mast cells from Lyn(-/-) mice (Lyn(-/-) BMMCs) have also been explored, but their signaling phenotype remains controversial. We confirm that Lyn(-/-) BMMCs release more beta-hexosaminidase than wild-type BMMCs following FcepsilonRI cross-linking and show that multiple mast cell responses to FcepsilonRI cross-linking (the phosphorylation of receptor subunits and other proteins, the activation of phospholipase Cgamma isoforms, the mobilization of Ca(2+), the synthesis of phosphatidylinositol 3,4,5-trisphosphate, the activation of the alpha(4)beta(1) integrin, VLA-4) are slow to initiate in Lyn(-/-) BMMCs, but persist far longer than in wild-type cells. Mechanistic studies revealed increased basal as well as stimulated phosphorylation of the Src kinase, Fyn, in Lyn(-/-) BMMCs. Conversely, there was very little basal or stimulated tyrosine phosphorylation or activity of the inositol phosphatase, SHIP, in Lyn(-/-) BMMCs. We speculate that Fyn may substitute (inefficiently) for Lyn in signal initiation in Lyn(-/-) BMMCs. The loss of SHIP phosphorylation and activity very likely contributes to the increased levels of phosphatidylinositol 3,4,5-trisphosphate and the excess FcepsilonRI signaling in Lyn(-/-) BMMCs. The unexpected absence of the transient receptor potential channel, Trpc4, from Lyn(-/-) BMMCs may additionally contribute to their altered signaling properties.  相似文献   

3.
We have previously reported that N-myc downstream regulated gene-1 (NDRG1) is an early inducible protein during the maturation of mouse bone marrow-derived mast cells (BMMCs) toward a connective tissue mast cell-like phenotype. To clarify the function of NDRG1 in mast cells and allergic responses, we herein analyzed mast cell-associated phenotypes of mice lacking the Ndrg1 gene. Allergic responses including IgE-mediated passive systemic and cutaneous anaphylactic reactions were markedly attenuated in Ndrg1-deficient mice as compared with those in wild-type mice. In Ndrg1-deficient mice, dermal and peritoneal mast cells were decreased in number and morphologically abnormal with impaired degranulating ability. Ex vivo, Ndrg1-deficient BMMCs cocultured with Swiss 3T3 fibroblasts in the presence of stem cell factor, a condition that facilitates the maturation of BMMCs toward a CTMC-like phenotype, displayed less exocytosis than replicate wild-type cells after the cross-linking of FcepsilonRI or stimulation with compound 48/80, even though the exocytotic response of IL-3-maintained, immature BMMCs from both genotypes was comparable. Unlike degranulation, the production of leukotriene and cytokines by cocultured BMMCs was unaffected by NDRG1 deficiency. Taken together, the altered phenotypes of Ndrg1-deficient mast cells both in vivo and ex vivo suggest that NDRG1 has roles in the terminal maturation and effector function (degranulation) of mast cells.  相似文献   

4.
5.
Extracellular ATP and other nucleotides act through specific cell surface receptors and regulate a wide variety of cellular responses in many cell types and tissues. In this study, we demonstrate that murine mast cells express several P2Y and P2X receptor subtypes including P2X(7), and describe functional responses of these cells to extracellular ATP. Stimulation of bone marrow-derived mast cells (BMMC), as well as MC/9 and P815 mast cell lines with millimolar concentrations of ATP, resulted in Ca(2+) influx across the cellular membrane and cell permeabilization. Moreover, brief exposures to ATP were sufficient to induce apoptosis in BMMCs, MC/9, and P815 cells which involved activation of caspase-3 and -8. However, in the time period between commitment to apoptosis and actual cell death, ATP triggered rapid but transient phosphorylation of multiple signaling molecules in BMMCs and MC/9 cells, including ERK, Jak2, and STAT6. In addition, ATP stimulation enhanced the expression of several proinflammatory cytokines, such as IL-4, IL-6, IL-13, and TNF-alpha. The effects of ATP were mimicked by submillimolar concentrations of 3-O-(4'-benzoyl)-benzoyl-benzoyl-ATP, and were inhibited by pretreatment of mast cells with a selective blocker of human and mouse P2X(7) receptor, 1[N,O-bis(5-isoquinolinesulphonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine, as well as oxidized ATP. The nucleotide selectivity and pharmacological profile data support the role for P2X(7) receptor as the mediator of the ATP-induced responses. Given the importance of mast cells in diverse pathological conditions, the ability of extracellular ATP to induce the P2X(7)-mediated apoptosis in these cells may facilitate the development of new strategies to modulate mast cell activities.  相似文献   

6.
Suppressor of cytokine signaling 1 (SOCS1) is a negative regulator of c-Kit and interleukin-3 (IL-3) receptor signaling. We examined the role of SOCS1 in regulating IL-3-induced cell growth of primary bone marrow-derived mast cells (BMMCs) from SOCS1-/- mice. Instead of showing increased proliferation, SOCS1-deficient BMMCs responded poorly to IL-3 and stem cell factor. SOCS1-/- BMMCs showed increased apoptosis and defective cell cycle entry. We show that the growth retardation of SOCS1-/- BMMCs was due to a cell intrinsic defect. Protein tyrosine phosphorylation following IL-3 stimulation was markedly diminished in SOCS1-/- BMMCs. Intriguingly, JAK2 and STAT5 proteins were selectively diminished in SOCS1-/- BMMCs, which also showed lower molecular mass products of p85 and Vav suggesting proteolytic degradation. Incubation of the SOCS1-/- BMMC lysate with STAT5, p85, and Vav immunoprecipitated from SOCS1+/+ cells directly demonstrated the dysregulated proteolytic activity in SOCS1-/- BMMCs. The proteolytic activity in SOCS1-/- BMMCs was selectively inhibited by phenylmethylsulfonyl fluoride and soybean trypsin inhibitor, suggesting that the protease regulated by SOCS1 is a tryptase. The dysregulated tryptase in SOCS1-/- BMMCs is unlikely to be mMCP6 or mMCP7, because the enzyme activity was not inhibited by Polybrene but was inhibited by normal mouse plasma. SOCS1+/+ BMMC lysate inhibited the proteolytic activity present in SOCS1-/- BMMC lysate, indicating that SOCS1-/- BMMCs lack an endogenous protease inhibitor. These results show that SOCS1 is required for the expression and/or stability of an endogenous protease inhibitor, which protects mast cells from their own proteolytic enzymes.  相似文献   

7.
TNF plays important roles in the protection and onset of malaria. Although mast cells are known as a source of TNF, little is known about the relationship between mast cells and pathogenesis of malaria. In this study, mast cell-deficient WBB6F1-W/W(v) (W/W(v)) and the control littermate WBB6F1+/+ (+/+) mice were infected with 1 x 10(5) of Plasmodium berghei ANKA. +/+ mice had lower parasitemia with higher TNF levels, as compared with W/W(v) mice. Diminished resistance in W/W(v) mice was considered to be due to mast cells and TNF. This fact was confirmed by experiments in W/W(v) mice reconstituted with bone marrow-derived mast cells (BMMCs) of +/+ mice or of TNF-/- mice. W/W(v) mice with BMMCs of +/+ mice exhibit lower parasitemia and mortality accompanying significantly higher TNF levels than those of W/W(v) mice. Parasitemia in W/W(v) mice with BMMCs of TNF-/- mice was higher than that in +/+ mice. Activation of mast cells by anti-IgE or compound 48/80 resulted in release of TNF and decrease of parasitemia. In addition, splenic hypertrophy and increased number of mast cells in the spleen were observed after infection in +/+ mice and W/W(v) mice reconstituted with BMMCs of +/+ mice as compared with W/W(v) mice. These findings propose a novel mechanism that mast cells and mast cell-derived TNF play protective roles in malaria.  相似文献   

8.
Mast cell-deficient mice (W/W(v)) exhibit significantly reduced severity of experimental allergic encephalomyelitis (EAE), a murine model of multiple sclerosis. In this study, the contribution of FcR-mediated mast cell activation to disease was examined. W/W(v) mice were reconstituted i.v. with bone marrow-derived mast cells (BMMCs) from wild-type mice or those lacking functional FcRs. Eight weeks later, EAE was induced by immunization with the myelin oligodendrocyte glycoprotein 35-55 peptide. Disease scores were analyzed in reconstituted mice and compared with age-matched W/W(v) mice and wild-type littermates. Mice reconstituted with FcRgamma(-/-) BMMCs or FcgammaRIII(-/-) BMMCs exhibited less severe clinical symptoms similar to W/W(v) controls, while reconstitution with FcRIIB(-/-) BMMCs resulted in disease significantly more severe than wild-type controls. Notably, mice reconstituted with FcgammaRIII(-/-) BMMC exhibit a relapsing-remitting course of disease. These data demonstrate that both activating and inhibitory FcRs expressed on mast cells influence the course of EAE.  相似文献   

9.
To address the role played by MD-2 in mast cell recognition of LPS, we examined bone marrow-derived mast cells (BMMCs) from MD-2 gene-targeted mice. BMMCs from MD-2-/- mice showed impaired cytokine production (TNF-alpha, IL-6, IL-13, and IL-1beta) in response to LPS from Escherichia coli, but not to peptidoglycan (PGN) from Staphylococcus aureus. In a mast cell-dependent acute septic model, MD-2 deficiency of mast cell resulted in significantly higher mortality due to defective neutrophil recruitment and the production of cytokines in the peritoneal cavity, which was similar to mice with TLR4-deficient mast cells. The TLR2-dependent activation of skin mast cells by PGN was not altered by the absence of MD-2 in vivo. Collectively, MD-2 is essential for the recognition of LPS by TLR4 but not for that of PGN by TLR2 of mast cells.  相似文献   

10.
Although SHIP is a well-established suppressor of IgE plus Ag-induced degranulation and cytokine production in bone marrow-derived mast cells (BMMCs), little is known about its role in connective tissue (CTMCs) or mucosal (MMCs) mast cells. In this study, we compared SHIP's role in the development as well as the IgE plus Ag and TLR-induced activation of CTMCs, MMCs, and BMMCs and found that SHIP delays the maturation of all three mast cell subsets and, surprisingly, that it is a positive regulator of IgE-induced BMMC survival. We also found that SHIP represses IgE plus Ag-induced degranulation of all three mast cell subsets and that TLR agonists do not trigger their degranulation, whether SHIP is present or not, nor do they enhance IgE plus Ag-induced degranulation. In terms of cytokine production, we found that in MMCs and BMMCs, which are poor producers of TLR-induced cytokines, SHIP is a potent negative regulator of IgE plus Ag-induced IL-6 and TNF-α production. Surprisingly, however, in splenic or peritoneal derived CTMCs, which are poor producers of IgE plus Ag-induced cytokines, SHIP is a potent positive regulator of TLR-induced cytokine production. Lastly, cell signaling and cytokine production studies with and without LY294002, wortmannin, and PI3Kα inhibitor-2, as well as with PI3K p85α(-/-) BMMCs and CTMCs, are consistent with SHIP positively regulating TLR-induced cytokine production via an adaptor-mediated pathway while negatively regulating IgE plus Ag-induced cytokine production by repressing the PI3K pathway.  相似文献   

11.
Previous studies using mast cell-deficient mice (W/W(v)) revealed that mast cells influence disease onset and severity of experimental allergic/autoimmune encephalomyelitis (EAE), the murine model for multiple sclerosis. The mast cell populations of these mice can be restored by transferring bone marrow-derived mast cells (BMMCs). Studies using the W/W(v) reconstitution model have lead to major advances in our understanding of mast cell roles in vivo. However, despite its common use, details regarding the sites and kinetics of mast cell repopulation have remained largely uncharacterized. In this study, we examined the kinetics and tissue distribution of green fluorescent protein(+) BMMCs in reconstituted W/W(v) mice to identify sites of mast cell influence in EAE. Reconstitution of naive animals with BMMCs does not restore mast cell populations to all organs, notably the brain, spinal cord, lymph nodes, and heart. Despite the absence of mast cells in the CNS, reconstituted mice exhibit an EAE disease course equivalent to that induced in wild-type mice. Mast cells are found adjacent to T cell-rich areas of the spleen and can migrate to the draining lymph node after disease induction. These data reveal that mast cells can act outside the CNS to influence EAE, perhaps by affecting the function of autoreactive lymphocytes.  相似文献   

12.
Nakano H  Ushio H 《Autophagy》2011,7(6):657-659
Mast cells play a crucial role in allergic inflammatory reactions through releasing cytosolic granules upon antigen stimulation. However, the mechanisms underlying maturation and release of secretory granules are not fully understood. We found that autophagy is constitutively induced in mast cells under full nutrition conditions, and type II LC3 (LC3-II), a marker for autophagosomes, localizes on secretory granules. While deletion of Atg7 does not impair the development of bone marrow-derived mast cells (BMMCs), Atg7-deficient BMMCs show severe impairment of degranulation, but not cytokine production, upon antigen stimulation. Moreover we found that LC3-II, but not LC3-I, colocalizes with CD63, a marker for secretory lysosomes and is released extracellularly along with degranulation in wild-type BMMCs, but not Atg7-deficient BMMCs. Finally, passive cutaneous anaphylaxis reactions are almost completely abolished in mast celldeficient mice reconstituted with Atg7-deficient BMMCs. Collectively, these results suggest that autophagy is not essential for the development, but plays a crucial role in degranulation, of mast cells.  相似文献   

13.
Thapsigargin, which elevates cytosolic calcium levels by inhibiting the sarcoplasmic/endoplasmic reticulum calcium-dependent ATPase, was tested for its ability to degranulate bone marrow-derived mast cells (BMMCs) from src homology 2-containing inositol phosphatase +/+ (SHIP+/+) and SHIP-/- mice. As was found previously with steel factor, thapsigargin stimulated far more degranulation in SHIP-/- than in SHIP+/+ BMMCs, and this was blocked with the phosphatidylinositol-3 (PI-3) kinase inhibitors, LY294002 and wortmannin. In contrast to steel factor, however, this heightened degranulation of SHIP-/- BMMCs was not due to a greater calcium influx into these cells, nor was the thapsigargin-induced calcium influx inhibited by LY294002, suggesting that the heightened thapsigargin-induced degranulation of SHIP-/- BMMCs was due to a PI-3 kinase-regulated step distinct from that regulating calcium entry. An investigation of thapsigargin-stimulated pathways in both cell types revealed that MAPK was heavily but equally phosphorylated. Interestingly, the protein kinase C inhibitor, bisindolylmaleimide (compound 3), totally blocked thapsigargin-induced degranulation in both SHIP+/+ and SHIP-/- BMMCs. As well, thapsigargin stimulated a PI-3 kinase-dependent, transient activation of protein kinase B, and this activation was far greater in SHIP-/- than in SHIP+/+ BMMCs. Consistent with this, thapsigargin was found to be a potent survival factor, following cytokine withdrawal, for both cell types and was more potent with SHIP-/- cells. These studies have both identified an additional PI-3 kinase-dependent step within the mast cell degranulation process, possibly involving 3-phosphoinositide-dependent protein kinase-1 and a diacylglycerol-independent protein kinase C isoform, and shown that the tumor-promoting activity of thapsigargin may be due to its activation of protein kinase B and subsequent promotion of cell survival.  相似文献   

14.
《Autophagy》2013,9(6):657-659
Mast cells play a crucial role in allergic inflammatory reactions through releasing cytosolic granules upon antigen stimulation. However, the mechanisms underlying maturation and release of secretory granules are not fully understood. We found that autophagy is constitutively induced in mast cells under full nutrition conditions, and type II LC3 (LC3-II), a marker for autophagosomes, localizes on secretory granules. While deletion of Atg7 does not impair the development of bone marrow-derived mast cells (BMMCs), Atg7-deficient BMMCs show severe impairment of degranulation, but not cytokine production, upon antigen stimulation. Moreover we found that LC3-II, but not LC3-I, colocalizes with CD63, a marker for secretory lysosomes and is released extracellularly along with degranulation in wild-type BMMCs, but not Atg7-deficient BMMCs. Finally, passive cutaneous anaphylaxis reactions are almost completely abolished in mast celldeficient mice reconstituted with Atg7-deficient BMMCs. Collectively, these results suggest that autophagy is not essential for the development, but plays a crucial role in degranulation, of mast cells.  相似文献   

15.
16.
The regulation of mast cell activities and survival is a central issue in inflammatory immune responses. Here, we have investigated the role of mouse interleukin-15, a pro-inflammatory and pleiotropic cytokine, in the control of mast cell survival and homeostasis. We report that aged IL-15−/− mice show a reduced number of peritoneal mast cells compared to WT mice. Furthermore, IL-15 deficiency in bone marrow derived mouse mast cells (BMMCs) results in increased susceptibility to apoptosis mediated by growth factor deprivation and A-SMase-treatment. IL-15−/− BMMCs show a constitutive stronger mRNA and protein expression as well as enzymatic activity of the members of the mitochondrial apoptotic pathways including acidic lysosomal aspartate protease cathepsin D (CTSD), endogenous acid sphingomyelinase (A-SMase), caspase-3 and -7 compared to wild type (WT) BMMCs. Furthermore, IL-15−/− BMMCs constitutively generate more A-SMase-derived ceramide than WT controls and display a decreased expression of pro-survival sphingosin-1-phosphate (SPP) both in cytosol and membrane cell fractions. Furthermore, pre-treatment of mast cells with imipramine or pepstatin A, inhibitors of the intracellular acid sphingomyelinase and cathepsin D pathways respectively, increases survival in IL-15−/− BMMCs. These findings suggest that intracellular IL-15 is a key regulator of pathways controlling primary mouse mast cell homeostasis.  相似文献   

17.
Toll-like receptors (TLRs) are mammalian homologues of the Drosophila Toll receptors and are thought to have roles in innate recognition of bacteria. We demonstrated that TLR 2, 4, 6, and 8 but not TLR5 were expressed on mouse bone marrow-derived mast cells (BMMCs). Using BMMCs from the genetically TLR4-mutated strain C3H/HeJ, we demonstrated that functional TLR4 was required for a full responsiveness of BMMCs to produce inflammatory cytokines (IL-1beta, TNF-alpha, IL-6, and IL-13) by LPS stimulation. TLR4-mediated stimulation of mast cells by LPS was followed by activation of NF-kappaB but not by stress-activated protein kinase/c-Jun NH2-terminal kinase signaling. In addition, in the cecal ligation and puncture-induced acute septic peritonitis model, we demonstrated that genetically mast cell-deficient W/W(v) mice that were reconstituted with TLR4-mutated BMMCs had significantly higher mortality than W/W(v) mice reconstituted with TLR4-intact BMMCs. Higher mortality of TLR4-mutated BMMC-reconstituted W/W(v) mice was well correlated with defective neutrophil recruitment and production of proinflammatory cytokines in the peritoneal cavity. Taken together, these observations provide definitive evidence that mast cells play important roles in exerting the innate immunity by releasing inflammatory cytokines and recruitment of neutrophils after recognition of enterobacteria through TLR4 on mast cells.  相似文献   

18.
We have previously shown that maturation of mouse bone marrow-derived mast cells (BMMCs) into connective tissue mast cells (CTMCs) upon coculture with fibroblasts in the presence of stem cell factor (kit ligand) is accompanied by marked induction of a panel of genes, one of which was identified as NLRP3. Here we report that NLRP3 acts as a novel negative regulator of delayed prostaglandin (PG) D(2) production in BMMCs. We found that, apart from its cell maturation-associated induction, NLRP3 expression was markedly induced in BMMCs several hours after FcepsilonRI crosslinking or cytokine stimulation. Ectopic expression of NLRP3 in BMMCs resulted in marked attenuation of cyclooxygenase (COX)-2-dependent delayed PGD(2) generation, whereas it had no effects on other effector functions, including degranulation, COX-1-dependent immediate PGD(2) generation and cytokine/chemokine expression. The suppression of delayed PGD(2) generation by NLRP3 was preceded by a transient decrease of NF-kappaB activation and a marked reduction in the expression of COX-2, but not that of cytosolic phospholipase A(2) alpha (cPLA(2)alpha), COX-1 and hematopoietic PGD(2) synthase. Moreover, in CTMC-like differentiated cells in which endogenous NLRP3 expression was induced, cytokine-stimulated induction of COX-2 and attendant delayed PGD(2) generation were markedly reduced. Our results suggest that, in mouse mast cells, NLRP3 counter-regulates COX-2-dependent sustained production of PGD(2), a prostanoid that exhibits both pro- and anti-allergic effects, thereby potentially influencing the duration of allergic and other mast cell-associated inflammatory diseases.  相似文献   

19.
Cross-linking the high-affinity IgE receptor, FcepsilonRI, on mast cells activates signaling pathways leading to the release of preformed inflammatory mediators and the production of cytokines and chemokines associated with allergic disorders. Bone marrow-derived mast cells (BMMCs) from Lyn-deficient (Lyn-/-) mice are hyperresponsive to FcepsilonRI cross-linking with multivalent Ag. Previous studies linked the hyperresponsive phenotype in part to increased Fyn kinase activity and reduced SHIP phosphatase activity in the Lyn-/- BMMCs in comparison with wild-type (WT) cells. In this study, we compared gene expression profiles between resting and Ag-activated WT and Lyn-/- BMMCs to identify other factors that may contribute to the hyperresponsiveness of the Lyn-/- cells. Among genes implicated in the positive regulation of FcepsilonRI signaling, mRNA for the tyrosine kinase, Fyn, and for several proteins contributing to calcium regulation are more up-regulated following Ag stimulation in Lyn-/- BMMCs than in WT BMMCs. Conversely, mRNA for the low-affinity IgG receptor (FcgammaRIIB), implicated in negative regulation of FcepsilonRI-mediated signaling, is more down-regulated in Ag-stimulated Lyn-/- BMMCs than in WT BMMCs. Genes coding for proinflammatory cytokines and chemokines (IL-4, IL-6, IL-13, CSF, CCL1, CCL3, CCL5, CCL7, CCL9, and MIP1beta) are all more highly expressed in Ag-stimulated Lyn-/- mast cells than in WT cells. These microarray data identify Lyn as a negative regulator in Ag-stimulated BMMCs of the expression of genes linked to FcepsilonRI signaling and also to the response pathways that lead to allergy and asthma.  相似文献   

20.
In macrophages, two signaling pathways, dependent on MyD88 or TIR domain-containing adaptor-inducing IFN-β (TRIF) signaling, emanate from the LPS receptor TLR4/MD-2. In this study, we show that in murine bone marrow-derived mast cells (BMMCs), only the MyD88-dependent pathway is activated by LPS. The TRIF signaling branch leading both to NF-κB activation and enhanced proinflammatory cytokine production, as well as to IRF3 activation and subsequent IFN-β production, is absent in LPS-stimulated BMMCs. IRF3 activation is also absent in peritoneal mast cells from LPS-injected mice. We observed strongly diminished TRAM expression in BMMCs, but overexpression of TRAM only moderately enhanced IL-6 and did not boost IFN-β responses to LPS in these cells. A combination of very low levels of TRAM and TLR4/MD-2 with the known absence of membrane-bound CD14 are expected to contribute to the defective TRIF signaling in mast cells. We also show that, unlike in macrophages, in BMMCs the TRIF-dependent and -independent IFN-αβ responses to other recognized IFN inducers (dsRNA, adenovirus, and B-DNA) are absent. These results show how the response to the same microbial ligand using the same receptor can be regulated in different cell types of the innate immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号