首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABCR, also known as ABCA4, is a member of the superfamily of ATP binding cassette transporters that is believed to transport retinal or retinylidene-phosphatidylethanolamine across photoreceptor disk membranes. Mutations in the ABCR gene are responsible for Stargardt macular dystrophy and related retinal dystrophies that cause severe loss in vision. ABCR consists of two tandemly arranged halves each containing a membrane spanning segment followed by a large extracellular/lumen domain, a multi-spanning membrane domain, and a nucleotide binding domain (NBD). To define the role of each NBD, we examined the nucleotide binding and ATPase activities of the N and C halves of ABCR individually and co-expressed in COS-1 cells and derived from trypsin-cleaved ABCR in disk membranes. When disk membranes or membranes from co-transfected cells were photoaffinity labeled with 8-azido-ATP and 8-azido-ADP, only the NBD2 in the C-half bound and trapped the nucleotide. Co-expressed half-molecules displayed basal and retinal-stimulated ATPase activity similar to full-length ABCR. The individually expressed N-half displayed weak 8-azido-ATP labeling and low basal ATPase activity that was not stimulated by retinal, whereas the C-half did not bind ATP and exhibited little if any ATPase activity. Purified ABCR contained one tightly bound ADP, presumably in NBD1. Our results indicate that only NBD2 of ABCR binds and hydrolyzes ATP in the presence or absence of retinal. NBD1, containing a bound ADP, associates with NBD2 to play a crucial, non-catalytic role in ABCR function.  相似文献   

2.
Biswas EE  Biswas SB 《Biochemistry》2000,39(51):15879-15886
The rod outer segment ATP binding cassette (ABC) transporter protein (ABCR) plays an important role in retinal rod cells presumably transporting retinal. Genetic studies in humans have linked mutations in the ABCR gene to a number of inherited retinal diseases particularly Stargardt macular degeneration and age-related macular degeneration (ARMD). The ABCR protein is characterized by two nucleotide binding domains and two transmembrane domains, each consisting of six membrane-spanning helices. We have cloned and expressed the 376 amino acid (aa) C-terminal end of this protein (amino acid residues 1898-2273) containing the second nucleotide binding domain (NBD2) with a purification tag at its amino terminus. The expressed protein was found to be soluble and was purified using a rapid and high-yield single-step procedure. The purified protein was monomeric and migrated as a 43 kDa protein in SDS-PAGE. The purified NBD2 protein had strong ATPase activity with a K(m) of 631 microM and V(max) of 144 nmol min(-1) mg(-1). This ATPase activity on normalization was kinetically comparable to that observed for purified and reconstituted native ABCR. Nucleotide inhibition studies suggest that the binding of NBD2 is specific for ATP/dATP, and that none of the other ribonucleotides appeared to compete for binding at this site. These studies demonstrate that cloned and expressed NBD2 protein is a fully functional ATPase in the absence of the remainder of the molecule. The level of ATPase activity was comparable to that of trans-retinal-stimulated ABCR ATPase. The NBD2 expression plasmid was used to generate a Leu2027Phe mutation associated with Stargardt disease. Analysis of the ATPase activity of the mutant protein demonstrated that it had a 14-fold increase in binding affinity (K(m) = 46 microM) with a corresponding 9-fold decrease in the rate of hydrolysis (V(max) = 16.6 nmol min(-1) mg(-1)), indicating a significant alteration of the ATPase function. It also provided a molecular basis of Stargardt disease involving this mutation.  相似文献   

3.
Biswas-Fiss EE 《Biochemistry》2006,45(11):3813-3823
We report here a novel regulation of the ATPase activity of the human retina specific ATP binding cassette transporter (ABC), ABCR, by nucleotide binding domain interactions. We also present evidence that recombinant nucleotide binding domains of ABCR interact in vitro in the complete absence of transmembrane domains (TMDs). Although similar domain-domain interactions have been described in other ABC transporters, the roles of such interactions on the enzymatic mechanisms of these transporters have not been demonstrated experimentally. A quantitative analysis of the in vitro interactions as a function of the nucleotide-bound state demonstrated that the interaction takes place in the absence of nucleotide as well as in the presence of ATP and that it only attenuates in the ADP-bound state. Analysis of the ATPase activities of these proteins in free and complex states indicated that the NBD1-NBD2 interaction significantly influences the ATPase activity. Further investigation, using site-specific mutants, showed that mutations in NBD2 but not NBD1 led to the alteration of the ATPase activity of the NBD1.NBD2 complex and residue Arg 2038 is critical to this regulation. These data indicate that changes in the oligomeric state of the nucleotide binding domains of ABCR are coupled to ATP hydrolysis and might represent a possible signal for the TMDs of ABCR to export the bound substrate. Furthermore, the data support a mechanistic model in which, upon binding of NBD2, NBD1 binds ATP but does not hydrolyze it or does so with a significantly reduced rate.  相似文献   

4.
The retina-specific human ABC transporter (ABCR) functions in the retinal transport system and has been implicated in several inherited visual diseases, including Stargardt disease, fundus flavimaculatus, cone-rod dystrophy, and age-related macular degeneration. We have previously described a general ribonucleotidase activity of the first nucleotide binding domain (NBD1) of human ABCR (Biswas, E. E. (2001) Biochemistry 40, 8181-8187). In this communication, we present a quantitative study analyzing the effects of certain disease-associated mutations, Gly-863 --> Ala, Pro-940 --> Arg, and Arg-943 --> Gln on the nucleotide binding, and general ribonucleotidase activities of this domain. NBD1 proteins, harboring these mutations, were created through in vitro site-specific mutagenesis and expressed in Escherichia coli. Results of the enzyme-kinetic studies indicated that these mutations altered the ATPase and CTPase activities of NBD1. The G863A and P940R mutations were found to have significant attenuation of the rates of nucleotide hydrolysis and binding affinities. On the other hand, the R943Q mutation had small, but detectable reduction in its nucleotidase activity and nucleotide binding affinity. We have measured the nucleotide binding affinities of NBD1 protein and its mutants quantitatively by fluorescence anisotropy changes during protein binding to ethenoadenosine ATP (epsilonATP), a fluorescent ATP analogue. We have correlated the dissociation constant (K(D)) and the rates of nucleotide hydrolysis (V(max)) of NBD1 and its mutants with the available genetic data for these mutations.  相似文献   

5.
ABCA4 is a member of the ABCA subfamily of ATP binding cassette (ABC) transporters that is expressed in rod and cone photoreceptors of the vertebrate retina. ABCA4, also known as the Rim protein and ABCR, is a large 2273 amino acid glycoprotein organized as two tandem halves, each containing a single membrane spanning segment followed sequentially by a large exocytoplasmic domain, a multispanning membrane domain and a nucleotide binding domain. Over 500 mutations in the gene encoding ABCA4 are associated with a spectrum of related autosomal recessive retinal degenerative diseases including Stargardt macular degeneration, cone–rod dystrophy and a subset of retinitis pigmentosa. Biochemical studies on the purified ABCA4 together with analysis of abca4 knockout mice and patients with Stargardt disease have implicated ABCA4 as a retinylidene-phosphatidylethanolamine transporter that facilitates the removal of potentially reactive retinal derivatives from photoreceptors following photoexcitation. Knowledge of the genetic and molecular basis for ABCA4 related retinal degenerative diseases is being used to develop rationale therapeutic treatments for this set of disorders.  相似文献   

6.
LmrA from Lactococcus lactis is a multidrug transporter and a member of the ATP binding cassette (ABC) transporter family. ABC transporters consist of a transmembrane domain (TMD) and a nucleotide binding domain (NBD). The NBD contains the highly conserved signature motifs of this transporter superfamily. In the case of LmrA, the TMD and the NBD are expressed as a single polypeptide. LmrA catalyzes the extrusion of hydrophobic compounds including antibiotics from the cell membrane at the expense of ATP hydrolysis. ATP binds to the NBD, where binding and hydrolysis induce conformational changes that lead to the extrusion of the substrate via the TMD. Here, we report the 1H, 13C and 15N backbone chemical shift assignments of the isolated 263 amino acid containing NBD of LmrA in its ADP bound state.  相似文献   

7.
The transporter associated with antigen processing (TAP) plays a critical role in the MHC class I antigen presentation pathway. TAP translocates cellular peptides across the endoplasmic reticulum membrane in an ATP hydrolysis-dependent manner. We used FRET spectroscopy in permeabilized cells to delineate different conformational states of TAP in a native subcellular membrane environment. For these studies, we tagged the TAP1 and TAP2 subunits with enhanced cyan fluorescent protein and enhanced yellow fluorescent protein, respectively, C-terminally to their nucleotide binding domains (NBDs), and measured FRET efficiencies under different conditions. Our data indicate that both ATP and ADP enhance the FRET efficiencies but that neither induces a maximally closed NBD conformation. Additionally, peptide binding induces a large and significant increase in NBD proximity with a concentration dependence that is reflective of individual peptide affinities for TAP, revealing the underlying mechanism of peptide-stimulated ATPase activity of TAP. Maximal NBD closure is induced by the combination of peptide and non-hydrolysable ATP analogs. Thus, TAP1-TAP2 NBD dimers are not fully stabilized by nucleotides alone, and substrate binding plays a key role in inducing the transition state conformations of the NBD. Taken together, these findings show that at least three steps are involved in the transport of peptides across the endoplasmic reticulum membrane for antigen presentation, corresponding to three dynamically and structurally distinct conformational states of TAP. Our studies elucidate structural changes in the TAP NBD in response to nucleotides and substrate, providing new insights into the mechanism of ATP-binding cassette transporter function.  相似文献   

8.
Hsp70s (heat shock protein 70 kDa) are central to protein folding, refolding, and trafficking in organisms ranging from archaea to Homo sapiens under both normal and stressed cellular conditions. Hsp70s are comprised of a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide binding site in the NBD and the substrate binding site in the SBD are allosterically linked: ADP binding promotes substrate binding, while ATP binding promotes substrate release. Hsp70s have been linked to inhibition of apoptosis (i.e., cancer) and diseases associated with protein misfolding such as Alzheimer's, Parkinson's, and Huntington's.It has long been a goal to characterize the nature of allosteric coupling in these proteins. However, earlier studies of the isolated NBD could not show any difference in overall conformation between the ATP state and the ADP state. Hence the question: How is the state of the nucleotide communicated between NBD and SBD?Here we report a solution NMR study of the 44-kDa NBD of Hsp70 from Thermus thermophilus in the ADP and AMPPNP states. Using the solution NMR methods of residual dipolar coupling analysis, we determine that significant rotations occur for different subdomains of the NBD upon exchange of nucleotide. These rotations modulate access to the nucleotide binding cleft in the absence of a nucleotide exchange factor. Moreover, the rotations cause a change in the accessibility of a hydrophobic surface cleft remote from the nucleotide binding site, which previously has been identified as essential to allosteric communication between NBD and SBD. We propose that it is this change in the NBD surface cleft that constitutes the allosteric signal that can be recognized by the SBD.  相似文献   

9.
Hsp70 chaperones are two-domain proteins that assist in intra-cellular protein (re) folding processes in all species. The protein folding activity of the substrate binding domain of the Hsp70s is regulated by nucleotide binding at the nucleotide-binding domain through an as yet undefined heterotropic allosteric mechanism. The available structures of the isolated domains of Hsp70s have given very limited indications of nucleotide-induced conformational changes that could modulate the affinity for substrate proteins. Here, we present a multi-dimensional NMR study of a prokaryotic Hsp70 homolog, Thermus thermophilus DnaK, using a 54kDa construct containing both nucleotide binding domain and most of the substrate binding domain. It is determined that the nucleotide binding domain and substrate binding domain are closely associated in all ligand states studied. Comparison of the assigned NMR spectra of the two-domain construct with those of the previously studied isolated nucleotide binding domain, allowed the identification of the nucleotide binding domain-substrate binding domain interface. A global three-dimensional structure was obtained for the two-domain construct on the basis of this information and of NMR residual dipolar couplings measurements. This is the first experimental elucidation of the relative positioning of the nucleotide binding domain and substrate binding domain for any Hsp70 chaperone. Comparisons of NMR data between various ligand states including nucleotide-free, ATP, ADP.Pi and ADP.Pi+ peptide bound, identified residues involved in the allosteric inter-domain communication. In particular, peptide binding to the substrate binding domain was found to cause conformational changes in the NBD extending to the nucleotide binding pocket. Detailed analysis suggests that the inter-domain interface becomes tighter in the (nucleotide binding domain ligation/substrate binding domain ligation) order ATP/apo, ADP.Pi/apo ADP.Pi/peptide.  相似文献   

10.
ATP-binding cassette transporters drive the transport of substrates across the membrane by the hydrolysis of ATP. They typically have a conserved domain structure with two membrane-spanning domains that form the transport channel and two cytosolic nucleotide-binding domains (NBDs) that energize the transport reaction. Binding of ATP to the NBD monomer results in formation of a NBD dimer. Hydrolysis of the ATP drives the dissociation of the dimer. The thermodynamics of distinct steps in the ATPase cycle of GlcV, the NBD of the glucose ABC transporter of the extreme thermoacidophile Sulfolobus solfataricus, were studied by isothermal titration calorimetry using the wild-type protein and two mutants, which are arrested at different steps in the ATP hydrolytic cycle. The G144A mutant is unable to dimerize, while the E166A mutant is defective in dimer dissociation. The ATP, ADP, and AMP-PNP binding affinities, stoichiometries, and enthalpies of binding were determined at different temperatures. From these data, the thermodynamic parameters of nucleotide binding, NBD dimerization, and ATP hydrolysis were calculated. The data demonstrate that the ATP hydrolysis cycle of isolated NBDs consists of consecutive steps where only the final step of ADP release is energetically unfavorable.  相似文献   

11.
Many substrates for P-glycoprotein, an ABC transporter that mediates multidrug resistance in mammalian cells, have been shown to stimulate its ATPase activity in vitro. In the present study, we used this property as a criterion to search for natural and artificial substrates and/or allosteric regulators of ABCR, the rod photoreceptor-specific ABC transporter responsible for Stargardt disease, an early onset macular degeneration. ABCR was immunoaffinity purified to apparent homogeneity from bovine rod outer segments and reconstituted into liposomes. All-trans-retinal, a candidate ligand, stimulates the ATPase activity of ABCR 3-4-fold, with a half-maximal effect at 10-15 microM. 11-cis- and 13-cis-retinal show similar activity. All-trans-retinal stimulates the ATPase activity of ABCR with Michaelis-Menten behavior indicative of simple noncooperative binding that is associated with a rate-limiting enzyme-substrate intermediate in the pathway of ATP hydrolysis. Among 37 structurally diverse non-retinoid compounds, including nine previously characterized substrates or sensitizers of P-glycoprotein, only four show significant ATPase stimulation when tested at 20 microM. The dose-response curves of these four compounds are indicative of multiple binding sites and/or modes of interaction with ABCR. Two of these compounds, amiodarone and digitonin, can act synergistically with all-trans-retinal, implying that they interact with a site or sites on ABCR different from the one with which all-trans-retinal interacts. Unlike retinal, amiodarone appears to interact with both free and ATP-bound ABCR. Together with clinical observations on Stargardt disease and the localization of ABCR to rod outer segment disc membranes, these data suggest that retinoids, and most likely retinal, are the natural substrates for transport by ABCR in rod outer segments. These observations have significant implications for understanding the visual cycle and the pathogenesis of Stargardt disease and for the identification of compounds that could modify the natural history of Stargardt disease or other retinopathies associated with impaired ABCR function.  相似文献   

12.
Multidrug resistance-associated protein (MRP1) transports solutes in an ATP-dependent manner by utilizing its two nonequivalent nucleotide binding domains (NBDs) to bind and hydrolyze ATP. We found that ATP binding to the first NBD of MRP1 increases binding and trapping of ADP at the second domain (Hou, Y., Cui, L., Riordan, J. R., and Chang, X. (2002) J. Biol. Chem. 277, 5110-5119). These results were interpreted as indicating that the binding of ATP at NBD1 causes a conformational change in the molecule and increases the affinity for ATP at NBD2. However, we did not distinguish between the possibilities that the enhancement of ADP trapping might be caused by either ATP binding alone or hydrolysis. We now report the following. 1) ATP has a much lesser effect at 0 degrees C than at 37 degrees C. 2) After hexokinase treatment, the nonhydrolyzable ATP analogue, adenyl 5'-(yl iminodiphosphate), does not enhance ADP trapping. 3) Another nonhydrolyzable ATP analogue, adenosine 5'-(beta,gamma-methylene)triphosphate, whether hexokinase-treated or not, causes a slight enhancement. 4) In contrast, the hexokinase-treated poorly hydrolyzable ATP analogue, adenosine 5'-O-(thiotriphosphate) (ATPgammaS), enhances ADP trapping to a similar extent as ATP under conditions in which ATPgammaS should not be hydrolyzed. We conclude that: 1) ATP hydrolysis is not required to enhance ADP trapping by MRP1 protein; 2) with nucleotides having appropriate structure such as ATP or ATPgammaS, binding alone can enhance ADP trapping by MRP1; 3) the stimulatory effect on ADP trapping is greatly diminished when the MRP1 protein is in a "frozen state" (0 degrees C); and 4) the steric structure of the nucleotide gamma-phosphate is crucial in determining whether binding of the nucleotide to NBD1 of MRP1 protein can induce the conformational change that influences nucleotide trapping at NBD2.  相似文献   

13.
We present an NMR investigation of the nucleotide-dependent conformational properties of a 44-kDa nucleotide binding domain (NBD) of an Hsp70 protein. Conformational changes driven by ATP binding and hydrolysis in the N-terminal NBD are believed to allosterically regulate substrate affinity in the C-terminal substrate binding domain. Several crystal structures of Hsc70 NBDs in different nucleotide states have, however, not shown significant structural differences. We have previously reported the NMR assignments of the backbone resonances of the NBD of the bacterial Hsp70 homologue Thermus thermophilus DnaK in the ADP-bound state. In this study we show, by assigning the NBD with the ATP/transition state analogue, ADP.AlFx, bound, that it closely mimics the ATP-bound state. Chemical shift difference mapping of the two nucleotide states identified differences in a cluster of residues at the interface between subdomains 1A and 1B. Further analysis of the spectra revealed that the ATP state exhibited a single conformation, whereas the ADP state was in slow conformational exchange between a form similar to the ATP state and another state unique to the ADP-bound form. A model is proposed of the allosteric mechanism based on the nucleotide state altering the balance of a dynamic equilibrium between the open and closed states. The observed chemical shift perturbations were concentrated in an area close to a previously described J-domain binding channel, confirming the importance of that region in the allosteric mechanism.  相似文献   

14.
E E Biswas 《Biochemistry》2001,40(28):8181-8187
Members of the ATP binding cassette (ABC) superfamily are transmembrane proteins that are found in a variety of tissues which transport substances across cell membranes in an energy-dependent manner. The retina-specific ABC protein (ABCR) has been linked through genetic studies to a number of inherited visual disorders, including Stargardt macular degeneration and age-related macular degeneration (ARMD). Like other ABC transporters, ABCR is characterized by two nucleotide binding domains and two transmembrane domains. We have cloned and expressed the 522-amino acid (aa) N-terminal cytoplasmic region (aa 854-1375) of ABCR containing nucleotide binding domain 1 (NBD1) with a purification tag at its amino terminus. The expressed recombinant protein was found to be soluble and was purified using single-step affinity chromatography. The purified protein migrated as a 66 kDa protein on SDS-PAGE. Analysis of the ATP binding and hydrolysis properties of the NBD1 polypeptide demonstrated significant differences between NBD1 and NBD2 [Biswas, E. E., and Biswas, S. B. (2000) Biochemistry 39, 15879-15886]. NBD1 was active as an ATPase, and nucleotide inhibition studies suggested that nucleotide binding was not specific for ATP and all four ribonucleotides can compete for binding. Further analysis demonstrated that NBD1 is a general nucleotidase capable of hydrolysis of ATP, CTP, GTP, and UTP. In contrast, NBD2 is specific for adenosine nucleotides (ATP and dATP). NBD1 bound ATP with a higher affinity than NBD2 (K(mNBD1) = 200 microm vs K(mNBD2) = 631 microm) but was less efficient as an ATPase (V(maxNBD1) = 28.9 nmol min(-)(1) mg(-)(1) vs V(maxNBD2) = 144 nmol min(-)(1) mg(-)(1)). The binding efficiencies for CTP and GTP were comparable to that observed for ATP (K(mCTP) = 155 microm vs K(mGTP) = 183 microm), while that observed for UTP was decreased 2-fold (K(mUTP) = 436 microm). Thus, the nucleotide binding preference of NBD1 is as follows: CTP > GTP > ATP > UTP. These studies demonstrate that NBD1 of ABCR is a general nucleotidase, whereas NBD2 is a specific ATPase.  相似文献   

15.
AAA proteins remodel other proteins to affect a multitude of biological processes. Their power to remodel substrates must lie in their capacity to couple substrate binding to conformational changes via cycles of nucleotide binding and hydrolysis, but these relationships have not yet been deciphered for any member. We report that when one AAA protein, Hsp104, engages polypeptide at the C-terminal peptide-binding region, the ATPase cycle of the C-terminal nucleotide-binding domain (NBD2) drives a conformational change in the middle region. This, in turn, drives ATP hydrolysis in the N-terminal ATPase domain (NBD1). This interdomain communication pathway can be blocked by mutation in the middle region or bypassed by antibodies that bind there, demonstrating the crucial role this region plays in transducing signals from one end of the molecule to the other.  相似文献   

16.
The ABC transporter Mdl1p, a structural and functional homologue of the transporter associated with antigen processing (TAP) plays an important role in intracellular peptide transport from the mitochondrial matrix of Saccharomyces cerevisiae. To characterize the ATP hydrolysis cycle of Mdl1p, the nucleotide-binding domain (NBD) was overexpressed in Escherichia coli and purified to homogeneity. The isolated NBD was active in ATP binding and hydrolysis with a turnover of 25 ATP per minute and a Km of 0.6 mm and did not show cooperativity in ATPase activity. However, the ATPase activity was non-linearly dependent on protein concentration (Hill coefficient of 1.7), indicating that the functional state is a dimer. Dimeric catalytic transition states could be trapped either by incubation with orthovanadate or beryllium fluoride, or by mutagenesis of the NBD. The nucleotide composition of trapped intermediate states was determined using [alpha-32P]ATP and [gamma-32P]ATP. Three different dimeric intermediate states were isolated, containing either two ATPs, one ATP and one ADP, or two ADPs. Based on these experiments, it was shown that: (i) ATP binding to two NBDs induces dimerization, (ii) in all isolated dimeric states, two nucleotides are present, (iii) phosphate can dissociate from the dimer, (iv) both nucleotides are hydrolyzed, and (v) hydrolysis occurs in a sequential mode. Based on these data, we propose a processive-clamp model for the catalytic cycle in which association and dissociation of the NBDs depends on the status of bound nucleotides.  相似文献   

17.
SecA, the motor subunit of bacterial polypeptide translocase, is an RNA helicase. SecA comprises a dimerization C-terminal domain fused to an ATPase N-terminal domain containing conserved DEAD helicase motifs. We show that the N-terminal domain is organized like the motor core of DEAD proteins, encompassing two subdomains, NBD1 and IRA2. NBD1, a rigid nucleotide-binding domain, contains the minimal ATPase catalytic machinery. IRA2 binds to NBD1 and acts as an intramolecular regulator of ATP hydrolysis by controlling ADP release and optimal ATP catalysis at NBD1. IRA2 is flexible and can undergo changes in its alpha-helical content. The C-terminal domain associates with NBD1 and IRA2 and restricts IRA2 activator function. Thus, cytoplasmic SecA is maintained in the thermally stabilized ADP-bound state and unnecessary ATP hydrolysis cycles are prevented. Two DEAD family motifs in IRA2 are essential for IRA2-NBD1 binding, optimal nucleotide turnover and polypeptide translocation. We propose that translocation ligands alleviate C-terminal domain suppression, allowing IRA2 to stimulate nucleotide turnover at NBD1. DEAD motors may employ similar mechanisms to translocate different enzymes along chemically unrelated biopolymers.  相似文献   

18.
The spread of multidrug resistance (MDR) is a world health crisis that presents a significant challenge to the treatment of cancer and infection. MDR can be caused by a group of ABC (MDR-ABC) transporters that move hydrophobic drug molecules and lipids across the cell membrane. To gain insight into the conformational changes these transporters undergo when flipping hydrophobic substrates across the lipid bilayer, we have determined the structure of the lipid flippase MsbA from Vibrio cholera (VC-MsbA) to 3.8A. Structural comparison of VC-MsbA to MsbA from Escherichia coli reveals that the transporters share a structurally conserved core of transmembrane alpha-helices, but differ in the relative orientations of their nucleotide-binding domains (NBD). The transmembrane domain of VC-MsbA is captured in a closed conformation and the structure supports a "power stroke" model of transporter dynamics where opposing NBDs associate upon ATP binding. The separation of the alpha and beta domains of the NBD suggests the possibility that their association could make them competent to bind ATP and gives further insight into the structural basis for catalytic regulation.  相似文献   

19.
A large body of experimental and clinical data have documented the damaging effects of light exposure on photoreceptor cells although the identities of the biologically relevant molecular targets of photodamage are still uncertain. Several lines of evidence point to retinoids or retinoid derivatives as chromophores that can mediate light damage. We report here that ABCR, a photoreceptor-specific transporter involved in the recycling of all-trans-retinal, is unusually sensitive to photooxidation damage mediated by all-trans-retinal in vitro. Partial loss of ABCR function is responsible for Stargardt macular dystrophy, which is associated with accumulation of A2E, a diretinoid adduct within the retinal pigment epithelium. Photodamage to ABCR causes it to aggregate in SDS gels and results in the loss of retinal-stimulated ATPase activity. Peripherin/RDS and ROM-1, two structural proteins that colocalize with ABCR at the outer segment disc rim, are also significantly more susceptible to all-trans-retinal-mediated photodamage than are the major proteins from the rod outer segment. These observations imply that there may be specific protein targets of photodamage within the outer segment, and they may be especially relevant to assessing the risk of light exposure in those individuals who already have diminished ABCR activity due to mutation in one or both copies of the ABCR gene.  相似文献   

20.
MRP1 belongs to subfamily "C" of the ABC transporter superfamily. The nucleotide-binding domains (NBDs) of the C family members are relatively divergent compared with many ABC proteins. They also differ in their ability to bind and hydrolyze ATP. In MRP1, NBD1 binds ATP with high affinity, whereas NBD2 is hydrolytically more active. Furthermore, ATP binding and/or hydrolysis by NBD2 of MRP1, but not NBD1, is required for MRP1 to shift from a high to low affinity substrate binding state. Little is known of the structural basis for these functional differences. One minor structural difference between NBDs is the presence of Asp COOH-terminal to the conserved core Walker B motif in NBD1, rather than the more commonly found Glu present in NBD2. We show that the presence of Asp or Glu following the Walker B motif profoundly affects the ability of the NBDs to bind, hydrolyze, and release nucleotide. An Asp to Glu mutation in NBD1 enhances its hydrolytic capacity and affinity for ADP but markedly decreases transport activity. In contrast, mutations that eliminate the negative charge of the Asp side chain have little effect. The decrease in transport caused by the Asp to Glu mutation in NBD1 is associated with an inability of MRP1 to shift from high to low affinity substrate binding states. In contrast, mutation of Glu to Asp markedly increases the affinity of NBD2 for ATP while decreasing its ability to hydrolyze ATP and to release ADP. This mutation eliminates transport activity but potentiates the conversion from a high to low affinity binding state in the presence of nucleotide. These observations are discussed in the context of catalytic models proposed for MRP1 and other ABC drug transport proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号