首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The insecticide dichlorodiphenyltrichloroethane (DDT) and its major metabolite p,p'-dichlorodiphenyldichloroethylene (DDE) have been implicated as endocrine-modulating chemicals. The DDT metabolite p, p'-DDE has been found contaminating human tissues and follicular fluid because of dietary exposure. We investigated the effects of DDE on progesterone synthesis in a stable porcine granulosa cell line, JC-410, and in primary cultures of porcine granulosa cells. Progesterone synthesis was not affected by 0.1-100 ng/ml DDE in the JC-410 cells. However, 10 ng/ml DDE increased 8-bromo-cAMP (8-Br-cAMP)-stimulated progesterone synthesis 0.4-fold (P < 0.05) over the levels observed with 1 mM 8-Br-cAMP alone. The effect of cholera toxin (CT) on progesterone synthesis was increased 0.7-fold (P < 0.05) by 10 ng/ml DDE over the value observed with 30 ng/ml CT alone. In primary cultures of porcine granulosa cells, 10 ng/ml DDE potentiated CT-stimulated progesterone synthesis 1.2-fold over the value observed with CT alone. In the JC-410 cells, 1 and 10 ng/ml DDE increased CT-stimulated cytochrome P450-cholesterol side-chain cleavage (P450(scc)) mRNA levels 0.3- and 0.4-fold, respectively, over the values obtained with CT alone. Neither basal nor CT-stimulated cAMP levels were changed by DDE. We conclude that DDE affects granulosa cell response to protein kinase A activators by altering the expression of the P450(scc) gene.  相似文献   

3.
Human estrogenic dehydrogenase (17β-HSD1) catalyses the last step in the biosynthesis of the active estrogens that stimulate the proliferation of breast cancer cells. While the primary substrate for the enzyme is estrone, the enzyme has some activity for the non-estrogenic substrates. To better understand the structure–function relationships of 17β-HSD1 and to provide a better ground for the design of inhibitors, we have determined the crystal structures of 17β-HSD1 in complex with different steroids.

The structure of the complex of estradiol with the enzyme determined previously (Azzi et al., Nature Structural Biology 3, 665–668) showed that the narrow active site was highly complementary to the substrate. The substrate specificity is due to a combination of hydrogen bonding and hydrophobic interactions between the steroid and the enzyme binding pocket. We have now determined structures of 17β-HSD1 in complex with dihydrotestosterone and 20-OH-progesterone. In the case of the C19 androgen, several residues within the enzyme active site make some small adjustments to accommodate the increased bulk of the substrate. In addition, the C19 steroids bind in a slightly different position from estradiol with shifts in positions of up to 1.4 Å. The altered binding position avoids unfavorable steric interactions between Leu 149 and the C19 methyl group (Han et al., unpublished). The known kinetic parameters for these substrates can be rationalized in light of the structures presented. These results give evidence for the structural basis of steroid recognition by 17β-HSD1 and throw light on the design of new inhibitors for this pivotal steroid enzyme.  相似文献   


4.
Progestins and breast cancer   总被引:1,自引:0,他引:1  
In the last years there has been an extraordinary development in the synthesis of new progestins. These compounds are classified, in agreement with their structure, in various groups which include progesterone, retroprogesterones, 17-hydroxyprogesterones, 19-norprogesterones, 17-hydroxyprogesterone derivatives, androstane and estrane derivatives. The action of progestins is a function of many factors: its structure, affinity to the progesterone receptor or to other steroid receptors, the target tissue considered, the biological response, the experimental conditions, dose, and metabolic transformation. The information on the action of progestins in breast cancer patients is very limited. Positive response with the progestins: medroxyprogesterone acetate and megestrol acetate was obtained in post-menopausal patients with advanced breast cancer. However, extensive information on the effect of progestins was obtained in in vitro studies using hormone-dependent and hormone-independent human mammary cancer cell lines. It was demonstrated that in the hormone-dependent breast cancer cells, various progestins (nomegestrol acetate, tibolone, medrogestone, promegestone) are potent sulfatase inhibitory agents. The progestins can also involve the inhibition of mRNA of this enzyme. In another series of studies it was also demonstrated that various progestins are very active in inhibiting the 17β-hydroxysteroid dehydrogenase for the conversion of estrone to estradiol. More recently it was observed that the progestins promegestone or medrogestone stimulate the sulfotransferase for the formation of estrogen sulfates. Consequently, the blockage in the formation of estradiol via sulfatase, or the stimulatory effect on sulfotransferase activity, by progestins can open interesting and new possibilities in clinical applications in breast cancer.  相似文献   

5.
Nowadays research and clinical studies of human reproductive endocrinology are generally carried out using human blood reproductive hormone assays. However the acquisition of human blood samples has some shortcomings. In search of new approaches, we paid attention to the fact that progesterone can be detected in cow's hair. Consequently we investigated whether or not steroid hormones are measurable in human hair. The results showed that the levels of steroid hormones in hair are not affected by shampoo and do not significantly vary between different segments of hair (i.e. top, middle and basal segments). The menstrual estradiol and progesterone rhythm of female hair is similar to that of female serum. The ratio of hair estradiol to serum estradiol in the female is 41.2% and that of hair progesterone to serum progesterone is 59.0%; the ratio of hair testosterone to serum testosterone in male is 116%. There are significant correlations between hair and serum steroid hormones of healthy human adult: γ (estradiol)=0.395 (n=20), p<0.05; γ (progesterone)=0.440 (n=22), p<0.025 and γ (testosterone)=0.395 (n=25), p<0.05.  相似文献   

6.
7.
Sex steroids play a predominant role in the development and differentiation of normal mammary gland as well as in the regulation of hormone-sensitive breast cancer growth. There is evidence suggesting that local intracrine formation of sex steroids from inactive precursors secreted by the adrenals namely, dehydroepiandrosterone (DHEA) and 4-androstenedione (4-dione) play an important role in the regulation of growth and function of peripheral target tissues, including the breast. Moreover, human breast carcinomas are often infiltrated by stromal/immune cells secreting a wide spectra of cytokines. These might in turn regulate the activity of both immune and neoplastic cells. The present study was designed to examine the action of cytokines on 17β-hydroxysteroid dehydrogenase (17β-HSD) and 3β-hydroxysteroid dehydrogenase/isomerase (3β-HSD) activities in human breast cancer cells. The various types of human 17β-HSD (five types) and 3β-HSD (two types), because of their tissue- and cell-specific expression and substrate specificity, provide each cell with necessary mechanisms to control the level of intracellular active androgens and estrogens. We first investigated the effect of exposure to IL-4 and IL-6 on reductive and oxidative 17β-HSD activities in both intact ZR-75-1 and T-47D human breast cancer cells. In ZR-75-1 cells, a 6 d exposure to IL-4 and IL-6 decreased E2-induced cell proliferation, the half maximal inhibitory effect being exerted at 88 and 26 pM, respectively. In parallel, incubation with IL-4 and IL-6 increased oxidative 17β-HSD activity by 4.4- and 1.9-fold, respectively, this potent activity being observed at 50 values of 22.8 and 11.3 pM, respectively. Simultaneously, reductive 17β-HSD activity leading to E2 formation was decreased by 70 and 40% by IL-4 and IL-6, respectively. Moreover, IL-4 and IL-6 exerted the same regulatory effects on 17β-HSD activities when testosterone and 4-dione were used as substrates, thus strongly suggesting the expression of the type 2 17β-HSD ZR-75-1 cells. In contrast, in T-47D cells, IL-4 increased the formation of E2, whereas IL-6 exerts no effect on this parameter. However, we found that T-47D cells failed to convert testosterone efficiently into 4-DIONE, thus suggesting that there is little or no expression of type 2 17β-HSD in this cell line. The present findings demonstrate that the potent regulatory effects of IL-4 and IL-6 on 17β-HSD activities depend on the cell-specific gene expression of various types of 17β-HSD enzymes. We have also studied the effect of cytokines on the regulation of the 3β-HSD expression in both ZR-75-1 and T-47D human breast cancer cells. Under basal culture conditions, there is no 3β-HSD activity detectable in these cells. However, exposure to IL-4 caused a rapid and potent induction of 3β-HSD activity, whereas IL-6 failed to induce 3β-HSD expression. Our data thus demonstrate that cytokines may play a crucial role in sex steroid biosynthesis from inactive adrenal precursors in human breast cancer cells.  相似文献   

8.
Local tissue concentrations of glucocorticoids are modulated by the enzyme 11β-hydroxysteroid dehydrogenase which interconverts cortisol and the inactive glucocorticoid cortisone in man, and corticosterone and 11-dehydrocorticosterone in rodents. The type I isoform (11β-HSD1) is a bidirectional enzyme but acts predominantly as a oxidoreductase to form the active glucocorticoids cortisol or corticosterone, while the type II enzyme (11β-HSD2) acts unidirectionally producing inactive 11-keto metabolites. There are no known clinical conditions associated with 11β-HSD1 deficiency, but gene deletion experiments in the mouse indicate that this enzyme is important both for the maintenance of normal serum glucocorticoid levels, and in the activation of key hepatic gluconeogenic enzymes. Other important sites of action include omental fat, the ovary, brain and vasculature. Congenital defects in the 11β-HSD2 enzyme have been shown to account for the syndrome of apparent mineralocorticoid excess (AME), a low renin severe form of hypertension resulting from the overstimulation of the non-selective mineralocorticoid receptor by cortisol in the distal tubule of the kidney. Inactivation of the 11β-HSD2 gene in mice results in a phenotype with similar features to AME. In addition, these mice show high neonatal mortality associated with marked colonic distention, and remarkable hypertrophy and hyperplasia of the distal tubule epithelia. 11β-HSD2 also plays an important role in decreasing the exposure of the fetus to the high levels of maternal glucocorticoids. Recent work suggests a role for 11β-HSD2 in non-mineralocorticoid target tissues where it would modulate glucocorticoid access to the glucocorticoid receptor, in invasive breast cancer and as a mechanism providing ligand for the putative 11-dehydrocorticosterone receptor. While previous homologies between members of the SCAD superfamily have been of the order of 20–30% phylogenetic analysis of a new branch of retinol dehydrogenases indicates identities of >60% and overlapping substrate specificities. The availability of crystal structures of family members has allowed the mapping of conserved 11β-HSD domains A–D to a cleft in the protein structure (cofactor binding domain), two parallel β-sheets, and an -helix (active site), respectively.  相似文献   

9.
Equine umbilicus was cannulated in utero and a series of cord plasma samples removed for analysis. After steroid extraction and derivatisation, gas chromatographic-mass spectrometric (GC-MS) analysis demonstrated large differences in steroid content between the plasma samples obtained from the umbilical artery and vein, the blood supplies leading to and from the placental surface, respectively. 3β-Hydroxy-5,7-androstadien-17-one, dehydroepiandrosterone, pregnenolone, 3β-hydroxy-5-pregnan-20-one, 5-pregnene-3β,20β-diol and 5β-pregnane-3β,20β-diol were identified as major constituents in extracts from umbilical arterial plasma samples, mostly as unconjugated steroids. Together with 5-pregnane-3,20-dione, these steroids were identified in extracts from umbilical venous plasma samples but at significantly reduced levels to those determined in arterial plasma samples. Oestradiol-17, dihydroequilin-17 and dihydroequilenin-17 were identified in extracts (mostly sulphate-conjugated) from both umbilical arterial and venous plasma samples, much larger amounts being detected in the plasma sampled from, rather than to, the placental surface. Equilin, equilenin, oestrone, oestradiol-17β, dihydroequilin-17β and dihydroequilenin-17β were not detected in the present studies. Isomers of 5(10)-oestrene-3,17β-diol together with 5(10),7-oestradiene-3,17β-diol and its possible oxidative artifact, 5(10),7,9-oestratriene-3,17β-diol, were tentatively identified only in sulphate-conjugated extracts from umbilical venous plasma samples. No glucuronic acid-conjugated steroids could be detected. The implications of this work in the elucidation of the biosynthetic pathways leading to both the formation of oestrogens and C18 neutral steroids at the placental surface are discussed.  相似文献   

10.
11.
11β-hydroxysteroid dehydrogenase (11β-HSD) is thought to confer aldosterone specificity to mineralocorticoid target cells by protecting the mineralocorticoid receptor (MR) from occupancy by endogenous glucocorticoids. In aldosterone target cells the type 2 11β-HSD is present, which, in contrast to the type 1 11β-HSD, has very high affinity for its substrate, is unidirectional and prefers NAD as cofactor. cDNAs encoding 11β-HSD2 have been recently cloned from different species, and the cell-specific expression of its mRNA and protein were determined. 11β-HSD2 is expressed in every aldosterone target tissue. Northern analysis revealed that the rabbit 11β-HSD2 is expressed at high levels in the renal collecting duct and at much lower levels in the colon. RT-PCR experiments demonstrated that 11β-HSD2 mRNA is present only in aldosterone target cells within the kidney. We determined the subcellular localization of the rabbit 11β-HSD2 using a chimera encoding 11β-HSD2 and the green fluorescent protein (GFP). This construct was stably transfected into CHO and MDCK cells. The expressed 11β-HSD2/GFP protein retained high enzymatic activity, and its characteristics were undistinguishable from those of the native enzyme. The intracellular localization of this protein was determined by fluorescence microscopy. 11β-HSD2-associated fluorescence was observed as a reticular network over the cytoplasm whereas the plasma membrane and the nucleus were negative, suggesting endoplasmic reticulum (ER) localization. Co-staining with markers for ER proteins, the Golgi membrane, mitochondria and nucleus confirmed that 11β-HSD2 is localized exclusively to the ER. To determine what structural motifs are responsible for the ER localization, we generated deletion mutants missing the C-terminal 42 and 118 amino acids, and fused them to GFP. Similarly as with the intact 11β-HSD2, these mutants localized exclusively to the ER. Both C-terminal deletion mutants completely lost dehydrogenase activity, independently whether activity was determined in intact cells or homogenates. These results indicate that 11β-HSD2 has a novel ER retrieval signal which is not localized to the C-terminal region. In addition, the C-terminal 118 amino acids are essential for NAD-dependent 11β-HSD activity.  相似文献   

12.
Human estrogenic 17β-hydroxysteroid dehydrogenase (17β-HSD1, EC1.1.1.62) is an important enzyme that catalyses the last step of active estrogen formation. 17β-HSD1 plays a key role in the proliferation of breast cancer cells. The three-dimensional structures of this enzyme and of the enzyme-estradiol complex have been solved (Zhu et al., 1993, J. Mol. Biol. 234:242; Ghosh et al., 1995, Structure 3:503; Azzi et al., 1996, Nature Struct. Biol. 3:665). The determination of the non-reactive ternary complex structure, which could mimic the transition state, constitutes a further critical step toward the rational design of inhibitors for this enzyme (Ghosh et al. 1995, Structure 3:503; Penning, 1996, Endocrine-Related Cancer, 3:41).

To further study the transition state, two non-reactive ternary complexes, 17β-HSD1–EM519-NADP+ and 17β-HSD1–EM553-NADP+ were crystallized using combined methods of soaking and co-crystallization. Although they belong to the same C2 space group, they have different unit cells, with a=155.59 Å, b=42.82 Å, c=121.15 Å, β=128.5° for 17β-HSD1–EM519-NADP+, and a=124.01 Å, b=45.16 Å, c=61.40 Å, β=99.2° for 17β-HSD1–EM553-NADP+, respectively. Our preliminary results revealed that the inhibitors interact differently with the enzyme than do the natural substrates.  相似文献   


13.
Previous studies have shown that digoxin decreases testosterone secretion in testicular interstitial cells. However, the effect of digoxin on progesterone secretion in luteal cells is unclear. Progesterone is known as an endogenous digoxin-like hormone (EDLH). This study investigates how digitalis affected progesterone production and whether progesterone antagonized the effects of digitalis. Digoxin or digitoxin, but not ouabain, decreased the basal and human chorionic gonadotropin (hCG)-stimulated progesterone secretion as well as the activity of cytochrome P450 side chain cleavage enzyme (P450scc) in luteal cells. 8-Br-cAMP and forskolin did not affect the reduction. Neither the amount of P450scc, the amount of steroidogenic acute regulatory (StAR) protein, nor the activity of 3beta-hydroxysteroid dehydrogenase (3beta-HSD) was affected by digoxin or digitoxin. Moreover, in testicular interstitial and luteal cells, progesterone partially attenuated the reduction of pregnenolone by digoxin or digitoxin and the progesterone antagonist, RU486, blocked this attenuation. These new findings indicated that (1) digoxin or digitoxin inhibited pregnenolone production by decreasing the activity of P450scc enzyme, but not Na(+)-K(+)-ATPase, resulting in a decrease on progesterone secretion in rat luteal cells, and (2) the inhibitory effect on pregnenolone production by digoxin or digitoxin was reversed partially by progesterone. In conclusion, digoxin or digitoxin decreased progesterone production via the inhibition of pregnenolone by decreasing P450scc activity. Progesterone, an EDLH, could antagonize the effects of digoxin or digitoxin in luteal cells.  相似文献   

14.
We recently showed that the production of progesterone (P4) in human placental explant culture from early gestation is enhanced by treatment with 19-nortestosterone (19-NT) or with certain androgens, namely androsen, namely androstenedione (A-dione), 5-androstane-3, 17β diol (3-diol) and 5-androstane-3β, 17β diol (3β-diol). This stimulation of P4 was explored further in this study. There was little metabolism of radioactive P4 when incubated for 24 h in the presence or absene of these steroids. The role of different steroids in the regulation of P450 cholesterol side-chain cleavage enzyme (P450scc) and 3β-hydroxysteroid dehydrogenase (3β-HSD) was evaluated by measuring the conversion of P4 derived from unlabelled 25-hydroxycholesterol and from labelled pregnenolone, respectively. The results showed that 19-NT, A-dione and 3-diol stimulated (P450scc) activity; however, 3β-diol was ineffective. While 19-NT and 3β-diol enhanced the bioconversion of pregnenoloe to P4, A-dione and 3-diol were without effect.

The initial rapid stimulation of P4 by 19-NT within 2 h of incubation was not blocked by concurrent treatment with cycloheximide (CH). However, after incubation for 24 h, 70% of the 19-NT-stimulated P4 was abolished by CH. During the same incubation period,] P4 stimulation by A-dione, 3- and 3β-diol were completely blocked by treatment with CH. Thus our observations suggest that 19-NT-stimulated P4 accumulation is due to the combined effects on P450scc adn 3β-HSD enzyme activities. A-dioneand 3-diol increase biosynthesis of P4 by acting selectively on P450scc enzyme. However, the stimulatory action of 3β-diol on P4 is only at the level of 3β-HSD. Since CH blocks the stimulatory actions, the mechanism(s) by which androgens (A-dione, 3-diol and 3β-diol) and norandrogen (19-NT) augment the biosynthetic enzyme activities appears to be mediated by a process inhibited by CH. Since CH interference was absent during the initial rapid P4-stimulation by 19-NT, there may be a direct action of this steroid at the cellular level which is not dependent on new protein synthesis.  相似文献   


15.
Two Bacillus strains were isolated from the foregut of the water beetle Agabus affinis (Payk.) and tested for their steroid transforming ability. After incubation with androst-4-en-3,17-dione (AD), 13 different transformation products were detected. AD was hydroxylated at C6, C7, C11 and C14, resulting in formation of 6β-, 7-, 11- and 14-hydroxy-AD. One strain also produced small amounts of 6β,14-dihydroxy-AD. Partly, the 6β-hydroxy group was further oxidized to the corresponding 6-oxo steroids. In addition, a specific reduction of the Δ4-double bond was observed, leading to the formation of 5-androstane derivatives. In minor yields the carbonyl functions at C3 and C17 were reduced leading to the formation of 3ξ-OH or 17β-OH steroids. EI mass spectra of the trimethylsilyl and O-methyloxime trimethylsilyl ether derivatives of some transformation products are presented for the first time.  相似文献   

16.
Neurosteroid biosynthesis in the quail brain: a review   总被引:1,自引:0,他引:1  
The brain traditionally has been considered to be a target site of peripheral steroid hormones. In contrast to this classical concept, new findings over the past decade have shown that the brain itself also has the capability of forming steroids de novo, the so-called "neurosteroids". De novo neurosteroidogenesis in the brain from cholesterol is a conserved property of vertebrates. Our studies using the quail, as an excellent animal model, have demonstrated that the avian brain possesses cytochrome P450 side-chain cleavage enzyme (P450scc), 3beta-hydroxysteroid dehydrogenase/Delta(5)-Delta(4)-isomerase (3beta-HSD), cytochrome P450 17alpha-hydroxylase/c17,20-lyase (P450(17alpha,lyase)), 17beta-HSD, etc., and produces pregnenolone, progesterone, 3beta, 5beta-tetrahydroprogesterone, androstenedione, testosterone and estradiol from cholesterol. However, the biosynthetic pathway of neurosteroids in the avian brain from cholesterol may be still incomplete, because we recently found that the quail brain actively produces 7alpha-hydroxypregnenolone, a previously undescribed avian neurosteroid. This paper summarize the advances made in our understanding of biosynthesis of neurosteroids in the avian brain.  相似文献   

17.
The type 2 isozyme of 11β-hydroxysteroid dehydrogenase inactivates cortisol to cortisone and enables aldosterone to bind to the MR. Congenital deficiency of the enzyme results in cortisol-mediated mineralocorticoid excess and arises because of inactivating mutations in the HSD11B2 gene. Inhibition of the enzyme following licorice or carbenoxolone ingestion results in a similar, though milder phenotype and the enzyme is overwhelmed in ectopic ACTH syndrome. Loss of 11β-HSD2 expression may be important in sodium balance and blood pressure control in some patients with renal disease. Finally, while some studies demonstrate impaired 11β-HSD activity in broader populations of patients with hypertension, further studies are required to clarify the role of 11β-HSD2 in ‘essential’ hypertension.  相似文献   

18.
19.
20.
Progesterone (P4) can participate in the development of female mammalian antral follicles through nuclear receptor (PGR). In this experiment, the differences of P4 synthesis and PGR expression in different developmental stages of sheep antral follicles (large > 5mm, medium 2-5mm, small < 2mm) were detected by enzyme-linked immunosorbent assay, immunohistochemistry, qRT-PCR and Western blotting. Secondly, sheep follicular granulosa cells were cultured in vitro. The effects of different concentrations of FSH and LH on P4 synthesis and PGR expression were studied. The results showed that acute steroid regulatory protein (StAR), cholesterol side chain lyase (P450scc) and 3β Hydroxysteroid dehydrogenase (3β-HSD) and PGR were expressed in antral follicles, and with the development of antral follicles in sheep, StAR, P450scc and the expression of 3β-HSD and PGR increased significantly. In vitro experiments showed that FSH and LH alone or together treatment could regulate P4 secretion and PGR expression in sheep follicular granulosa cells to varying degrees, hint P4 and PGR by FSH and LH, and LH was the main factor. Our results supplement the effects of FSH and LH on the regulation of P4 synthesis during follicular development, which provides new data for further study of steroid synthesis and function in follicular development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号