共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The transforming growth factor-beta superfamily of receptors 总被引:15,自引:0,他引:15
de Caestecker M 《Cytokine & growth factor reviews》2004,15(1):1-11
The transforming growth factor-beta (TGF-beta) superfamily of receptors comprises two groups of transmembrane serine-threonine kinase receptors, so called type I, and type II receptors, that are activated following engagement by members of the TGF-beta superfamily of ligands. These events specify diverse downstream responses that are differentially regulated by controlling access and activation of the ligands, their receptors and downstream substrates in different cell types. The purpose of this review is to describe the biochemical properties of these receptors, focusing specifically on the mechanisms regulating receptor/ligand interactions and activation in mammalian cells. 相似文献
3.
4.
Autocrine transforming growth factor-beta signaling mediates Smad-independent motility in human cancer cells 总被引:6,自引:0,他引:6
Transforming growth factor-beta (TGF-beta) is a pleiotropic growth factor that plays a critical role in modulating cell growth, differentiation, and plasticity. There is increasing evidence that after cells lose their sensitivity to TGF-beta-mediated growth inhibition, autocrine TGF-beta signaling may potentially promote tumor cell motility and invasiveness. To understand the molecular mechanisms by which autocrine TGF-beta may selectively contribute to tumor cell motility, we have generated MDA-MB-231 breast cancer cells stably expressing a kinase-inactive type II TGF-beta receptor (T beta RII-K277R). Our data indicate that T beta RII-K277R is expressed, can associate with the type I TGF-beta receptor, and block both Smad-dependent and -independent signaling pathways activated by TGF-beta. In addition, wound closure and transwell migration assays indicated that the basal migratory potential of T beta RII-K277R expressing cells was impaired. The impaired motility of T beta RII-K277R cells could be restored by reconstituting TGF-beta signaling with a constitutively active TGF-beta type I receptor (ALK5(TD)) but not by reconstituting Smad signaling with Smad2/4 or Smad3/4 expression. In addition, the levels of ALK5(TD) expression sufficient to restore motility in the cells expressing T beta RII-K277R were associated with an increase in phosphorylation of Akt and extracellular signal-regulated kinase 1/2 but not Smad2. These data indicate that different signaling pathways require different thresholds of TGF-beta activation and suggest that TGF-beta promotes motility through mechanisms independent of Smad signaling, possibly involving activation of the phosphatidylinositol 3-kinase/Akt and/or mitogen-activated protein kinase pathways. 相似文献
5.
6.
Background
3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, also known as statins, are a drug class that reduce the level of cholesterol in the blood. As a result, statins are used to suppress the progression of cardiovascular disease. Evidence points to another component of statins involving the non-lipid effects of the drug class in preventing cardiovascular disease. One specific mediator of this action is the transforming growth factor β (TGF-β) superfamily. The TGF-β superfamily consists of proteins that include TGF-β and bone morphogenetic proteins (BMPs). These proteins regulate cellular pathways to mediate effects including immunomodulation, cell cycling, and angiogenesis. One pathway that mediates these effects is Ras. Moreover, within this pathway, different functions are possible depending on the activation of the specific receptor subtype. This review discusses the recent development of the non-lipid effects of statins in preventing cardiovascular disease progression by regulating Ras pathway of the TGF-β superfamily, especially RhoA/ROCK pathway.Methods
A systematic PubMed database search of all English-language articles up to 2011 was conducted using the following terms: statin, TGF-β, Ras, ROCK, GGPP, inducible nitric oxide synthase, endothelial nitric oxide synthase, actin filament formation, PPARγ, MMP-2, and human trials.Conclusion
With better understanding of the pathway, various mediators were identified; some of these mediators are important biomarkers producing more specific and accurate assessment of the pleiotropic effects of statins. The review of human trials also highlights that more specific biomarkers are employed in recent studies, and the non-lipid effects on human subjects are more accurately documented. Confirmation of the accuracy of these biomarkers by further large-scale studies and further development of new biomarkers may prove an important path leading to better patient selection for treatment, and thus better cost-effectiveness may be achieved. 相似文献7.
8.
It has been widely assumed that the interaction of transforming growth factor-beta 1 (TGF-beta 1) with its serum-binding protein, alpha 2-macroglobulin (alpha 2M), mediates the rapid clearance of TGF-beta 1 from the circulation. To test this, we have analyzed the effect of TGF-beta 1 binding on the conformational state of alpha 2M. Our results demonstrate that the binding of TGF-beta 1 to alpha 2M does not lead to the conformational change in the alpha 2M molecule that is required for the clearance of the alpha 2M.TGF-beta 1 complex via the alpha 2M receptor. Furthermore, endogenous TGF-beta 1 is associated with the conformationally unaltered slow clearance form of alpha 2M. Clearance studies in mice show that the half-life of 125I-TGF-beta 1 in the circulation (1.6 +/- 0.71 min) is not affected by blocking the alpha 2M receptor with excess conformationally altered alpha 2M. These results suggest that TGF-beta 1 is rapidly cleared from the circulation after injection by a pathway not involving alpha 2M. 相似文献
9.
Reddi AH 《Arthritis research & therapy》2006,8(1):101
Osteoarthritis is a common malady of the musculoskeletal system affecting the articular cartilage. The increased frequency of osteoarthritis with aging indicates the complex etiology of this disease, which includes pathophysiology and joint stability including biomechanics. The balance between anabolic morphogens and growth factors and catabolic cytokines is at the crux of the problem of osteoarthritis. One such signal is transforming growth factor-beta (TGF-beta). The impaired TGF-beta signaling has been identified as a culprit in old mice in a recent article in this journal. This commentary places this discovery in the context of anabolic and catabolic signals and articular cartilage homeostasis in the joint. 相似文献
10.
11.
12.
Kumar A Novoselov V Celeste AJ Wolfman NM ten Dijke P Kuehn MR 《The Journal of biological chemistry》2001,276(1):656-661
Nodal, a member of the transforming growth factor beta (TGF-beta) superfamily, is implicated in many events critical to the early vertebrate embryo, including mesoderm formation, anterior patterning, and left-right axis specification. Here we define the intracellular signaling pathway induced by recombinant nodal protein treatment of P19 embryonal carcinoma cells. Nodal signaling activates pAR3-Lux, a luciferase reporter previously shown to respond specifically to activin and TGF-beta. However, nodal is unable to induce pTlx2-Lux, a reporter specifically responsive to bone morphogenetic proteins. We also demonstrate that nodal induces p(CAGA)(12), a reporter previously shown to be specifically activated by Smad3. Expression of a dominant negative Smad2 significantly reduces the level of luciferase reporter activity induced by nodal treatment. Finally, we show that nodal signaling rapidly leads to the phosphorylation of Smad2. These results provide the first direct biochemical evidence that nodal signaling is mediated by both activin-TGF-beta pathway Smads, Smad2 and Smad3. We also show here that the extracellular cripto protein is required for nodal signaling, making it distinct from activin or TGF-beta signaling. 相似文献
13.
Filamin associates with Smads and regulates transforming growth factor-beta signaling 总被引:9,自引:0,他引:9
Sasaki A Masuda Y Ohta Y Ikeda K Watanabe K 《The Journal of biological chemistry》2001,276(21):17871-17877
14.
15.
16.
Beisswenger C Coyne CB Shchepetov M Weiser JN 《The Journal of biological chemistry》2007,282(39):28700-28708
Streptococcus pneumoniae and Haemophilus influenzae are human pathogens that often asymptomatically colonize the mucosal surface of the upper respiratory tract, but also occasionally cause invasive disease. The ability of these species to traverse the epithelium of the airway mucosa was modeled in vitro using polarized respiratory epithelial cells in culture. Migration across the epithelial barrier was preceded by loss of transepithelial resistance. Membrane products of S. pneumoniae that included lipoteichoic acid induced disruption of the epithelial barrier in a Toll-like receptor 2-dependent manner. This result correlates with a recent genetic study that associates increased TLR2 signaling with increased rates of invasive pneumococcal disease in humans. Loss of transepithelial resistance by the TLR2 ligand correlated with activation of p38 MAP kinase and transforming growth factor (TGF)-beta signaling. Activation of p38 MAPK and TGF-beta signaling in epithelial cells upon nasal infection with S. pneumoniae was also demonstrated in vivo. Inhibition of either p38 MAPK or TGF-beta signaling was sufficient to inhibit the migration of S. pneumoniae or H. influenzae. Our data shows that diverse bacteria utilize common mechanisms, including MAPK and TGF-beta signaling pathways to disrupt epithelial barriers and promote invasion. 相似文献
17.
Podoplanin/aggrus is increased in tumors and its expression was associated with tumor malignancy. Podoplanin on cancer cells serves as a platelet-aggregating factor, which is associated with the metastatic potential. However, regulators of podoplanin remain to be determined. Transforming growth factor-beta (TGF-beta) regulates many physiological events, including tumorigenesis. Here, we found that TGF-beta induced podoplanin in human fibrosarcoma HT1080 cells and enhanced the platelet-aggregating-ability of HT1080. TGF-beta type I receptor inhibitor (SB431542) and short hairpin RNAs for Smad4 inhibited the podoplanin induction by TGF-beta. These results suggest that TGF-beta is a physiological regulator of podoplanin in tumor cells. 相似文献
18.
19.
Wu K Yang Y Wang C Davoli MA D'Amico M Li A Cveklova K Kozmik Z Lisanti MP Russell RG Cvekl A Pestell RG 《The Journal of biological chemistry》2003,278(51):51673-51684
The vertebrate homologues of Drosophila dachsund, DACH1 and DACH2, have been implicated as important regulatory genes in development. DACH1 plays a role in retinal and pituitary precursor cell proliferation and DACH2 plays a specific role in myogenesis. DACH proteins contain a domain (DS domain) that is conserved with the proto-oncogenes Ski and Sno. Since the Ski/Sno proto-oncogenes repress AP-1 and SMAD signaling, we hypothesized that DACH1 might play a similar cellular function. Herein, DACH1 was found to be expressed in breast cancer cell lines and to inhibit transforming growth factor-beta (TGF-beta)-induced apoptosis. DACH1 repressed TGF-beta induction of AP-1 and Smad signaling in gene reporter assays and repressed endogenous TGF-beta-responsive genes by microarray analyses. DACH1 bound to endogenous NCoR and Smad4 in cultured cells and DACH1 co-localized with NCoR in nuclear dotlike structures. NCoR enhanced DACH1 repression, and the repression of TGF-beta-induced AP-1 or Smad signaling by DACH1 required the DACH1 DS domain. The DS domain of DACH was sufficient for NCoR binding at a Smad4-binding site. Smad4 was required for DACH1 repression of Smad signaling. In Smad4 null HTB-134 cells, DACH1 inhibited the activation of SBE-4 reporter activity induced by Smad2 or Smad3 only in the presence of Smad4. DACH1 participates in the negative regulation of TGF-beta signaling by interacting with NCoR and Smad4. 相似文献
20.
Lallemand F Seo SR Ferrand N Pessah M L'Hoste S Rawadi G Roman-Roman S Camonis J Atfi A 《The Journal of biological chemistry》2005,280(30):27645-27653
Smad7 functions as an intracellular antagonist in transforming growth factor-beta (TGF-beta) signaling. In addition to interacting stably with the activated TGF-beta type I receptor (TbetaRI) to prevent phosphorylation of the receptor-regulated Smads (Smad2 and Smad3), Smad7 also induces degradation of the activated TbetaRI through association with different E3 ubiquitin ligases. Using the two-hybrid screen, we identified atrophin 1-interacting protein 4 (AIP4) as an E3 ubiquitin ligase that specifically targets Smad7 for ubiquitin-dependent degradation without affecting the turnover of the activated TbetaRI. Surprisingly, we found that despite the ability to degrade Smad7, AIP4 can inhibit TGF-beta signaling, presumably by enhancing the association of Smad7 with the activated TbetaRI. Consistent with this notion, expression of a catalytic mutant of AIP4, which is unable to induce ubiquitination and degradation of Smad7, also stabilizes the TbetaRI.Smad7 complex, resulting in inhibition of TGF-beta signaling. The ability of AIP4 to enhance the inhibitory function of Smad7 independent of its ubiquitin ligase activity reveals a new mechanism by which E3 ubiquitin ligases may function to turn off TGF-beta signaling. 相似文献