首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Divergence and convergence of TGF-beta/BMP signaling   总被引:41,自引:0,他引:41  
The transforming growth factor-beta (TGF-beta) superfamily includes more than 30 members which have a broad array of biological activities. TGF-beta superfamily ligands bind to type II and type I serine/threonine kinase receptors and transduce signals via Smad proteins. Receptor-regulated Smads (R-Smads) can be classified into two subclasses, i.e. those activated by activin and TGF-beta signaling pathways (AR-Smads), and those activated by bone morphogenetic protein (BMP) pathways (BR-Smads). The numbers of type II and type I receptors and Smad proteins are limited. Thus, signaling of the TGF-beta superfamily converges at the receptor and Smad levels. In the intracellular signaling pathways, Smads interact with various partner proteins and thereby exhibit a wide variety of biological activities. Moreover, signaling by Smads is modulated by various other signaling pathways allowing TGF-beta superfamily ligands to elicit diverse effects on target cells. Perturbations of the TGF-beta/BMP signaling pathways result in various clinical disorders including cancers, vascular diseases, and bone disorders.  相似文献   

2.
Signaling by transforming growth factor-beta (TGF-beta) superfamily ligands to the nucleus is mediated by type I and type II receptors and the intracellular signal transducers, the Smads. Alteration of some of the components of these pathways has been observed in human tumors. These alterations can be deletions or mutations, or downregulation of components that act positively in the pathway, or alternatively, amplification or overexpression of inhibitors of the pathways. The selection of these alterations during tumor progression and their correlation with clinical outcomes, such as survival, risk of recurrence after tumor resection or tendency for metastatic spread, suggest that many are involved in tumor progression. Here, we review the genetic alterations and epigenetic modifications that occur in different components of the TGF-beta superfamily signaling pathways in human tumors and we discuss their correlation with clinical outcome. The evidence suggests that not all alterations of the TGF-beta superfamily signaling pathway components in human cancer have an equivalent effect on tumor progression and we discuss what implications this has for our understanding of the role of TGF-beta signaling in human cancer.  相似文献   

3.
4.
BMP signaling in skeletal development   总被引:16,自引:0,他引:16  
Development of the vertebrate skeleton, a complex biological event that includes diverse processes such as formation of mesenchymal condensations at the sites of future skeletal elements, osteoblast and chondrocyte differentiation, and three dimensional patterning, is regulated by many growth factors. Bone morphogenetic proteins (BMPs), members of the TGF-beta superfamily, play a pivotal role in the signaling network and are involved in nearly all processes associated with skeletal morphogenesis. BMP signals are transduced from the plasma membrane receptors to the nucleus through both Smad pathway and non-Smad pathways, and regulated by many extracellular and intercellular proteins that interact with BMPs or components of the BMP signaling pathways. To gain a better understanding of the molecular mechanisms underlying the role of BMP in early skeletal development, it is necessary to elucidate the BMP signaling transduction pathways in chondrocytes and osteoblasts. The major objective of this review was to summarize BMP signaling pathways in the context of craniofacial, axial, and limb development. In particular, this discourse will focus on recent advances of the role of different ligands, receptors, Smads, and BMP regulators in osteoblast and chondrocyte differentiation during embryonic development.  相似文献   

5.
6.
7.
Members of the BMP family of signaling molecules display a high conservation of structure and function, and multiple BMPs are often coexpressed in a variety of tissues during development. Moreover, distinct BMP ligands are capable of activating common pathways. Here we describe the coexpression of two members of the 60A subfamily of BMPs, Bmp5 and Bmp7, at a number of different sites in the embryo from gastrulation onwards. Previous studies demonstrate that loss of either Bmp5 or Bmp7 has negligible effects on development, suggesting these molecules functionally compensate for each other at early stages of embryonic development. Here we show this is indeed the case. Thus we find that Bmp5;Bmp7 double mutants die at 10.5 dpc and display striking defects primarily affecting the tissues where these factors are coexpressed. The present analysis also uncovers novel roles for BMP signaling during the development of the allantois, heart, branchial arches, somites and forebrain. Bmp5 and Bmp7 do not appear to be involved in establishing pattern in these tissues, but are instead necessary for the proliferation and maintenance of specific cell populations. These findings are discussed with respect to potential mechanisms underlying cooperative signaling by multiple members of the TGF-beta superfamily.  相似文献   

8.
Activins control many physiologic and pathophysiologic processes in multiple tissues and, like other TGF-beta superfamily members, signal via type II (ActRII/IIB) and type I (ALK4) receptor serine kinases. ActRII/IIB are promiscuous receptors known to bind at least a dozen TGF-beta superfamily ligands including activins, myostatin, several BMPs, and nodal. Here we utilize a new screening procedure to rapidly identify activin-A mutants with loss of signaling activity. Our goal was to identify activin-A mutants able to bind ActRII but unable to bind ALK4 and which would be, therefore, candidate type II activin receptor antagonists. Using the structure of BMP-2 bound to its type I receptor (ALK3) as a guide, we introduced mutations in the context of the inhibin betaA cDNA and assessed the signaling activity of the resulting mutant proteins. We identified several mutants in the finger (M91E, I105E, M108A) and wrist (activin A/activin C chimera, S60P, I63P) regions of activin-A with reduced signaling activity. Of these the M108A mutant displayed the lowest signaling activity while retaining wild-type-like affinity for ActRII. Unlike wild-type activin-A, the M108A mutant was unable to form a cross-linked complex with ALK4 in the presence of ActRII indicating that its ability to bind ALK4 was disrupted. This data suggested that the M108A mutant might be capable of modulating signaling of activin and related ligands. Indeed, the M108A mutant antagonized activin-A and myostatin, but not TGF-beta, signaling in 293T cells, indicating it may be generally capable of blocking ligands that signal via ActRII/IIB.  相似文献   

9.
10.
The superfamily of transforming growth factor-beta (TGF-beta) cytokines has been shown to have profound effects on cellular proliferation, differentiation, and growth. Recently, there have been major advances in our understanding of the signaling pathway(s) conveying TGF-beta signals to the nucleus to ultimately control gene expression. One tissue that is potently influenced by TGF-beta superfamily signaling is skeletal muscle. Skeletal muscle ontogeny and postnatal physiology have proven to be exquisitely sensitive to the TGF-beta superfamily cytokine milieu in various animal systems from mice to humans. Recently, major strides have been made in understanding the role of TGF-beta and its closely related family member, myostatin, in these processes. In this overview, we will review recent advances in our understanding of the TGF-beta and myostatin signaling pathways and, in particular, focus on the implications of this signaling pathway for skeletal muscle development, physiology, and pathology.  相似文献   

11.
The TGF-beta superfamily consists of an array of ligands including BMP, TGF-beta, activin, and nodal subfamilies. The extensive range of biological effects elicited by TGF-beta family signaling is due in part to the large numbers and promiscuity of types I and II TGF-beta family member receptors. Alk8 is a novel type I TGF-beta family member receptor first identified in zebrafish [Dev. Dyn. 211 (4) (1998) 352], which participates in BMP signaling pathways [Development 128 (6) (2001) 849; Development 128 (6) (2001) 859; Mech. Dev. 100 (2) (2001) 275; J. Dent. Res. 80 (11) (2001) 1968]. Here we report that Alk8 also forms active signaling complexes with TGF-beta in the presence of TGF-betaRII. These results expand the signaling repertoire of zAlk8 by demonstrating an ability to participate in two distinct TGF-beta subfamily signaling pathways.  相似文献   

12.
Growth and differentiation factor 5 (GDF-5), a member of the TGF-beta superfamily, is involved in many developmental processes, like chondrogenesis and joint formation. Mutations in GDF-5 lead to diseases, e.g. chondrodysplasias like Hunter-Thompson, Grebe and DuPan syndromes and brachydactyly. Similar to other TGF-beta superfamily members, GDF-5 transmits signals through binding to two different types of membrane-bound serine-/threonine-kinase receptors termed type I and type II. In contrast to the large number of ligands, only seven type I and five type II receptors have been identified to date, implicating a limited promiscuity in ligand-receptor interaction. However, in contrast to other members of the TGF-beta superfamily, GDF-5 shows a pronounced specificity in type I receptor interaction in cross-link experiments binding only to BMP receptor IB (BMPR-IB). In mice, deletion of either GDF-5 or BMPR-IB results in a similar phenotype, indicating that GDF-5 signaling is highly dependent on BMPR-IB. Here, we demonstrate by biosensor analysis that GDF-5 also binds to BMP receptor IA (BMPR-IA) but with approximately 12-fold lower affinity. Structural and mutational analyses revealed a single residue of GDF-5, Arg57 located in the pre-helix loop, being solely responsible for the high binding specificity to BMPR-IB. In contrast to wild-type GDF-5, variant GDF-5R57A interacts with BMPR-IA and BMPR-IB with a comparable high binding affinity. These results provide important insights into how receptor-binding specificity is generated at the molecular level and might be useful for the generation of receptor subtype specific activators or inhibitors.  相似文献   

13.
Transforming growth factor-beta (TGF-beta), one of the most abundant cytokines in bone matrix, has positive and negative effects on bone formation, although the molecular mechanisms of these effects are not fully understood. Bone morphogenetic proteins (BMPs), members of the TGF-beta superfamily, induce bone formation in vitro and in vivo. Here, we show that osteoblastic differentiation of mouse C2C12 cells was greatly enhanced by the TGF-beta type I receptor kinase inhibitor SB431542. Endogenous TGF-beta was found to be highly active, and induced expression of inhibitory Smads during the maturation phase of osteoblastic differentiation induced by BMP-4. SB431542 suppressed endogenous TGF-beta signaling and repressed the expression of inhibitory Smads during this period, possibly leading to acceleration of BMP signaling. SB431542 also induced the production of alkaline phosphatase and bone sialoprotein, and matrix mineralization of human mesenchymal stem cells. Thus, signaling cross-talk between BMP and TGF-beta pathways plays a crucial role in the regulation of osteoblastic differentiation, and TGF-beta inhibitors may be invaluable for the treatment of various bone diseases by accelerating BMP-induced osteogenesis.  相似文献   

14.
15.
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor beta (TGF-beta) superfamily of ligands, which regulate many mammalian physiologic and pathophysiologic processes. BMPs exert their effects through type I and type II serine/threonine kinase receptors and the Smad intracellular signaling pathway. Recently, the glycosylphosphatidylinositol (GPI)-anchored protein DRAGON was identified as a co-receptor for BMP signaling. Here, we investigate whether a homologue of DRAGON, repulsive guidance molecule (RGMa), is similarly involved in the BMP signaling pathway. We show that RGMa enhances BMP, but not TGF-beta, signals in a ligand-dependent manner in cell culture. The soluble extracellular domain of RGMa fused to human Fc (RGMa.Fc) forms a complex with BMP type I receptors and binds directly and selectively to radiolabeled BMP-2 and BMP-4. RGMa mediates BMP signaling through the classical BMP signaling pathway involving Smad1, 5, and 8, and it up-regulates endogenous inhibitor of differentiation (Id1) protein, an important downstream target of BMP signals. Finally, we demonstrate that BMP signaling occurs in neurons that express RGMa in vivo. These data are consistent with a role for RGMa as a BMP co-receptor.  相似文献   

16.
Signaling co-receptors are diverse, multifunctional components of most major signaling pathways, with roles in mediating and regulating signaling in both physiological and pathophysiological circumstances. Many of these signaling co-receptors, including CD44, glypicans, neuropilins, syndecans and TßRIII/betaglycan are also proteoglycans. Like other co-receptors, these proteoglycan signaling co-receptors can bind multiple ligands, promoting the formation of receptor signaling complexes and regulating signaling at the cell surface. The proteoglycan signaling co-receptors can also function as structural molecules to regulate adhesion, cell migration, morphogenesis and differentiation. Through a balance of these signaling and structural roles, proteoglycan signaling co-receptors can have either tumor promoting or tumor suppressing functions. Defining the role and mechanism of action of these proteoglycan signaling co-receptors should enable more effective targeting of these co-receptors and their respective pathways for the treatment of human disease.  相似文献   

17.
Dual role for TGF-beta1 in apoptosis   总被引:6,自引:0,他引:6  
The exposure of cells to TGF-beta1 can trigger a variety of cellular responses including the inhibition of cell growth, migration, differentiation and apoptosis. TGF-beta1-regulated apoptosis is cell type and context-dependent, indeed TGF-beta1 provides signals for both cell survival or apoptosis. The molecular mechanisms underlying the role of TGF-beta1 in apoptosis remains unclear. The proteins that primarily mediate the intracellular signaling of TGF-beta1 are the members of the Smad family. Nevertheless, TGF-beta1 signaling can also cooperate with the death receptor apoptotic pathway (Fas, TNF), with the intracellular modulators of apoptosis JNK and p38 MAP kinases, Akt, NF-kappaB, and with the mitochondrial apoptotic pathway mediated by members of the Bcl-2 family. Moreover, the involvement of TGF-beta1 in the production of oxidative stress and in preventing the inflammatory processes required for the clearance of apoptotic bodies is further evidence of its integration into apoptotic pathways. The interaction and balance between different stimuli provides the basis for the pro- or anti-apoptotic output of TGF-beta1 signaling in a given cell.  相似文献   

18.
19.
Specificity, diversity, and regulation in TGF-beta superfamily signaling.   总被引:44,自引:0,他引:44  
E Piek  C H Heldin  P Ten Dijke 《FASEB journal》1999,13(15):2105-2124
  相似文献   

20.
Transforming growth factor β (TGF-β) superfamily ligands have important roles in regulating cellular homeostasis, embryonic development, differentiation, proliferation, immune surveillance, angiogenesis, motility, and apoptosis in a cell type and context specific manner. TGF-β superfamily signaling pathways also have diverse roles in human cancer, functioning to either suppress or promote cancer progression. The TGF-β superfamily co-receptor, the type III TGF-β receptor (TβRIII, also known as betaglycan) mediates TGF-β superfamily ligand dependent as well as ligand independent signaling to both Smad and non-Smad signaling pathways. Loss of TβRIII expression during cancer progression and direct effects of TβRIII on regulating cell migration, invasion, proliferation, and angiogenesis support a role for TβRIII as a suppressor of cancer progression and/or as a metastasis suppressor. Defining the physiological function and mechanism of TβRIII action and alterations in TβRIII function during cancer progression should enable more effective targeting of TβRIII and TβRIII mediated functions for the diagnosis and treatment of human cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号