首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intestinal bacteria form a resident community that has co-evolved with the mammalian host. In addition to playing important roles in digestion and harvesting energy, commensal bacteria are crucial for the proper functioning of mucosal immune defenses. Most of these functions have been attributed to the presence of large numbers of 'innocuous' resident bacteria that dilute or occupy niches for intestinal pathogens or induce innate immune responses that sequester bacteria in the lumen, thus quenching excessive activation of the mucosal immune system. However it has recently become obvious that commensal bacteria are not simply beneficial bystanders, but are important modulators of intestinal immune homeostasis and that the composition of the microbiota is a major factor in pre-determining the type and robustness of mucosal immune responses. Here we review specific examples of individual members of the microbiota that modify innate and adaptive immune responses, and we focus on potential mechanisms by which such species-specific signals are generated and transmitted to the host immune system.  相似文献   

2.
3.
Several studies have stressed the importance of the microbiota in the maintenance of the gastrointestinal epithelium. Administration of probiotic bacteria, supplements composed of microbiota constituents, was previously shown to diminish symptoms in patients suffering from inflammatory bowel diseases. This raises the possibility that probiotics may play an active role in enhancing the intestinal barrier at the mucosal surface. In this study, we investigated whether the clinically tested VSL#3 probiotic formula and/or its secreted components can augment the protective mucus layer in vivo and in vitro. For in vivo studies, Wistar rats were orally administered the probiotic mixture VSL#3 on a daily basis for seven days. After treatment, basal luminal mucin content increased by 60%. In addition, we exposed isolated rat colonic loops to the VSL#3 probiotic formula, which significantly stimulated colonic mucin (MUC) secretion and MUC2 gene expression; however, MUC1 and MUC3 gene expression were only slightly elevated. The effect of the VSL#3 mucin secretagogue was also tested in vitro by use of LS 174T colonic epithelial cells. In contrast to the animal studies, cultured cells incubated with VSL#3 bacteria did not exhibit increased mucin secretion. However, the bacterial secreted products contained in the conditioned media stimulated a remarkable mucin secretion effect. Among the three bacterial groups (Lactobacilli, Bifidobacteria, and Streptococci) contained in VSL#3, the Lactobacillus species were the strongest potentiator of mucin secretion in vitro. A preliminary characterization of the putative mucin secretagogue suggested that it was a heat-resistant soluble compound, which is not sensitive to protease and DNase treatment. These findings contribute to a better understanding of the complex and beneficial interaction between colonic epithelial cells and intestinal bacteria.  相似文献   

4.

Background

The intestinal microbiota is increasingly linked to the pathogenesis of chronic enteropathies (CE) in dogs. While imbalances in duodenal and fecal microbial communities have been associated with mucosal inflammation, relatively little is known about alterations in mucosal bacteria seen with CE involving the ileum and colon.

Aim

To investigate the composition and spatial organization of mucosal microbiota in dogs with CE and controls.

Methods

Tissue sections from endoscopic biopsies of the ileum and colon from 19 dogs with inflammatory bowel disease (IBD), 6 dogs with granulomatous colitis (GC), 12 dogs with intestinal neoplasia, and 15 controls were studied by fluorescence in situ hybridization (FISH) on a quantifiable basis.

Results

The ileal and colonic mucosa of healthy dogs and dogs with CE is predominantly colonized by bacteria localized to free and adherent mucus compartments. CE dogs harbored more (P < 0.05) mucosal bacteria belonging to the Clostridium-coccoides/Eubacterium rectale group, Bacteroides, Enterobacteriaceae, and Escherichia coli versus controls. Within the CE group, IBD dogs had increased (P < 0.05) Enterobacteriaceae and E. coli bacteria attached onto surface epithelia or invading within the intestinal mucosa. Bacterial invasion with E. coli was observed in the ileal and colonic mucosa of dogs with GC (P < 0.05). Dogs with intestinal neoplasia had increased (P < 0.05) adherent (total bacteria, Enterobacteriaceae, E. coli) and invasive (Enterobacteriaceae, E. coli, and Bacteroides) bacteria in biopsy specimens. Increased numbers of total bacteria adherent to the colonic mucosa were associated with clinical disease severity in IBD dogs (P < 0.05).

Conclusion

Pathogenic events in canine CE are associated with different populations of the ileal and colonic mucosal microbiota.  相似文献   

5.
Alterations in the intestinal microbiota have been suggested as an etiological factor in the pathogenesis of irritable bowel syndrome (IBS). This study used a molecular fingerprinting technique to compare the composition and biodiversity of the microbiota within fecal and mucosal niches between patients with diarrhea-predominant IBS (D-IBS) and healthy controls. Terminal-restriction fragment (T-RF) length polymorphism (T-RFLP) fingerprinting of the bacterial 16S rRNA gene was used to perform microbial community composition analyses on fecal and mucosal samples from patients with D-IBS (n = 16) and healthy controls (n = 21). Molecular fingerprinting of the microbiota from fecal and colonic mucosal samples revealed differences in the contribution of T-RFs to the microbiota between D-IBS patients and healthy controls. Further analysis revealed a significantly lower (1.2-fold) biodiversity of microbes within fecal samples from D-IBS patients than healthy controls (P = 0.008). No difference in biodiversity in mucosal samples was detected between D-IBS patients and healthy controls. Multivariate analysis of T-RFLP profiles demonstrated distinct microbial communities between luminal and mucosal niches in all samples. Our findings of compositional differences in the luminal- and mucosal-associated microbiota between D-IBS patients and healthy controls and diminished microbial biodiversity in D-IBS fecal samples further support the hypothesis that alterations in the intestinal microbiota may have an etiological role in the pathogenesis of D-IBS and suggest that luminal and mucosal niches need to be investigated.  相似文献   

6.
Molecular methods based on 16S rRNA gene sequence analyses have shown that bacteria of the Clostridium leptum subgroup are predominant in the colonic microbiota of healthy humans; this subgroup includes bacteria that produce butyrate, a source of energy for intestinal epithelial cells. To improve our understanding of the species within this important group, separation methods using fluorescence-activated cell sorting (FACS) and specific PCR were combined with 16S rRNA gene sequence analyses. FACS was developed for bacteria labelled in situ with two rRNA oligonucleotide probes, namely EUB338-FITC for total bacteria and Clep866-CY5/cp or Fprau645-CY5 for bacteria of the C. leptum subgroup. Bacterial cell sorting allowed a selective recovery of members of the C. leptum subgroup from the human microbiota with efficiencies as high as 95%. Group-specific PCR amplification of the C. leptum subgroup was developed, and temporal thermal gradient gel electrophoresis showed host-specific profiles with low complexity, with a sharing of common bands between individuals and bands stable over 2 months for the same individual. A library of 16S rRNA gene cloned sequences (106 sequences) was prepared with DNA obtained from both separation methods, and 15 distinct phylotypes were identified, among which 10 have no cultivable or currently cultivated representative in reference collections.  相似文献   

7.
The human gastrointestinal tract hosts a complex community of microorganisms that grow as biofilms on the intestinal mucosa. These bacterial communities are not well characterized, although they are known to play an important role in human health. This study aimed to develop a model for culturing biofilms (surface-adherent communities) of intestinal microbiota. The model utilizes adherent mucosal bacteria recovered from colonic biopsies to create multi-species biofilms. Culture on selective media and confocal microscopy indicated the biofilms were composed of a diverse community of bacteria. Molecular analyses confirmed that several phyla were represented in the model, and demonstrated stability of the community over 96 h when cultured in the device. This model is novel in its use of a multi-species community of mucosal bacteria grown in a biofilm mode of growth.  相似文献   

8.
Termites and cockroaches are closely related, with molecular phylogenetic analyses even placing termites within the radiation of cockroaches. The intestinal tract of wood-feeding termites harbors a remarkably diverse microbial community that is essential for the digestion of lignocellulose. However, surprisingly little is known about the gut microbiota of their closest relatives, the omnivorous cockroaches. Here, we present a combined characterization of physiological parameters, metabolic activities, and bacterial microbiota in the gut of Shelfordella lateralis, a representative of the cockroach family Blattidae, the sister group of termites. We compared the bacterial communities within each gut compartment using terminal-restriction fragment length polymorphism (T-RFLP) analysis and made a 16S rRNA gene clone library of the microbiota in the colon-the dilated part of the hindgut with the highest density and diversity of bacteria. The colonic community was dominated by members of the Bacteroidetes, Firmicutes (mainly Clostridia), and some Deltaproteobacteria. Spirochaetes and Fibrobacteres, which are abundant members of termite gut communities, were conspicuously absent. Nevertheless, detailed phylogenetic analysis revealed that many of the clones from the cockroach colon clustered with sequences previously obtained from the termite gut, which indicated that the composition of the bacterial community reflects at least in part the phylogeny of the host.  相似文献   

9.
This article is part of a Special Issue "Neuroendocrine-Immune Axis in Health and Disease." The body is colonized by highly complex and genetically diverse communities of microbes, the majority of which reside within the intestines in largely stable but dynamically interactive climax communities. These microbes, referred to as the microbiota, have many functions that enhance the health of the host, and it is now recognized that the microbiota influence both mucosal and systemic immunity. The studies outlined in this review demonstrate that the microbiota are also involved in stressor-induced immunomodulation. Exposure to different types of stressors, including both physical and psychological stressors, changes the composition of the intestinal microbiota. The altered profile increases susceptibility to an enteric pathogen, i.e., Citrobacter rodentium, upon oral challenge, but is also associated with stressor-induced increases in innate immune activity. Studies using germfree mice, as well as antibiotic-treated mice, provide further evidence that the microbiota contribute to stressor-induced immunomodulation; stressor-induced increases in splenic macrophage microbicidal activity fail to occur in mice with no, or reduced, intestinal microbiota. While the mechanisms by which microbiota can impact mucosal immunity have been studied, how the microbiota impact systemic immune responses is not clear. A mechanism is proposed in which stressor-induced degranulation of mucosal mast cells increases the permeability of the intestines. This increased permeability would allow intact bacteria and/or bacterial products (like peptidoglycan) to translocate from the lumen of the intestines to the interior of the body, where they directly, or indirectly, prime the innate immune system for enhanced reactivity to antigenic stimulation.  相似文献   

10.
Evidence that hydrogen sulfide is a genotoxic agent   总被引:4,自引:0,他引:4  
Hydrogen sulfide (H2S) produced by commensal sulfate-reducing bacteria, which are often members of normal colonic microbiota, represents an environmental insult to the intestinal epithelium potentially contributing to chronic intestinal disorders that are dependent on gene-environment interactions. For example, epidemiologic studies reveal either persistent sulfate-reducing bacteria colonization or H2S in the gut or feces of patients suffering from ulcerative colitis and colorectal cancer. However, a mechanistic model that explains the connection between H2S and ulcerative colitis or colorectal cancer development has not been completely formulated. In this study, we examined the chronic cytotoxicity of sulfide using a microplate assay and genotoxicity using the single-cell gel electrophoresis (SCGE; comet assay) in Chinese hamster ovary (CHO) and HT29-Cl.16E cells. Sulfide showed chronic cytotoxicity in CHO cells with a %C1/2 of 368.57 micromol/L. Sulfide was not genotoxic in the standard SCGE assay. However, in a modified SCGE assay in which DNA repair was inhibited, a marked genotoxic effect was observed. A sulfide concentration as low as 250 micromol/L (similar to that found in human colon) caused significant genomic DNA damage. The HT29-Cl.16E colonocyte cell line also exhibited increased genomic DNA damage as a function of Na2S concentration when DNA repair was inhibited, although these cells were less sensitive to sulfide than CHO cells. These data indicate that given a predisposing genetic background that compromises DNA repair, H2S may lead to genomic instability or the cumulative mutations found in adenomatous polyps leading to colorectal cancer.  相似文献   

11.
The gastrointestinal tract is a passageway for dietary nutrients, microorganisms and xenobiotics. The gut is home to diverse bacterial communities forming the microbiota. While bacteria and their metabolites maintain gut homeostasis, the host uses innate and adaptive immune mechanisms to cope with the microbiota and luminal environment. In recent years, multiple bi-directional instructive mechanisms between microbiota, luminal content and mucosal immune systems have been uncovered. Indeed, epithelial and immune cell-derived mucosal signals shape microbiota composition, while microbiota and their by-products shape the mucosal immune system. Genetic and environmental perturbations alter gut mucosal responses which impact on microbial ecology structures. On the other hand, changes in microbiota alter intestinal mucosal responses. In this review, we discuss how intestinal epithelial Paneth and goblet cells interact with the microbiota, how environmental and genetic disorders are sensed by endoplasmic reticulum stress and autophagy responses, how specific bacteria, bacterial- and diet-derived products determine the function and activation of the mucosal immune system. We will also discuss the critical role of HDAC activity as a regulator of immune and epithelial cell homeostatic responses.  相似文献   

12.
Despite the success of colonoscopy screening and recent advances in cancer treatment, colorectal cancer (CRC) still remains one of the most commonly diagnosed and deadly cancers, with a significantly increased incidence in developing countries where people are adapting to Western lifestyle. Diet has an important impact on risk of CRC. Multiple epidemiological studies have suggested that excessive animal protein and fat intake, especially red meat and processed meat, could increase the risk of developing CRC while fiber could protect against colorectal tumorigenesis. Mechanisms have been investigated by animal studies.Diet could re-shape the community structure of gut microbiota and influence its function by modulating the production of metabolites. Butyrate, one of the short-chain fatty acids (SCFAs), which act as a favorable source for colonocytes, could protect colonic epithelial cells from tumorigenesis via anti-inflammatory and antineoplastic properties through cell metabolism, microbiota homeostasis, antiproliferative, immunomodulatory and genetic/epigenetic regulation ways. In contrast, protein fermentation and bile acid deconjugation, which cause damage to colonic cells through proinflammatory and proneoplastic ways, lead to increasedriskofdevelopingCRC.In conclusion, abalanced diet with an increased abundance of fiber should be adopted to reduce the risk and prevent CRC.  相似文献   

13.
Ulcerative colitis (UC) is an idiopathic, chronic inflammatory disorder of the colon, and it has become one of the world-recognized medical problems as it is recurrent and refractory. Berberine (BBR) is an effective drug for UC treatment. However, the underlying mechanism and targets remain obscure. In this study, we systematically investigated the therapeutic effect and its mechanism of BBR in ameliorating DSS-induced mouse colitis. Expectedly, the colon inflammation was significantly relieved by BBR, and microbiota depletion by antibiotic cocktail significantly reversed the therapeutic effect. Further studies showed that BBR can regulate the abundance and component of bacteria, reestablish the broken chemical and epithelial barriers. Meanwhile, BBR administration dramatically decreased ILC1 and Th17 cells, and increased Tregs as well as ILC3 in colonic tissue of DSS-induced mice, and it was able to regulate the expression of various immune factors at the mRNA level. Moreover, a proteomic study revealed that Wnt/β-catenin pathway was remarkably enhanced in colonic tissue of BBR-treated mice, and the therapeutic effect of BBR was disappeared after the intervention of Wnt pathway inhibitor FH535. These results substantially revealed that BBR restores DSS-induced colon inflammation in a microbiota-dependent manner, and BBR performs its protective roles in colon by maintaining the structure and function of the intestinal mucosal barrier, regulating the intestinal mucosal immune homeostasis and it works through the Wnt/β-catenin pathway. Importantly, these findings also provided the proof that BBR serves as a potential gut microbiota modulator and mucosal barrier protector for UC prevention and therapy.  相似文献   

14.
Inflammatory bowel disease (IBD) is a multifactorial disease which arises as a result of the interaction of genetic, environmental, barrier and microbial factors leading to chronic inflammation in the intestine. Patients with IBD had a higher risk of developing colorectal carcinoma (CRC), of which the subset was classified as colitis-associated cancers. Genetic polymorphism of innate immune receptors had long been considered a major risk factor for IBD, and the mutations were also recently observed in CRC. Altered microbial composition (termed microbiota dybiosis) and dysfunctional gut barrier manifested by epithelial hyperpermeability and high amount of mucosa-associated bacteria were observed in IBD and CRC patients. The findings suggested that aberrant immune responses to penetrating commensal microbes may play key roles in fueling disease progression. Accumulative evidence demonstrated that mucosa-associated bacteria harbored colitogenic and protumoral properties in experimental models, supporting an active role of bacteria as pathobionts (commensal-derived opportunistic pathogens). Nevertheless, the host factors involved in bacterial dysbiosis and conversion mechanisms from lumen-dwelling commensals to mucosal pathobionts remain unclear. Based on the observation of gut leakiness in patients and the evidence of epithelial hyperpermeability prior to the onset of mucosal histopathology in colitic animals, it was postulated that the epithelial barrier dysfunction associated with mucosal enrichment of specific bacterial strains may predispose the shift to disease-associated microbiota. The speculation of leaky gut as an initiating factor for microbiota dysbiosis that eventually led to pathological consequences was proposed as the “common ground hypothesis”, which will be highlighted in this review. Overall, the understanding of the core interplay between gut microbiota and epithelial barriers at early subclinical phases will shed light to novel therapeutic strategies to manage chronic inflammatory disorders and colitis-associated cancers.  相似文献   

15.
Lactic acid bacteria (LAB) are well recognized beneficial host-associated members of the microbiota of humans and animals. Yet LAB-associations of invertebrates have been poorly characterized and their functions remain obscure. Here we show that honeybees possess an abundant, diverse and ancient LAB microbiota in their honey crop with beneficial effects for bee health, defending them against microbial threats. Our studies of LAB in all extant honeybee species plus related apid bees reveal one of the largest collections of novel species from the genera Lactobacillus and Bifidobacterium ever discovered within a single insect and suggest a long (>80 mya) history of association. Bee associated microbiotas highlight Lactobacillus kunkeei as the dominant LAB member. Those showing potent antimicrobial properties are acquired by callow honey bee workers from nestmates and maintained within the crop in biofilms, though beekeeping management practices can negatively impact this microbiota. Prophylactic practices that enhance LAB, or supplementary feeding of LAB, may serve in integrated approaches to sustainable pollinator service provision. We anticipate this microbiota will become central to studies on honeybee health, including colony collapse disorder, and act as an exemplar case of insect-microbe symbiosis.  相似文献   

16.
肠道黏膜微生物在调控宿主生理功能方面发挥重要作用,其结构组成受到多种因素影响。性别被认为是塑造肠道微生物的因素之一。然而,性别对肠道黏膜菌群的差异影响还不清楚。目的以江山乌猪为研究对象,探究性别差异对其肠道黏膜微生物组成及功能的影响。方法选取性成熟的雌性和雄性江山乌猪各8头,利用16S rRNA基因高通量测序技术分析回肠和结肠黏膜菌群。结果在回肠黏膜中,雄性江山乌猪菌群的Chao1指数和Shannon指数显著高于雌性(P<0.05),在结肠黏膜中,不同性别江山乌猪菌群Chao1指数和Shannon指数无显著差异(P>0.05)。菌群差异分析显示,回肠黏膜中,沙雷氏菌属(Serratia)和埃希氏志贺菌属(Escherichia_Shigella)在雌性组中的相对丰度显著高于雄性组(P<0.05),雄性组中Oscillospiraceae UCG-005、拟普雷沃氏菌属(Alloprevotella)、布劳特氏菌属(Blautia)和Prevotellaceae_NK3B31_group相对丰度显著高于雌性组(P<0.05);结肠黏膜中,雌性组中unclassified_MuribaculaceaeRikenellaceae_RC9_gut_group和Prevotellaceae UCG-003相对丰度显著高于雄性组(P<0.05),Oscillospiraceae UCG-005、Lachnospiraceae_NK4A136_group和unclassified_Lachnospiraceae在雄性组中相对丰度更高(P<0.05)。功能预测发现,雄性乌猪回肠黏膜菌群显著富集了氨基酸代谢、碳水化合物代谢和能量代谢等功能途径(P<0.05);结肠黏膜菌群主要富集了膜转运相关的ABC转运蛋白和信号转导相关的双组分系统等功能途径(P<0.05)。结论不同性别江山乌猪肠黏膜菌群结构及功能具有明显差异。这些结果揭示了不同性别江山乌猪肠道黏膜菌群的差异特征,为了解和挖掘我国地方畜禽品种肠道微生物资源提供部分参考。  相似文献   

17.
Garlic (Allium sativum) is considered one of the best disease-preventive foods. We evaluated in vitro the effect of a commercial garlic powder (GP), at concentrations of 0.1% and 1% (w/v), upon the viability of representative gut bacteria. In pure culture studies, Lactobacillus casei DSMZ 20011 was essentially found to be resistant to GP whereas a rapid killing effect of between 1 and 3 log CFU/ml reduction in cell numbers was observed with Bacteroides ovatus, Bifidobacterium longum DSMZ 20090 and Clostridium nexile A2-232. After 6h incubation, bacterial numbers increased steadily and once the strains became resistant they retained their resistant phenotype upon sub-culturing. A colonic model was also used to evaluate the effect of GP on a mixed bacterial population representing the microbiota of the distal colon. Lactic acid bacteria were found to be more resistant to GP compared to the clostridial members of the gut microbiota. While for most bacteria the antimicrobial effect was transient, the lactobacilli showed a degree of resistance to garlic, indicating that its consumption may favour the growth of these beneficial bacterial species in the gut. Garlic intake has the potential to temporarily modulate the gut microbiota.  相似文献   

18.
Prebiotics are selectively fermented ingredients that allow specific changes in the gastrointestinal microbiota that confer health benefits to the host. However, the effects of prebiotics on the human gut microbiota are incomplete as most studies have relied on methods that fail to cover the breadth of the bacterial community. The goal of this research was to use high throughput multiplex community sequencing of 16S rDNA tags to gain a community wide perspective of the impact of prebiotic galactooligosaccharide (GOS) on the fecal microbiota of healthy human subjects. Fecal samples from eighteen healthy adults were previously obtained during a feeding trial in which each subject consumed a GOS-containing product for twelve weeks, with four increasing dosages (0, 2.5, 5, and 10 gram) of GOS. Multiplex sequencing of the 16S rDNA tags revealed that GOS induced significant compositional alterations in the fecal microbiota, principally by increasing the abundance of organisms within the Actinobacteria. Specifically, several distinct lineages of Bifidobacterium were enriched. Consumption of GOS led to five- to ten-fold increases in bifidobacteria in half of the subjects. Increases in Firmicutes were also observed, however, these changes were detectable in only a few individuals. The enrichment of bifidobacteria was generally at the expense of one group of bacteria, the Bacteroides. The responses to GOS and the magnitude of the response varied between individuals, were reversible, and were in accordance with dosage. The bifidobacteria were the only bacteria that were consistently and significantly enriched by GOS, although this substrate supported the growth of diverse colonic bacteria in mono-culture experiments. These results suggest that GOS can be used to enrich bifidobacteria in the human gastrointestinal tract with remarkable specificity, and that the bifidogenic properties of GOS that occur in vivo are caused by selective fermentation as well as by competitive interactions within the intestinal environment.  相似文献   

19.
肠道微生物群是人体内环境的重要组成部分,与宿主共进化、共代谢、共发育,并与宿主之间相互调控,影响宿主健康。近年研究显示,肠道微生物群参与了结直肠癌的发生和发展。了解肠道微生物群的特征性变化及其诱发结直肠癌的机制对于结直肠癌的防治有着重要意义。目前以肠道微生物群为靶点的干预性基础研究也取得了一些突破性的研究进展。本文主要对结直肠癌患者肠道微生物群的变化、其可能的致病机制及临床相关研究进展等进行综述。  相似文献   

20.
This study used 16S rRNA-based pyrosequencing to examine the microbial community that is closely associated with the colonic mucosa of five healthy individuals. Spatial heterogeneity in microbiota was measured at right colon, left colon and rectum, and between biopsy duplicates spaced 1 cm apart. The data demonstrate that mucosal-associated microbiota is comprised of Firmicutes (50.9% ± 21.3%), Bacteroidetes (40.2% ± 23.8%) and Proteobacteria (8.6%± 4.7%), and that interindividual differences were apparent. Among the genera, Bacteroides, Leuconostoc and Weissella were present at high abundance (4.6% to 41.2%) in more than 90% of the studied biopsy samples. Lactococcus, Streptococcus, Acidovorax, Acinetobacter, Blautia, Faecalibacterium, Veillonella, and several unclassified bacterial groups were also ubiquitously present at an abundance <7.0% of total microbial community. With the exception of one individual, the mucosal-associated microbiota was relatively homogeneous along the colon (average 61% Bray-Curtis similarity). However, micro-heterogeneity was observed in biopsy duplicates within defined colonic sites for three of the individuals. A weak but significant Mantel correlation of 0.13 was observed between the abundance of acidomucins and mucosal-associated microbiota (P-value = 0.04), indicating that the localized biochemical differences may contribute in part to the micro-heterogeneity. This study provided a detailed insight to the baseline mucosal microbiota along the colon, and revealed the existence of micro-heterogeneity within defined colonic sites for certain individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号