首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atrazine, simazine, and cyanazine are widely used preemergence and postemergence triazine herbicides that have made their way into the potable water supply of many agricultural communities. Although there are several contradictory genotoxicity studies in the literature, our previous in vitro studies with human lymphocytes showed that atrazine, simazine, and cyanazine did not induce sister chromatid exchanges (SCEs) or chromosome aberrations (CAs) up to the limits of solubility in aqueous medium using 0.5% dimethyl sulfoxide. To expand upon these results and to ensure that our in vitro findings could be replicated in an in vivo system, mice were treated with each triazine by two intraperitoneal injections, 24h apart. The animals were sacrificed and the bone marrow removed for micronucleus (MN) analysis, 24h after the last injection. Two to four independent trials were performed for MN analysis in polychromatic erythrocytes, and in some trials the spleen was removed, cultured, and analyzed for SCEs and CAs. None of the triazines investigated induced MN in the bone marrow, even at doses that caused significant bone marrow suppression and/or death. These results indicate that atrazine, simazine, and cyanazine are not genotoxic as measured by the bone marrow MN assay in mice following high dose exposures.  相似文献   

2.
Atrazine, simazine, and cyanazine are widely used pre-emergence and post-emergence triazine herbicides that have made their way into the potable water supply of many agricultural communities. Because of this and the prevalence of contradictory cytogenetic studies in the literature on atrazine, simazine, and cyanazine, a series of in vitro experiments was performed to investigate the ability of these three triazines to induce sister chromatid exchanges (SCEs) and chromosome aberrations (CAs) in human lymphocyte cultures. Our results showed that all three triazines failed to produce any significant increases in SCEs or CAs up to the limits of solubility [using 0.5% dimethyl sulfoxide (DMSO)]. Our results are discussed in light of contradictory results in the literature.  相似文献   

3.
Arthrobacter nicotinovorans HIM was isolated directly from an agricultural sandy dune soil 6 months after a single application of atrazine. It grew in minimal medium with atrazine as sole nitrogen source but was unable to mineralize 14C-ring-labelled atrazine. Atrazine was degraded to cyanuric acid. In addition to atrazine the bacterium degraded simazine, terbuthylazine, propazine, cyanazine and prometryn but was unable to grow on terbumeton. When added to soil, A. nicotinovorans HIM did enhance mineralization of 14C-ring-labelled atrazine and simazine, in combination with naturally occurring cyanuric acid degrading microbes resident in the soil. Using PCR, the atrazine-degradation genes atzABC were identified in A. nicotinovorans HIM. Cloning of the atzABC genes revealed significant homology (>99%) with the atrazine degradation genes of Pseudomonas sp. strain ADP. The atrazine degradation genes were held on a 96 kbp plasmid.  相似文献   

4.
Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds   总被引:7,自引:0,他引:7  
Arthrobacter aurescens strain TC1 was isolated without enrichment by plating atrazine-contaminated soil directly onto atrazine-clearing plates. A. aurescens TC1 grew in liquid medium with atrazine as the sole source of nitrogen, carbon, and energy, consuming up to 3,000 mg of atrazine per liter. A. aurescens TC1 is metabolically diverse and grew on a wider range of s-triazine compounds than any bacterium previously characterized. The 23 s-triazine substrates serving as the sole nitrogen source included the herbicides ametryn, atratone, cyanazine, prometryn, and simazine. Moreover, atrazine substrate analogs containing fluorine, mercaptan, and cyano groups in place of the chlorine substituent were also growth substrates. Analogs containing hydrogen, azido, and amino functionalities in place of chlorine were not growth substrates. A. aurescens TC1 also metabolized compounds containing chlorine plus N-ethyl, N-propyl, N-butyl, N-s-butyl, N-isobutyl, or N-t-butyl substituents on the s-triazine ring. Atrazine was metabolized to alkylamines and cyanuric acid, the latter accumulating stoichiometrically. Ethylamine and isopropylamine each served as the source of carbon and nitrogen for growth. PCR experiments identified genes with high sequence identity to atzB and atzC, but not to atzA, from Pseudomonas sp. strain ADP.  相似文献   

5.
Metabolism of the herbicide atrazine by Rhodococcus strains.   总被引:20,自引:8,他引:12       下载免费PDF全文
R Behki  E Topp  W Dick    P Germon 《Applied microbiology》1993,59(6):1955-1959
Rhodococcus strains were screened for their ability to degrade the herbicide atrazine. Only rhodococci that degrade the herbicide EPTC (s-ethyl-dipropylthiocarbamate) metabolized atrazine. Rhodococcus strain TE1 metabolized atrazine under aerobic conditions to produce deethyl- and deisopropylatrazine, which were not degraded further and which accumulated in the incubation medium. The bacterium also metabolized the other s-triazine herbicides propazine, simazine, and cyanazine. The N dealkylation of triazine herbicides by Rhodococcus strain TE1 was associated with a 77-kb plasmid previously shown to be required for EPTC degradation.  相似文献   

6.
Supercritical fluid extraction (SFE) of soil herbicides followed by enzyme immunoassay analysis (EIA) is explained in a step-by-step process. Extracted herbicides, include 2,4-D, simazine, atrazine, and alachlor. The herbicide, trifluralin was not successfully analyzed by EIA because of crossreacting metabolites. Problems with SFE, including uneven packing of cells, leaks, uneven flow and clogging, can largely be eliminated as the method parameters are optimized. It was necessary to add modifiers including methanol or acetone to the SF CO2 to increase the solubility of the analytes. Detection limits of 2.5 ng/g soil for atrazine and alachlor and 15 ng/g soil for simazine and 2,4-D without concentration of the sample were achieved. Recoveries above 80% and relative standard deviations (RSDs) less than 15% for 2,4-D simazine, atrazine and alachlor were achieved. Atrazine and alachlor recoveries were above 90% with RSDs below 10%. Forty soil samples could be extracted and analyzed in an 8-h day.  相似文献   

7.
The effects of temperature, over a range of 5 to 30 C, on phytotoxicity of simazine, atrazine, propazine, prometryne, prometone, and ipazine to young Pinus resinosa seedlings were investigated in growth chambers. Herbicides were applied to the soil surface and then mixed into the soil before pine seeds were planted. Development of recently germinated seedlings was then studied for 7 weeks. High temperatures greatly accelerated herbicide toxicity, but the effects of temperature varied greatly among herbicides. Atrazine and simazine were more toxic than other herbicides tested at all temperatures. Toxicity of simazine and atrazine was apparent early, whereas effects of propazine, prometryne, prometone, and ipazine were somewhat delayed. After 7 weeks maximum dry-weight production of shoots under each herbicide treatment and control occurred at 20 C, with some decreases noted at lower temperatures and marked decreases at progressively higher ones. At 20 C final seedling dry weights following treatment with simazine or atrazine were only one-third as high as in control plants. Growth was also reduced in lesser amounts by propazine, prometryne, prometone, or ipazine. Variations in phytotoxicity of different triazine herbicides appeared to be related more to their structural differences than their solubilities. Under the constant environmental conditions of the experiments, toxicity symptoms in plants treated with triazine herbicides appeared more rapidly and decisively than in previous field experiments under fluctuating environments. The influence of high temperatures in enhancing triazine toxicity appeared to involve complex interactions of physiological activity of plants and temperature effects on herbicide uptake.  相似文献   

8.
A water-soluble extract from maize plants exposed to 3 s-triazine herbicides (atrazine, simazine and cyanazine) has been shown to be mutagenic in strain TA100 of Salmonella. No mutagenic activity was observed in any control plant extracts using either water or a variety of organic solvents. Gel permeation studies of the extracts suggest that the mutagen(s) are small molecules (less than 1000 MW). HPLC fractionation suggests that the mutagens formed from each of the 3 herbicides are similar in polarity and water solubility, eluting in a 50/50 water:methanol fraction. Approximately 89% of 14C-labeled HPLC chromatographable metabolites of atrazine were also associated with this fraction, suggesting a close chemical link between a labeled but unidentified metabolite and the mutagenic activity.  相似文献   

9.
Laboratory studies were conducted to evaluate effects of selected herbicides on hatching of free eggs of the soybean cyst nematode, Heterodera glycines. The herbicides used were Atrazine (atrazine), Basagran (bentazon), Bladex (cyanazine), Blazer (acifluorfen), Command (clomazone), Lasso (alachlor), Sonalan (ethalfluralin), and Treflan (trifluralin). Treatments comprised two concentrations of commercial herbicide formulations and deionized water and 3.14 mM zinc sulfate as negative and positive controls, respectively. Eggs were extracted from females and cysts, surface disinfested, and incubated in herbicide or control solutions at 25 ± 2 C in darkness. Hatched second-stage juveniles were counted every other day for 24 days. Hatching of H. glycines eggs in 50 and 500 μg/ml Blazer was 42 to 67% less than that in deionized water and 6l to 78% less than that in zinc sulfate solution. Zinc sulfate significantly increased hatching activity in 50 μg/ml but not 500 μg/ml Blazer. The other herbicides tested at various concentrations had no significant effect on egg hatching. The specific component of Blazer inhibiting egg hatching is unknown. Suppression of hatching by Blazer indicates that this postemergence soybean herbicide may have a potential role in managing H. glycines.  相似文献   

10.
Evidence has accumulated that herbicides in the environment present a significant health hazard to the population. Therefore, the levels of heavily used substances such as atrazine and simazine and their metabolites need to be regularly assessed. The objective was to develop a rapid and simple tube ELISA procedure suitable for use in field studies and non-specialized laboratories. The antisera used were polyclonal antibodies raised in sheep against atrazine or simazine amido caproic acid conjugated to bovine serum albumin. The antibodies were first used to construct a two-step competitive ELISA procedure in 96-well microtitre plates. The 96-well format was then adapted to a coated-tube enzyme immunoassay, by immobilization of hapten-gelatine conjugates on polystyrene tubes. This enabled the colour to be read using a basic spectrophotometer. Soil samples were collected from agricultural and non-agricultural sites in Poland. Atrazine and simazine were extracted by liquid extraction from soil and assayed by tube ELISA. In addition, the samples were extracted by solid-phase extraction before analysis by HPLC. The immunoassays and chemical analysis were carried out by different individuals who were unaware of each other's results, which were then compared at the end of the study. Correlation of the two methods was excellent, with R=98.7 and 81.3 for atrazine and simazine, respectively. The immunoassay yielded the same order of results without having to perform solid-phase extraction before analysis. The study has demonstrated that the simple antigen-coated tube assay provides a cost-effective and valuable screening test. Comparison with the more elaborate, heavily labour-intensive HPLC analysis demonstrated that the results obtained by the simpler enzyme-immunoassay tests were within the same order.  相似文献   

11.
Evidence has accumulated that herbicides in the environment present a significant health hazard to the population. Therefore, the levels of heavily used substances such as atrazine and simazine and their metabolites need to be regularly assessed. The objective was to develop a rapid and simple tube ELISA procedure suitable for use in field studies and non-specialized laboratories. The antisera used were polyclonal antibodies raised in sheep against atrazine or simazine amido caproic acid conjugated to bovine serum albumin. The antibodies were first used to construct a two-step competitive ELISA procedure in 96-well microtitre plates. The 96-well format was then adapted to a coated-tube enzyme immunoassay, by immobilization of hapten-gelatine conjugates on polystyrene tubes. This enabled the colour to be read using a basic spectrophotometer. Soil samples were collected from agricultural and non-agricultural sites in Poland. Atrazine and simazine were extracted by liquid extraction from soil and assayed by tube ELISA. In addition, the samples were extracted by solid-phase extraction before analysis by HPLC. The immunoassays and chemical analysis were carried out by different individuals who were unaware of each other's results, which were then compared at the end of the study. Correlation of the two methods was excellent, with R=98.7 and 81.3 for atrazine and simazine, respectively. The immunoassay yielded the same order of results without having to perform solid-phase extraction before analysis. The study has demonstrated that the simple antigen-coated tube assay provides a cost-effective and valuable screening test. Comparison with the more elaborate, heavily labour-intensive HPLC analysis demonstrated that the results obtained by the simpler enzyme-immunoassay tests were within the same order.  相似文献   

12.
A piezoelectric immunobiosensor for atrazine in drinking water.   总被引:3,自引:0,他引:3  
A piezoelectric crystal immunobiosensor has been developed for the assay of atrazine herbicides in drinking water. Determinations from 0.03-100 micrograms l-1 (parts per billion) of atrazine can be made with a relative SD of about +/- 8%. Atrazine antibodies (polyclonal from sheep) are layered onto the gold electrode of 10 MHz piezoelectric crystals, which are precoated with protein A. The sensor is reversible, being reusable for about eight or nine assays.  相似文献   

13.
14.
A variety of s-triazine herbicides and nitrogen fertilizers frequently occur as co-contaminants at pesticide manufacturing and distribution facilities. The degradation of atrazine and cyanazine by the bacterial isolate M91-3 was investigated in washed-cell suspensions and crude cellular extracts. Cyanazine competitively inhibited atrazine degradation. The maximum atrazine degradation rate (V max) was 41 times higher and the half-saturation constant for the inhibitor (K i) was 1.3 times higher in the crude cellular extract than in the washed-cell suspension, suggesting that cellular uptake influenced degradation of the s-triazines. Cultures that had received prior exposure to atrazine and simazine exhibited comparable atrazine degradation rates, while cells exposed to cyanazine, propazine, ametryne, cyanuric acid, 2-hydroxyatrazine, biuret, and urea exhibited a lack of atrazine-degradative activity. Growth in the presence of exogenous inorganic nitrogen inhibited subsequent atrazine-degradative activity in washed-cell suspensions, suggesting that regulation of s-triazine and nitrogen metabolism are linked in this bacterial isolate. These findings have significant implications for the environmental fate of s-triazines in agricultural settings since these herbicides are frequently applied to soils receiving N fertilizers. Furthermore, these results suggest that bioremediation of s-triazine-contaminated sites (common at pesticide distribution facilities in the cornbelt) may be inhibited by the presence of N fertilizers that occur as co-contaminants. Received: 3 March 1998 / Received revision: 24 September 1998 / Accepted: 11 October 1998  相似文献   

15.
Experiments were conducted to assess the ability of Streptomyces (strain PS1/5) to metabolize twelve herbicides representing several different classes including: acetanilides, triazines, ureas, uracils, and imidazoles. Incubations in aqueous culture with dextrin as carbon source and either ammonium or Casamino acids as nitrogen source resulted in transformations (>50%) of eight of the herbicides tested: alachlor, metolachlor, atrazine, prometryne, ametryne, linuron, tebuthiuron, and bromacil; the remaining four herbicides (cyanazine, diuron, metribuzin, and imazapyr) were also transformed, but to a lesser extent. In most instances, biotransformations occurred concurrently with growth and results were consistent regardless of the nitrogen source (ammonium vs. Casamino acids). However, in some instances there were differences in rates of biotransformation as a consequence of the nitrogen source (e.g. alachlor, metribuzin), suggesting the selective induction of certain metabolic enzymes; in other instances biotransformations were not associated with growth, suggesting secondary metabolism. An experiment was also conducted to assess the ability of Streptomyces (strain PS1/5) to metabolize atrazine contaminated soil. Inoculation of soil amended with 20 μg/g of atrazine and 5% chitin as carbon source resulted in ca. 78% removal of atrazine within 28 days. These data suggest that Streptomyces species may be potential candidates for soil inoculation to bioremediate herbicide contaminated soils.  相似文献   

16.
Summary Laboratory experiments were carried out with alluvial sandy loam soil to study the effect of simazine and atrazine herbicides at four levels (0.5, 1.0, 1.5 and 2.0 kg/ha) on the mineralization of nitrogen (ammoniacal and nitrate production) from fertilizer urea and sludge sources. The herbicides stimulated nitrate production. No specific trend in total mineralized nitrogen, ammoniacal and nitrate nitrogen was observed by varying the levels of herbicides. Mineralization of total nitrogen (ammoniacal and nitrate nitrogen) in presence of simazine and atrazine from the different sources in the descending order was:Urea > Sludge + Urea > Sludge > No Nitrogen.  相似文献   

17.
The soil yeast Lipomyces starkeyi was tested for its ability to degrade triazine herbicides. Polyvinylalcohol (PVA) was employed as a solid medium in culture plates instead of agar. The cell sizes of the control (without nitrogen source) on the PVA gel plate were much smaller than those on the agar gel plate. The difference between the diameters of the sample and control colonies on the PVA gel plate were almost twice those of the colonies on the agar gel plate (1.9 and 1.0 mm, respectively). Thus, the PVA gel plate is much better than the agar plate for evaluating the degree of utilization of a sole nitrogen source. The yeast grew well (more than 4 mm in diameter) with 1,3,5-triazine or cyanuric acid as nitrogen source. In addition, melamine and thiocyanuric acid inhibited growth of the yeast, and the sizes of colonies were smaller than those of the control. All triazine herbicides tested (simazine, atrazine, cyanazine, ametryn, and prometryn) could be degraded and assimilated by L. starkeyi.  相似文献   

18.
Experiments were conducted to assess the ability of Streptomyces (strain PS1/5) to metabolize twelve herbicides representing several different classes including: acetanilides, triazines, ureas, uracils, and imidazoles. Incubations in aqueous culture with dextrin as carbon source and either ammonium or Casamino acids as nitrogen source resulted in transformations (>50%) of eight of the herbicides tested: alachlor, metolachlor, atrazine, prometryne, ametryne, linuron, tebuthiuron, and bromacil; the remaining four herbicides (cyanazine, diuron, metribuzin, and imazapyr) were also transformed, but to a lesser extent. In most instances, biotransformations occurred concurrently with growth and results were consistent regardless of the nitrogen source (ammonium vs. Casamino acids). However, in some instances there were differences in rates of biotransformation as a consequence of the nitrogen source (e.g. alachlor, metribuzin), suggesting the selective induction of certain metabolic enzymes; in other instances biotransformations were not associated with growth, suggesting secondary metabolism. An experiment was also conducted to assess the ability of Streptomyces (strain PS1/5) to metabolize atrazine contaminated soil. Inoculation of soil amended with 20 g/g of atrazine and 5% chitin as carbon source resulted in ca. 78% removal of atrazine within 28 days. These data suggest that Streptomyces species may be potential candidates for soil inoculation to bioremediate herbicide contaminated soils.The U.S. Government's right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   

19.
一株高效广谱莠去津降解菌SB5的生长和降解特性   总被引:1,自引:0,他引:1  
本研究采用富集培养技术自莠去津污染的活性污泥中分离筛选到一株具有降解三嗪类除草剂功能的菌株SB5,经形态学和16S rRNA基因分析将其初步鉴定为类节杆菌属细菌.其具有已知莠去津降解相关基因trzN、atzB及atzC.在培养基中添加葡萄糖、蔗糖、柠檬酸钠、酵母浸粉和蛋白胨可显著提高菌株SB5的生物量和对莠去津的降解效...  相似文献   

20.
Molinate and butylate treatments for 4 h of Vicia faba root tip meristems, showed that both thiocarbamate herbicides increased significantly SCE frequency. Direct treatments of molinate and butylate on human lymphocytes applied 24 h after the beginning of culture did not induce SCE. When S10 extracts of the Vicia roots, treated for 4 h with molinate and butylate (in vivo activation) were added to lymphocytes (24 h after of the beginning of culture), SCE were induced in a concentration-response manner. The in vitro assays, in which molinate and butylate was added at 48 h lymphocyte cultures for 4 h, showed a negative response, however, in the treatment where the S10 metabolic mix was added the SCE frequencies were significantly different to the control, and the concentration-response relationship was not observed with molinate, but it was obtained with butylate. The results showed that both herbicides needed the V. faba metabolism to produce SCE in human lymphocyte culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号