首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transgenic oilseed rape ( Brassica napus ) plants can interbreed with nearby weedy Brassica rapa , potentially enhancing the weediness and/or invasiveness of subsequent hybrid offspring. We have previously demonstrated that transgenic mitigation effectively reduces the fitness of the transgenic dwarf and herbicide-resistant B. napus volunteers. We now report the efficacy of such a tandem construct, including a primary herbicide-resistant gene and a dwarfing mitigator gene, to preclude the risks of gene establishment in the related weed B. rapa and its backcross progeny. The transgenically mitigated and non-transgenic B. rapa  ×  B. napus interspecific hybrids and the backcrosses (BC1) with B. rapa were grown alone and in competition with B. rapa weed. The reproductive fitness of hybrid offspring progressively decreased with increased B. rapa genes in the offspring, illustrating the efficacy of the concept. The fitness of F2 interspecific non-transgenic hybrids was between 50% and 80% of the competing weedy B. rapa , whereas the fitness of the comparable T2 interspecific transgenic hybrids was never more than 2%. The reproductive fitness of the transgenic T2 BC1 mixed with B. rapa was further severely suppressed to 0.9% of that of the competing weed due to dwarfism. Clearly, the mitigation technology works efficiently in a rapeseed crop–weed system under biocontainment-controlled environments, but field studies should further validate its utility for minimizing the risks of gene flow.  相似文献   

2.
The existence of transgenic hybrids resulting from transgene escape from genetically modified (GM) crops to wild or weedy relatives is well documented but the fate of the transgene over time in recipient wild species populations is still relatively unknown. This is the first report of the persistence and apparent introgression, i.e. stable incorporation of genes from one differentiated gene pool into another, of an herbicide resistance transgene from Brassica napus into the gene pool of its weedy relative, Brassica rapa , monitored under natural commercial field conditions. Hybridization between glyphosate-resistant [herbicide resistance (HR)] B. napus and B. rapa was first observed at two Québec sites, Ste Agathe and St Henri, in 2001. B. rapa populations at these two locations were monitored in 2002, 2003 and 2005 for the presence of hybrids and transgene persistence. Hybrid numbers decreased over the 3-year period, from 85 out of ~200 plants surveyed in 2002 to only five out of 200 plants in 2005 (St Henri site). Most hybrids had the HR trait, reduced male fertility, intermediate genome structure, and presence of both species-specific amplified fragment length polymorphism markers. Both F1 and backcross hybrid generations were detected. One introgressed individual, i.e. with the HR trait and diploid ploidy level of B. rapa, was observed in 2005. The latter had reduced pollen viability but produced ~480 seeds. Forty-eight of the 50 progeny grown from this plant were diploid with high pollen viability and 22 had the transgene (1:1 segregation). These observations confirm the persistence of the HR trait over time. Persistence occurred over a 6-year period, in the absence of herbicide selection pressure (with the exception of possible exposure to glyphosate in 2002), and in spite of the fitness cost associated with hybridization.  相似文献   

3.
The inheritance of anthracnose resistance of the common bean ( Phaseolus vulgaris L.) differential cultivar G 2333 to Colletotrichum lindemuthianum races 73 and 89 was studied in crosses with the susceptible cultivar Rudá. The segregation ratios of 15 : 1 in the F2 and 3 : 1 in the backcrosses to Rudá indicate that for each of the races tested there are two independent resistance loci in G 2333. A random amplified polymorphic DNA (RAPD) molecular marker (OPH181200C) linked in resistance to race 73 was identified in a BC3F2:3 population derived from crosses between Rudá and G 2333. A RAPD molecular marker OPAS13950C, previously identified as linked to gene Co-42 , was also amplified in this population. Co-segregation analyses showed that these two markers are located at 5.6 (OPH181200C) and 11.2 (OPAS13950C) cM of the Co-42 gene. These markers were not present in BC1F2:3 plants resistant to race 89 indicating that this population carries a different resistance gene. DNA amplification of BC1F2:3 plants with RAPD molecular marker OPAB450C, previously identified as linked to gene Co-5 , indicated that this gene is present in this population.  相似文献   

4.
Brassica species are particularly receptive to gene transformation techniques. There now exists canola genotypes with transgenic herbicide resistance for glyphosate, imidazolinone, sulfonylurea and glufosinate herbicides. The main concern of introducing such herbicide resistance into commercial agriculture is the introgression of the engineered gene to related weed species. The potential of gene transfer between canola (Brassica napus and B. campestris) and related weed species was determined by hand pollination under controlled greenhouse conditions. Canola was used as both male and female parent in crosses to the related weed species collected in the Inland Northwest region of the United States. Weed species used included: field mustard (B. rapa), wild mustard (S. arvensis) and black mustard (B. nigra). Biological and cytological aspects necessary for successful hybrid seed production were investigated including: pollen germination on the stigma; pollen tube growth down the style; attraction of pollen tubes to the ovule; ovule fertilisation; embryo and endosperm developmental stages. Pollen germination was observed in all 25 hybrid combinations. Pollen tubes were found in the ovary of over 80% of combinations. About 30% of the hybrid combinations developed to the heart stage of embryo development or further. In an additional study involving transgenic glufosinate herbicide resistant B. napus and field mustard it was found that hybrids occurred with relatively high frequency, hybrids exhibited glufosinate herbicide resistance and a small proportion of hybrids produced self fertile seeds. These fertile plants were found to backcross to either canola or weed parent.  相似文献   

5.
Introgression of the avian naked neck gene assisted by DNA fingerprints   总被引:5,自引:0,他引:5  
Theoretical predictions suggest that DNA markers can be useful tools for genomic selection in gene introgression programmes. An experiment was carried out to evaluate the efficiency of using multi-locus DNA markers in an introgression programme designed to transfer the naked neck gene from a donor to a recipient chicken line. The donor line was a commercial egg layer chicken stock heterozygous at the naked neck locus (Na/na+), while the recipients were from a Cornish broiler line. These two lines differ markedly in their average body weight, a quantitative trait that can also represent the comprehensive differences between the genomes of the two lines involved. Three groups of naked neck BC1 individuals were selected according to the following criteria: (i) low band-sharing with their donor grandsires evaluated by multi-locus DNA markers, (ii) high body weight at six weeks of age, and (iii) selection at random as a control group. Birds from each of these groups were mated at random to individuals from the heavier Cornish line to produce three groups of BC2 individuals whose body weights were recorded weekly from three to seven weeks of age. Results indicated that BC2 birds obtained from BC1 parents selected for band-sharing levels and those selected for body weight, performed equally well at 4–7 weeks of age; both were 3.1–3.9% heavier than birds from the randomly selected group. The additional genome recovery of the heavier broiler line, obtained by DNA markers, was found to be in agreement with theoretically predicted values.  相似文献   

6.
Spontaneous hybridizations between oilseed rape and wild radish   总被引:3,自引:0,他引:3  
The occurence of spontaneous hybridization between Brassica napus (oilseed rape) and Raphanus raphanistrum (wild radish) was investigated under different density conditions in cages and open-field experiments. Hybrids with wild radish as the seed parent were identified by screening for herbicide resistance belonging to rape. Small seed size and intermediate morphology were used to screen for hybrids with rape as the seed parent. Leaf isozyme patterns and flow cytometry provided confirmation of hybrids. Wild radish in an oilseed rape field produced as many as three interspecific hybrids per 100 plants. This is the first report of such a spontaneous event. The frequency of hybrids is expected to range from 0.006 to 0.2% of the total seed produced, at P = 0.05. Male-sterile oilseed rape plants surrounded by wild radish can produce up to 37 hybrids per plant. Seed production of the F1 hybrids and their F2 descendants was up to 0.4% and 2%, respectively, of that of wild radish. Gene escape from transgenic oilseed rape to wild related species is discussed.  相似文献   

7.
Bacteria and fungi from pristine soil, never exposed to glufosinate herbicide, were isolated and analyzed for glufosinate tolerance. Seven of the 15 tested isolates were sensitive to 1 mM glufosinate (an active ingredient of many nonselective contact herbicides), 5 were resistant to 4 mM glufosinate and 3 even to 8 mM glufosinate in liquid medium. None of the isolated microorganisms carried the gene for glufosinate resistance bar (bialaphos resistance) in its genome and at least in some of glufosinate-resistant isolates the increased glutamine synthetase level was detected as a possible resistance mechanism. The transfer of the bar glufosinate resistance gene from transgenic maize Bt 176 into glufosinate-sensitive soil bacterium Bacillus pumilus S1 was not detected under the laboratory conditions by a classical plate count method and PCR. The ecological risk of potential bar gene transfer from genetically modified plants into soil microcosms under natural circumstances is discussed.  相似文献   

8.
To assess the potential advantages of a transposon-tagging system based on gametophyte-specific transposition a fusion between the anther-specific Arabidopsis thaliana apg promoter and the maize Ac transposase gene was constructed and introduced into tobacco. The ability of this transposase source to activate Ds transposition in a developmentally controlled manner was monitored by crossing to plants harbouring the cell autonomous excision marker gene construct, Ds —SPT. A number of fully green, streptomycin-resistant seedlings resulting from germinal transposition events were observed in the progeny of apg -TPase x Ds —SPT F1 plants. Streptomycin-resistant sectors were not observed in either F1 seedlings or F2 progeny, indicating a complete lack of somatic excision. Further crosses of apg —TPase sources to plants containing Ds—bar herbicide selection excision marker constructs gave reproducible gametophytic excision frequencies of up to 0.3%. Sequencing of Ds excision sites from F2 seedlings derived from single F1 plants revealed various sequence alterations in the original Ds insertion 'footprint' indicative of independent Ds excision events. Independent re-insertion was confirmed by Southern analysis of F2 siblings. It is concluded that apg -controlled Ac transposase expression activates male gametophyte-specific Ds transposition.  相似文献   

9.
L Ke  R Liu  B Chu  X Yu  J Sun  B Jones  G Pan  X Cheng  H Wang  S Zhu  Y Sun 《PloS one》2012,7(7):e39974
Cotton plants engineered for resistance to the herbicides, glyphosate or glufosinate have made a considerable impact on the production of the crop worldwide. In this work, embryogenic cell cultures derived from Gossypium hirsutum L. cv Coker 312 hypocotyl callus were transformed via Agrobacterium tumefaciens with the rice cytochrome P450 gene, CYP81A6 (bel). In rice, bel has been shown to confer resistance to both bentazon and sulfanylurea herbicides. Transformed cells were selected on a liquid medium supplemented alternately or simultaneously with kanamycin (50mg/L) and bentazon (4.2 μmol). A total of 17 transgenic cotton lines were recovered, based on the initial resistance to bentazon and on PCR detection of the bel transgene. Bel integration into the cotton genome was confirmed by Southern blot and expression of the transgene was verified by RT-PCR. In greenhouse and experimental plot trials, herbicide (bentazon) tolerance of up to 1250 mg/L was demonstrated in the transgenic plants. Transgenic lines with a single copy of the bel gene showed normal Mendelian inheritance of the characteristic. Importantly, resistance to bentazon was shown to be stably incorporated in the T1, T2 and T3 generations of self-fertilised descendents and in plants outcrossed to another upland cotton cultivar. Engineering resistance to bentazon in cotton through the heterologous expression of bel opens the possibility of incorporating this trait into elite cultivars, a strategy that would give growers a more flexible alternative to weed management in cotton crops.  相似文献   

10.
Auxinic herbicides are widely used in agriculture to selectively control broadleaf weeds. Prolonged use of auxinic herbicides has resulted in the evolution of resistance to these herbicides in some biotypes of Brassica kaber (wild mustard), a common weed in agricultural crops. In this study, auxinic herbicide resistance from B. kaber was transferred to Brassica juncea and Brassica rapa, two commercially important Brassica crops, by traditional breeding coupled with in vitro embryo rescue. A high frequency of embryo regeneration and hybrid plant establishment was achieved. Transfer of auxinic herbicide resistance from B. kaber to the hybrids was assessed by whole-plant screening of hybrids with dicamba, a widely used auxinic herbicide. Furthermore, the hybrids were tested for fertility (both pollen and pistil) and their ability to produce backcross progeny. The auxinic herbicide-resistant trait was introgressed into B. juncea by backcross breeding. DNA ploidy of the hybrids as well as of the backcross progeny was estimated by flow cytometry. Creation of auxinic herbicide-resistant Brassica crops by non-transgenic approaches should facilitate effective weed control, encourage less tillage, provide herbicide rotation options, minimize occurrence of herbicide resistance, and increase acceptance of these crops.  相似文献   

11.
The development of herbicide multiple-resistance in weed species represents a major threat to current agricultural practices. The mechanistic basis for herbicide multiple-resistance has been investigated in a population of the annual grass weed Lolium rigidum Gaud. (annual ryegrass) resistant to herbicides affecting 6 target sites. A subset of the resistant population (R2 subset) has been isolated by germination on a medium containing the acetyl-CoA carboxylase (ACCase, EC 6.4.1.2) inhibiting herbicide, sethoxydim ((2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one)). This 12% R2 subset of the population is 600 times more resistant to sethoxydim and between 30 to 200 times more resistant to other ACCase inhibitors than the bulk of the R population. The subset has a form of ACCase which is 6 to 55 times less sensitive to inhibition by these herbicides than the enzyme present in the bulk of the resistant or in the susceptible population. There was no difference in the uptake and metabolic degradation of [4-14C]sethoxydim between the R2 subset and the unselected R population. These results show the accumulation of different resistance mechanisms in that single population. Furthermore we propose that this accumulation of multiple resistance mechanisms is the basis for herbicide multiple-resistance in this biotype.  相似文献   

12.
Weed control is a substantial economic input for production of mint oils, the most commercially important of which are obtained from peppermint. The objective of this research is to obtain peppermint plants resistant to the broad-spectrum herbicide glufosinate, which can be used for development of economically efficacious weed control strategies and, perhaps, serve as a paradigm in perennial crops. The bar gene, which encodes phosphinothricin acetyltransferase (PAT) which inactivates glufosinate-ammonium or phosphinothricin (PPT), was constructed into Agrobacterium tumefaciens binary vectors under the nopaline synthase (NOS) or a chimeric promoter containing a trimer of the OCS-upstream-activating sequence (UAS) to a MAS promoter/activator region[(OCS) 3 MAS]. A total of 142 independent transgenic peppermint (cv. Black Mitcham) plants were obtained (107 and 35 were obtained with pGPTV (and pCAS1) and pATC940 vectors, respectively) and evaluated for herbicide resistance in the greenhouse after foliar application of glufosinate herbicide Liberty as the commercial product. All transgenic plants exhibited substantially less herbicide symptom development than non-transgenic Black Mitcham or untransformed tissue cultured-derived plants, albeit variation for herbicide resistance occurred amongst the transformed lines. Plants from 35 of the 142 lines were selected at random and all were PCR-positive for the presence of bar. Five lines, that were least affected, exhibited no injury symptoms to Liberty concentrations that are 4 times the standard level for control of weeds in peppermint fields. The most resistant transgenic plants had the greatest steady-state PAT mRNA levels and PAT activities. No experimental difference in herbicide resistance was evident between plant populations obtained with pGPTV (pCAS1)-bar or pATC940-bar vector. However, 4 of 35 lines transformed with (ocs) 3 MAS-bar exhibited maximal resistance while only 1 of 107 NOS-bar lines has comparable resistance. These herbicide resistant peppermint plants will facilitate development of post-emergent herbicide control strategies that use newer generation herbicides, like glufosinate, which have reduced environmental and product residual because of metabolism by microbes and the transgenic plants.  相似文献   

13.
Abstract.— Experimental advanced-generation backcross populations contain individuals with genomic compositions similar to those resulting from interspecific hybridization in nature. By applying a detailed restriction fragment length polymorphism (RFLP) map to 3662 BC3F2 plants derived from 24 different BC1 individuals of a cross between Gossypium hirsutum and G. barbadense , large and widespread deficiencies of donor ( G. barbadense ) chromatin were found, and seven independent chromosomal regions were entirely absent. This skewed chromatin transmission is best accounted for by multilocus epistatic interactions affecting chromatin transmission. The observed frequencies of two-locus genotypes were significantly different from Mendelian expectations about 26 times more often than could be explained by chance ( P ≤ 0.01). For identical pairs of loci, different two-locus genotypes occurred in excess in different BC3 families, implying the existence of higher-order interlocus interactions beyond the resolution of these data. Some G. barbadense markers occurred more frequently than expected by chance, indicating that genomic interactions do not always favor host chromatin. A preponderance of interspecific allelic interactions involved one locus each in the two different subgenomes of (allotetraploid) Gossypium , thus supporting several other lines of evidence suggesting that intersubgenomic interactions contribute to unique features that distinguish tetraploid cotton from its diploid ancestors.  相似文献   

14.
Trait improvement of turfgrass through genetic engineering is important to the turfgrass industry and the environment. However, the possible transgene escape to wild and non-transformed species raises ecological and commercial concerns. Male sterility provides an effective way for interrupting gene flow. We have designed and synthesized two chimeric gene constructs consisting of a rice tapetum-specific promoter (TAP) fused to either a ribonuclease gene barnase, or the antisense of a rice tapetum-specific gene rts. Both constructs were linked to the bar gene for selection by resistance to the herbicide glufosinate. Agrobacterium-mediated transformation of creeping bentgrass (cv Penn A-4) with both constructs resulted in herbicide-resistant transgenic plants that were also 100% pollen sterile. Mendelian segregation of herbicide resistance and male sterility was observed in T1 progeny derived from crosses with wild-type plants. Controlled self- and cross-pollination studies showed no gene transfer to non-transgenic plants from male-sterile transgenic plants. Thus, male sterility can serve as an important tool to control transgene escape in bentgrass, facilitating the application of genetic engineering in producing environmentally responsible turfgrass with enhanced traits. It also provides a tool to control gene flow in other perennial species using transgenic technology.  相似文献   

15.
We have investigated whether the overexpression of RCI2A gene causes an enhanced salt-tolerant phenotype in Arabidopsis thaliana . Although the growth of RCI2A -overexpressing transgenic plants was comparable with that of wild type under normal conditions, high salinity treatment caused decreased accumulation of Na+ and ameliorated suppression of the shoot growth of transgenic plants than that of wild type. Under high salinity treatment, the chlorophyll content of the shoots of wild-type plants significantly decreased compared with transgenic plants. The increases of malondialdehyde (MDA) and of H2O2 production caused by high salinity were greater in the shoots of wild type than in that of transgenic plants. These results suggest that overexpression of RCI2A can alleviate salinity-induced growth suppression and photooxidative damages via reducing Na+ uptake into the shoots.  相似文献   

16.
The frequency of gene flow from Brassica napus L. (canola) to four wild relatives, Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L. and Erucastrum gallicum (Willd.) O.E. Schulz, was assessed in greenhouse and/or field experiments, and actual rates measured in commercial fields in Canada. Various marker systems were used to detect hybrid individuals: herbicide resistance traits (HR), green fluorescent protein marker (GFP), species-specific amplified fragment length polymorphisms (AFLPs) and ploidy level. Hybridization between B. rapa and B. napus occurred in two field experiments (frequency approximately 7%) and in wild populations in commercial fields (approximately 13.6%). The higher frequency in commercial fields was most likely due to greater distance between B. rapa plants. All F(1) hybrids were morphologically similar to B. rapa, had B. napus- and B. rapa-specific AFLP markers and were triploid (AAC, 2n=29 chromosomes). They had reduced pollen viability (about 55%) and segregated for both self-incompatible and self-compatible individuals (the latter being a B. napus trait). In contrast, gene flow between R. raphanistrum and B. napus was very rare. A single R. raphanistrum x B. napus F1 hybrid was detected in 32,821 seedlings from the HR B. napus field experiment. The hybrid was morphologically similar to R. raphanistrum except for the presence of valves, a B. napus trait, in the distorted seed pods. It had a genomic structure consistent with the fusion of an unreduced gamete of R. raphanistrum and a reduced gamete of B. napus (RrRrAC, 2n=37), both B. napus- and R. raphanistrum-specific AFLP markers, and had <1% pollen viability. No hybrids were detected in the greenhouse experiments (1,534 seedlings), the GFP field experiment (4,059 seedlings) or in commercial fields in Québec and Alberta (22,114 seedlings). No S. arvensis or E. gallicum x B. napus hybrids were detected (42,828 and 21,841 seedlings, respectively) from commercial fields in Saskatchewan. These findings suggest that the probability of gene flow from transgenic B. napus to R. raphanistrum, S. arvensis or E. gallicum is very low (<2-5 x 10(-5)). However, transgenes can disperse in the environment via wild B. rapa in eastern Canada and possibly via commercial B. rapa volunteers in western Canada.  相似文献   

17.
为了明确转基因玉米2HVB5的目标性状及遗传稳定性,对回交转育郑58的BC5S1、BC5S2代转基因玉米2HVB5分别进行了Southern blot、ELISA、室内和田间生物活性测定、靶标除草剂草铵膦耐受性分析及农艺性状调查。结果显示,2HVB5中目的基因cry2Ah-vpbar都是以单拷贝的形式整合到玉米基因组并稳定遗传,Cry2Ah-vp和PAT蛋白在2HVB5植株的不同时期、不同组织部位均有表达,其中在叶片中的表达量相对较高,分别达到2-3.5 μg/g FW(鲜重)和8-17 μg/g FW(鲜重)。室内生物活性检测结果表明,2HVB5转基因玉米对东方粘虫和棉铃虫有很高的抗性,接虫后4-5 d幼虫死亡率达100%,对草地贪夜蛾有明显的体重抑制。田间抗虫性鉴定结果也表明,2HVB5转基因玉米对东方粘虫和棉铃虫均达到高抗水平,平均抗性级别分别为1.19-1.29和0.60-0.73。2HVB5转基因玉米可耐受田间使用中剂量4倍量的草铵膦,农艺性状与对照郑58相比无显著差异。转基因玉米2HVB5遗传稳定,高抗虫耐除草剂,可用于玉米害虫尤其是夜蛾科害虫的防治,具有产业化应用前景。  相似文献   

18.
19.
A mutagenesis programme using ethyl methanesulphonate (EMS) was carried out on Lotus japonicus (Regel) Larsen cv. Gifu in order to isolate photorespiratory mutants in this model legume. These mutants were able to grow in a CO2-enriched atmosphere [0.7% (v/v) CO2] but showed stress symptoms when transferred to air. Among them, three mutants displayed low levels of glutamine synthetase (GS; EC 6.3.1.2) activity in leaves. The mutants accumulated ammonium in leaves upon transfer from 0.7% (v/v) CO2 to air. F1 plants of back crosses to wild type were viable in air and F2 populations segregated 3 : 1 (viable in air : air-sensitive) indicative of a single Mendelian recessive trait. Complementation tests showed that the three mutants obtained were allelic. Chromatography on DEAE-Sephacel used to separate the cytosolic and plastidic GS isoenzymes together with immunological data showed that: (1) mutants were specifically affected in the plastidic GS isoform, and (2) in L. japonicus the plastidic GS isoform eluted at lower ionic strength than the cytosolic isoform, contrary to what happens in most plants. The plastidic GS isoform present in roots of wild type L. japonicus was also absent in roots of the mutants, indicating that this plastidic isoform from roots was encoded by the same gene than the GS isoform expressed in leaf tissue. Viability of mutant plants in high-CO2 conditions indicates that plastidic GS is not essentially required for primary ammonium assimilation. Nevertheless, mutant plants did not grow as well as wild type plants in high-CO2 conditions.  相似文献   

20.
以甘薯(1pomoeabatatas(L.)Lam.)品种栗子香的胚性悬浮细胞为受体材料,用根癌农杆菌介导法,获得了表达除草剂抗性基因bar基因的转HSl基因甘薯植株。共计380个遗传转化的胚性细胞团,在添加2mg/L2.4-D、100mg/L Carb和10mg/L Glu(glufosinate)的固体Ms培养基上选择培养9周后,得到了12个Glu抗性愈伤组织。将这些抗性愈伤组织转移到添加1mg/L ABA、100mg/L羧苄青霉素和10mg/L Glu的固体MS培养基上,其中的3个抗性愈伤组织再生出拟转基因植株。PCR鉴定它们为转基因植株。Southern blot分析表明,HS1基因已整合到基因组中。转基因植株具有稳定的除草剂抗性。结薯观察实验结果表明,转基因植株结薯正常。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号