首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The myoglobin content of chicken myocardial cells was studied using indirect-immunoperoxidase histochemistry. While ordinary myocardial cells exhibited a homogeneous reaction pattern, the reactions for ventricular Purkinje fibers were remarkably heterogeneous. On the basis of the degree of staining, three types of cells, i.e., dark, intermediate, and clear, were distinguishable. In addition, the cytological heterogeneity of Purkinje cells was confirmed using conventional and immunological electron microscopy. The dark cells contained more myofibrils, mitochondria, and other organelles (e.g., ribosomes) than the clear cells.  相似文献   

2.
Recent quantitative studies of lurcher chimeric mice have shown that the adult population of cerebellar Purkinje cells can properly be described as a small number of developmental clones of cells. The clones are not seen as patches of contiguous neurons; rather, the cells of any one clone distribute throughout the half-cerebellum that contains them, intermingling extensively with the Purkinje cells of other linkages. Lurcher----wild-type chimeras were analyzed using the cell autonomous Purkinje-cell-lethal mutant, lurcher (+/Lc), as a cell marker. Cell counts from these chimeras revealed that the number of surviving Purkinje cells was always an integral multiple of a unit clone size. These numerical quanta are the evidence for the existence of Purkinje cell developmental clones. When two different inbred strains of mouse were compared (C3H/HeJ and C57BL/6), the resulting clonal analysis showed that the unit clone size (i.e., the number of Purkinje cells in one quantum) is an autonomous property of the lineage and hence, presumably, intrinsic to the progenitor cell that founded it. The current study uses the lurcher chimeric mouse system to examine the cell lineage relationships among the Purkinje cells of a third inbred strain of mouse, AKR/J. The data both support and extend our previous studies. Quantitative analysis reveals that the Purkinje cells of this strain also exist in clones, and the size of these clones is also strain-specific. The number of cells in a single clone (7850), however, is different from either C3H/HeJ (10,200) or C57BL/6 (9200). The fact that this value is so highly polymorphic among the inbred strains of mouse makes it likely that, rather than being a function of different alleles at a single genetic locus, clone size may well represent a multifactorial (but still cell-autonomous) property of developing Purkinje cells. Additional results from a single chimeric animal suggest strongly that clone number (i.e., the number of progenitors selected to found the population) is not strain-specific but results instead from cell:cell interactions during early nervous system formation.  相似文献   

3.
Quantitative analysis has been carried out on semithin sections of cerebellum cortex to investigate the relation between Purkinje cells with different dyeing properties. The number of dark Purkinje cells was found to increase after a month-long food rehabilitation of ill-fed mice. At the same time addition of carnitine to the mouse food has resulted in a significant decline in the number of dark Purkinje cells, as compared to control animals. The data obtained suggest that the rising number of dark Purkinje cells in the cerebellum cortex under conditions of malnutrition is probably due to the increased intracellular accumulation of free fatty acids.  相似文献   

4.
Elimination of most granule, basket, and stellate interneurons in the rat cerebellum was achieved by repeated doses of low level x-irradiation applied during the first two weeks of postnatal life. Electrical stimulation of the brain stem and peripheral limbs was employed to investigate the properties of afferent cerebellar pathways and the nature of the reorganized neuronal synaptic circuitry in the degranulated cerebellum of the adult. Direct contacts of mossy fibers on Purkinje cells were indicated by short latency, single spike responses: 1.9 msec from the lateral reticular nucleus of brain stem and 5.4 msec from ipsilateral forlimb. These were shorter than in normal rats by 0.9 and 2.1 msec, respectively. The topography of projections from peripheral stimulation was approximately normal. Mossy fiber responses followed stimulation at up to 20/sec, whereas climbing fiber pathways fatigued at 10/sec. The latency of climbing fiber input to peripheral limb stimulation in x-irradiated cerebellum was 23 ± 8 (SD) msec. In x-irradiated rats, the climbing fiber pathways evoked highly variable extracellular burst responses and intracellular EPSPs of different, discrete sizes. These variable responses suggest that multiple climbing fibers contact single Purkinje cells. We conclude that each type of afferent retains identifying characteristics of transmission. However, rules for synaptic specification appear to break down so that: (1) abnormal classes of neurons develop synaptic connections, i.e., mossy fibers to Purkinje cells; (2) incorrect numbers of neurons share postsynaptic targets, i.e., more than one climbing fiber to a Purkinje cell; and (3) inhibitory synaptic actions may be carried out in the absence of the major inhibitory interneurons, i.e., Purkinje cell collaterals may be effective in lieu of basket and stellate cells.  相似文献   

5.
Intensity of the 3H-sodium acetate and 3H-leucine incorporation into dark and light Purkinje cells of the rat cerebellum was studied. The intensity of incorporation into light Purkinje cells was found to be 1.5 times higher than into the dark ones.  相似文献   

6.
Responses of cerebellar Purkinje cells to mechanical stimulation of the Achilles' tendon were studied in unanesthetized decerebrate cats. Approximately two-thirds of the Purkinje cells tested were activated in response to stimulation through climbing fibers, i.e., they generated a complex spike. In half of these cells (group A) the probability of appearance of a complex spike to a blow on the tendon was from 0.5 to 0.9 and the latent period of response from 20 to 25 msec. Purkinje cells with a latent period of response of over 35 msec were characterized by low probability of response (under 0.5) to a tap (group B). Responses of Purkinje cells to excitation of mossy fibers were weaker and more varied.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 2, pp. 159–167, March–April, 1981.  相似文献   

7.
The authors deal with the phenomenon of dualism of pale and dark ganglion cells in general, the phenomenon which, since FLEMMING (1882), still remains an actual problem of neurohistology. They deal with Purkinje cells from a special aspect with the aim to demonstrate the dualism through various staining methods. They directed their attention also to the question of the influence of perfusion and immersion fixation and length of staining with luxol-fast-blue on the production of luxol-positive (chromophilic) Purkinje cells. The authors have found that these methodologic circumstances do not influence the production of luxol-positive Purkinje cells, so it can be hardly spoken about an artifact. Examinations with the labelled leucine have shown that the increased metabolic activity can be observed in those Purkinje cells which in HE-picture are seen as pale ones. In the dark Purkinje cells leucine granulations are located on the surface of plasmatic membrane and they follow to some distance the main dendrite of those cells. The microautoradiographic method evidences for the increased leucine metabolism of the pale Purkinje cells as well.  相似文献   

8.
Elimination of most granule, basket, and stellate interneurons in the rat cerebellum was achieved by repeated doses of low level x-irradiation applied during the first two weeks of postnatal life. Electrical stimulation of the brain stem and peripheral limbs was employed to investigate the properties of afferent cerebellar pathways and the nature of the reorganized neuronal synaptic circuitry in the degranulated cerebellum of the adult. Direct contacts of mossy fibers on Purkinje cells were indicated by short latency, single spike responses: 1.9 msec from the lateral reticular nucleus of brain stem and 5.4 msec from ipsilpateral forelimb. These were shorter than in normal rats by 0.9 and 2.1 msec, respectively. The topography of projections from peripheral stimulation was approximately normal. Mossy fiber responses followed stimulation at up to 20/sec, whereas climbing fiber pathways fatigued at 10/sec. The latency of climbing fiber input to peripheral limb stimulation in x-irradiated cerebellum was 23 +/- 8 (SD) msec. In x-irradiated rats, the climbing fiber pathways evoked highly variable extracellular burst responses and intracellular EPSPs of different, discrete sizes. These variable responses suggest that multiple climbing fibers contact single Purkinje cells. We conclude that each type of afferent retains identifying characteristics of transmission. However, rules for synaptic specification appear to break down so that: (1) abnormal classes of neurons develop synaptic connections, i.e., mossy fibers to Purkinje cells; (2) incorrect numbers of neurons share postsynaptic targets, i.e., more than one climbing fiber to a Purkinje cell; and (3) inhibitory synaptic actions may be carried out in the absence of the major inhibitory interneurons, i.e., Purkinje cell collaterals may be effective in lieu of basket and stellate cells.  相似文献   

9.
Interleukin (IL)-1β is one of the important proinflammatory cytokines in neural as well as immune systems, and plays a pivotal role in the neuroinflammation. We previously demonstrated that cerebellar IL-1β is involved in kainate-induced ataxia, i.e., IL-1β was activated in the cerebellum with systemic administration of kainate, and its type I receptor (IL-1R) was expressed at a soma of cerebellar Purkinje cells. In this study, we examined the effect of IL-1β on cerebellar Purkinje cell function by recording extracellular neuronal activities in anesthetized mice. Systemic administration of kainate increased the firing rates of cerebellar Purkinje cells in normal mice but showed little effect in IL-1R-knockout (IL-1R-KO) mice. Moreover, microiontophoretic administration of IL-1β to cerebellar Purkinje cells increased the firing rates promptly in response to IL-1β. The present results demonstrate that IL-1 system exerts a direct modulatory effect on cerebellar Purkinje cells.  相似文献   

10.
The normal excitation and conduction in the heart are maintained by the coordination between the dynamics of ionic conductance of each cell and the electrical coupling between cells. To examine functional roles of these two factors, we proposed a spatially-discrete model of conduction of excitation in which the individual cells were assumed isopotential. This approximation was reasoned by comparing the apparent space constant with the measured junctional resistance between myocardial cells. We used the four reconstruction models previously reported for five kinds of myocardial cells. Coupling coefficients between adjacent cells were determined quantitatively from the apparent space constants. We first investigated to what extent the pacemaker activity of the sinoatrial node depends on the number and the coupling coefficient of its cells, by using a one-dimensional model system composed of the sinoatrial node cells and the atrial cells. Extensive computer simulation revealed the following two conditions for the pacemaker activity of the sinoatrial node. The number of the sinoatrial node cells and their coupling coefficients must be large enough to provide the atrium with the sufficient electric current flow. The number of the sinoatrial node cells must be large so that the period of the compound system is close to the intrinsic period of the sinoatrial node cell. In this simulation the same sinoatrial node cells produced action potentials of different shapes depending on where they were located in the sinoatrial node. Therefore it seems premature to classify the myocardial cells only from their waveforms obtained by electrical recordings in the compound tissue. Second, we investigated the very slow conduction in the atrioventricular node compared to, for example, the ventricle. This was assumed to be due to the inherent property of the membrane dynamics of the atrioventricular node cell, or to the small value of the coupling coefficient (weak intercellular coupling), or to the electrical load imposed on the atrioventricular node by the Purkinje fibers, because the relatively small atrioventricular node must provide the Purkinje fibers with sufficient electric current flow. Relative contributions of these three factors to the slow conduction were evaluated using the model system composed of only the atrioventricular cells or that composed of the atrioventricular and Purkinje cells. We found that the weak coupling has the strongest effect. In the model system composed of the atrioventricular cells, the propagation failure was not observed even for very small values of the coupling coefficient.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
: The distribution of hexokinase (ATP:d -hexose 6-phosphotransferase, EC 2.7.1.1) in the rat cerebellar cortex has been studied at the electron microscopic level using the peroxidase-antiperoxidase procedure. Extensive staining of cytoplasmic regions, with some increased staining at mitochondrial profiles, was seen in the cell bodies of both neurons (basket, stellate, Lugaro, Golgi, and granule cells) and astrocytes. Oligodendrocytes showed little or no detectable staining. Purkinje cell perikarya were much less intensely stained than were the perikarya of other neurons. The initial portion of the Purkinje dendrite was, like the perikaryon from which it emerged, lightly stained. More intense staining was seen in the secondary and tertiary branches of the Purkinje dendrite, but the terminal branches were devoid of stain. Granule cell dendrites were well stained in their initial portions but devoid of stain in their terminal dendritic digits which form part of the cerebellar glomeruli. In contrast to the unstained granule cell dendritic digits, the central mossy fiber nerve terminal of the glomerulus exhibited intense staining of the mitochondrial profiles and of synaptic vesicles adjacent to the mitochondria. Axons of basket cells showed intense staining in the segments adjacent to the Purkinje cell soma, while terminal twigs of the basket axons in the pinceau surrounding the (unstained) initial segment of the Purkinje axon showed markedly decreased staining intensity. These results indicate that there may be substantial variation in hexokinase levels between the various regions of neuronal processes. Hexokinase was seen at both cytoplasmic and mitochondrial locations in a variety of cells. It does not appear likely that location of hexokinase can be directly correlated with cell type, i.e., with neurons versus glia.  相似文献   

12.
Recent studies have shown the presence of postjunctional alpha(2)-adrenergic receptors on canine Purkinje fibers but not muscle cells. Stimulation of these receptors results in prolongation of the action potential duration and the Purkinje relative refractory period. We studied the effect of alpha(2)-adrenergic agonists on inducible ischemic ventricular tachycardia (VT) of both Purkinje fiber and myocardial origin. Open-chest dogs in whom VT was induced with extrastimuli after occlusion of the anterior descending coronary artery were studied. A mapping system, incorporating Purkinje signals, characterized the mechanisms of VT. The alpha(2)-adrenergic agonists clonidine (0.5-4.0 microg/kg) or UK 14,304 (4-5 microg/kg) versus saline were given intravenously after reproducibility of inducible sustained monomorphic VT had been demonstrated. Eighteen dogs were given clonidine, eleven of which had focal Purkinje VT. Of these 11 dogs, clonidine blocked VT induction in 9 (81.9%) and rendered VT nonsustained in 1 (9.1%), and VT remained inducible in 1 dog (9.1%), although this was focal midmyocardial VT only. In the seven dogs with VT of myocardial origin, six (85.6%) remained inducible with clonidine, whereas one dog (14.4%) had only nonsustained VT after clonidine. Of the six dogs, UK 14,304 blocked VT induction in four (66.6%) and rendered VT nonsustained in one (16.7%), and VT remained inducible in one dog (16.7%). In four dogs with VT of myocardial origin, VT remained inducible. In the eight control dogs that were given saline, focal Purkinje VT was repeatedly inducible. Pharmacological stimulation of postjunctional alpha(2)-adrenoceptors on Purkinje fibers may selectively prevent induction of VT of Purkinje fiber origin in the ischemic canine ventricle.  相似文献   

13.
The author refers about different staining of the Purkinje-cells with luxol-fast-blue, gallocyanin, thionin and toluidin blue, chrom-alum-hematoxylin-phloxin, impregnation according to Palmgren, lithium and iron-hematoxylin, combination of the staining with phloxin and the Palmgren-impregnation and about the different activity on the acid phosphatase. The phenomenon that in the same histological specimen the positive (dark, chromophile) and negative (light, chromophobe) cells are situated beside, is true for normal animals too, but the number of the dark Purkinje cells is conspicuous higher after stress situations (96-h. immobilisation, intermittent hypoxia). This finding interprets the author by the occurence of phospholipids by binding on the granulated endoplasmatic reticulum, but also as a property of the neuroplasm. The author emphasizes that the staining dualism "light -- dark" of the ganglion cells does not refer only to the ganglion cells of the spinal ganglions (et on some epithelial cells), but also on the Purkinje cells.  相似文献   

14.
Time-of-flight secondary-ion-mass-spectrometry (TOF-SIMS) was utilized to address the issue of co-localization of cholesterol, phosphocholine and galactosylceramide in rat cerebellar cortex. Rat cerebellum was fixed, freeze-protected by sucrose, frozen and sectioned by cryoultramicrotomy and dried at room temperature. The samples were analyzed in an imaging TOF-SIMS instrument equipped with a Bi(1-7)+-source. The cholesterol signal (m/z 369 and 385) was localized in Purkinje cells and in nuclei of granular layer cells. The phosphocholine headgroup of phosphatidylcholine and sphingomyelin was localized by imaging a specific fragment (m/z 86). This signal was localized in the molecular layer of cerebellar cortex, in Purkinje cells and in parts of the granular layer probably representing the synapse-rich glomeruli. The galactosylceramide was localized by imaging the quasi-molecular ions at m/z 835 and 851, showed a clear colocalization with cholesterol, but also a specific localization in dots (diameter 相似文献   

15.
The aim of this study was to assess the direct effects of norepinephrine on mechanisms of arrhythmia induced by conditions of ischemia followed by reperfusion. Isolated canine Purkinje fiber-papillary muscle preparations were studied using standard microelectrode techniques. Tissues were superfused for 40 min with a solution simulating "ischemia" (i.e., hypoxic, acidotic, elevated lactate, and zero substrate) and then "reperfused" for 60 min. Ischemia produced a moderate loss of membrane potential in both tissues. Reperfusion resulted in rapid polarization of the tissues, which was accompanied by oscillatory afterpotentials and aftercontractions in 6 of 12 and 4 of 12 Purkinje fibers, respectively. This was followed by a progressive loss of membrane potential and inexcitability in Purkinje fibers. Recovery was associated with activity resembling depolarization-induced automaticity in 4 of 12 fibers. Addition of norepinephrine (0.5 microM) to the ischemic and reperfusion solutions altered primarily the reperfusion responses. Oscillatory afterpotentials and aftercontractions were larger and occurred in 8 of 8 and 6 of 8 Purkinje fibers, respectively. Norepinephrine also prevented or blunted the progressive depolarization to inexcitability in Purkinje tissues and increased automaticity occurring at low (depolarization-induced automaticity) and more polarized membrane potentials (enhanced normal pacemaker activity). This study demonstrates that norepinephrine exacerbates several potential mechanisms of arrhythmia elicited by reperfusion in canine Purkinje tissues.  相似文献   

16.
The heterotrimeric G protein Galphao is ubiquitously expressed throughout the central nervous system, but many of its functions remain to be defined. To search for novel proteins that interact with Galphao, a mouse brain library was screened using the yeast two-hybrid interaction system. Pcp2 (Purkinje cell protein-2) was identified as a partner for Galphao in this system. Pcp2 is expressed in cerebellar Purkinje cells and retinal bipolar neurons, two locations where Galphao is also expressed. Pcp2 was first identified as a candidate gene to explain Purkinje cell degeneration in pcd mice (Nordquist, D. T., Kozak, C. A., and Orr, H. T. (1988) J. Neurosci. 8, 4780-4789), but its function remains unknown as Pcp2 knockout mice are normal (Mohn, A. R., Feddersen, R. M., Nguyen, M. S., and Koller, B. H. (1997) Mol. Cell. Neurosci. 9, 63-76). Galphao and Pcp2 binding was confirmed in vitro using glutathione S-transferase-Pcp2 fusion proteins and in vitro translated [35S]methionine-labeled Galphao. In addition, when Galphao and Pcp2 were cotransfected into COS cells, Galphao was detected in immunoprecipitates of Pcp2. To determine whether Pcp2 could modulate Galphao function, kinetic constants kcat and koff of bovine brain Galphao were determined in the presence and absence of Pcp2. Pcp2 stimulates GDP release from Galphao more than 5-fold without affecting kcat. These findings define a novel nucleotide exchange function for Pcp2 and suggest that the interaction between Pcp2 and Galphao is important to Purkinje cell function.  相似文献   

17.
Specific granules in porcine hearts were observed in atrial cardiocytes, Purkinje fibers, and transitional cells of the ventricle. These granule-containing cells were immunohistochemically stained by applying the avidin-biotin-peroxidase complex method using an antiserum against alpha-human atrial natriuretic polypeptide (ANP). Immunoelectron microscopy of sections stained using the immunogold method indicated that these specific granules are storage sites of ANP. Furthermore, an impulse-conducting system consisting of immunoreactive cells was clearly distinguishable from nonimmunoreactive ventricular cardiocytes. We conclude that specific-granule-containing cells, i.e., ANP-producing cells, are located in both the atrial walls and the ventricular impulse-conducting system. The presence of ANP may be correlated with impulse conduction.  相似文献   

18.
Summary An observation of intimate nerve-Purkinje fibre associations in false tendons of sheep heart is reported. Nerve bundles were observed in deep clefts of Purkinje fibres, in channels running between coupled Purkinje cells and embedded within Purkinje cells, as well as in the outer connective tissue sheath. Most nerve terminals in these areas were filled with small clear vesicles and a few large dense-cored vesicles. Only a few axons with many small dense-cored vesicles were observed.Intimate associations (separation, 60 to 90 nm) between the Purkinje cell and nerve varicosity were observed in the deep clefts. Similar close appositions were also present where nerves were embedded in Purkinje cells. In these cases the Purkinje cell enclosing the nerve bundle formed intercellular junctions with its own sarcolemma.Elaborate sarcolemmal folds with multi-vesicular bodies were also frequently observed near nerve bundles and varicosities. The identity of the transmitter is unknown although the nerves forming intimate associations with Purkinje cells have a morphology typical of cholinergic nerves.  相似文献   

19.
We examined the kinetics of voltage-dependent sodium currents in cerebellar Purkinje neurons using whole-cell recording from dissociated neurons. Unlike sodium currents in other cells, recovery from inactivation in Purkinje neurons is accompanied by a sizeable ionic current. Additionally, the extent and speed of recovery depend markedly on the voltage and duration of the prepulse that produces inactivation. Recovery is faster after brief, large depolarizations (e.g., 5 ms at +30 mV) than after long, smaller depolarizations (e.g., 100 ms at -30 mV). On repolarization to -40 mV following brief, large depolarizations, a resurgent sodium current rises and decays in parallel with partial, nonmonotonic recovery from inactivation. These phenomena can be explained by a model that incorporates two mechanisms of inactivation: a conventional mechanism, from which channels recover without conducting current, and a second mechanism, favored by brief, large depolarizations, from which channels recover by passing transiently through the open state. The second mechanism is consistent with voltage-dependent block of channels by a particle that can enter and exit only when channels are open. The sodium current flowing during recovery from this blocked state may depolarize cells immediately after an action potential, promoting the high-frequency firing typical of Purkinje neurons.  相似文献   

20.
Newt embryonic myocardial cells can undergo mitosis in culture. The successive changes in the striation pattern of sarcomeres of myofibrils during mitosis were studied by polarization microscopy without fixing or killing the cells. Birefringence of well-organized striation patterns, i.e., bright A-bands and dark I-bands, was clearly visible in interphase cells and did not show any detectable changes during incubation for 3 h or more. Electron microscopy showed the presence of well-organized myofibrils with Z-bands in these interphase cells. When myocardial cells entered the mitotic stage, the birefringence of striation pattern of their myofibrils gradually changed with the pattern in small parts of the myofibrils gradually becoming indistinct (called 'indistinct striation' in this paper). These indistinct regions increased in size during the mitotic stage. In addition, in some regions of the indistinct striation, the birefringence of sarcomeres gradually decreased and finally disappeared (called 'disappearance of sarcomeres' in this paper). No myocardial cells underwent mitosis without these disruptive changes of the myofibril striation patterns. In the post-mitotic stage, the well-organized striation of the myofibrils reappeared. Electron microscopy showed disorganized sarcomeres without Z-bands in the regions of indistinct striation, and no well-organized myofibrils in the regions where the sarcomeres had disappeared. Thus the well-organized myofibrils with Z-bands became transiently disorganized at least in some parts, during mitosis. They were then reorganized into daughter myocardial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号