首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three Turkish isolates of the entomopathogenic nematodes Steinernema carpocapsae, Steinernema feltiae and Heterorhabditis bacteriophora were evaluated under laboratory conditions (in different temperatures and doses) for their biocontrol efficiency against last instar Leptinotarsa decemlineata. Herein, the effects of infective juveniles in aqueous suspension against L. decemlineata were evaluated. S. feltiae appeared to be the most pathogenic nematode among the tested species.  相似文献   

2.
In this study, we evaluated the effect of entomopathogenic nematodes (EPNs) Steinernema carpocapsae, Steinernema feltiae and Heterorhabditis bacteriophora, symbiotically associated with bacteria of the genera Xenorhabdus or Photorhabdus, on the survival of eight terrestrial isopod species. The EPN species S. carpocapsae and H. bacteriophora reduced the survival of six isopod species while S. feltiae reduced survival for two species. Two terrestrial isopod species tested (Armadillidium vulgare and Armadillo officinalis) were found not to be affected by treatment with EPNs while the six other isopod species showed survival reduction with at least one EPN species. By using aposymbiotic S. carpocapsae (i.e. without Xenorhabdus symbionts), we showed that nematodes can be isopod pathogens on their own. Nevertheless, symbiotic nematodes were more pathogenic for isopods than aposymbiotic ones showing that bacteria acted synergistically with their nematodes to kill isopods. By direct injection of entomopathogenic bacteria into isopod hemolymph, we showed that bacteria had a pathogenic effect on terrestrial isopods even if they appeared unable to multiply within isopod hemolymphs. A developmental study of EPNs in isopods showed that two of them (S. carpocapsae and H. bacteriophora) were able to develop while S. feltiae could not. No EPN species were able to produce offspring emerging from isopods. We conclude that EPN and their bacteria can be pathogens for terrestrial isopods but that such hosts represent a reproductive dead-end for them. Thus, terrestrial isopods appear not to be alternative hosts for EPN populations maintained in the absence of insects.  相似文献   

3.
The susceptibility of pupating larvae of pollen beetles, Meligethes spp. Stephens (Coleoptera: Nitidulidae) and brassica pod midges, Dasyneura brassicae Winnertz (Diptera: Cecidomyidae) to entomopathogenic nematodes (Nematoda: Rhabditida) was studied in the laboratory. The results showed that brassica pod midge larvae were almost unaffected by the tested nematodes (Steinernema bicornutum, S. feltiae and Heterorhabditis bacteriophora) whereas successful pupation of pollen beetle larvae was reduced with increasing number of nematodes (S. bicornutum, S. carpocapsae, S. feltiae and H. bacteriophora). The exposed larvae had been collected in the field and some of the pollen beetle larvae were parasitised by parasitoid wasps. It appeared that parasitised larvae were less affected by nematodes than non-parasitised larvae.  相似文献   

4.
Plum sawflies are among the most damaging pests of European plum. Current control strategy implies insecticide application. Three species of entomopathogenic nematodes (EPN), Steinernema feltiae Filipjev, S. carpocapsae Weiser and Heterorhabditis bacteriophora Poinar were tested under laboratory and field conditions to assess effectiveness against larval and adult stages. Laboratory tests resulted in up to 100% mortality of last instar larvae before construction of a cocoon. However, the nematodes were not able to penetrate the cocoon. Foliar application did not result in plum sawflies larvae infestation by EPNs. Under field conditions, the nematodes reduced the number of emerging adults by application against sawfly larvae in the previous year before migration into the soil for overwintering by 62%–92%. Application of the nematodes against adults just before their anticipated emergence resulted in reduction of fruit infestation up to 100%. Mean results of 5 trials using caged trees were 47.8% with S. feltiae, 56.3% with S. carpocapsae and 62.9% with H. bacteriophora. In open field trails, control of adults obtained with S. feltiae at 0.5 million nematodes/m2 was 98.2 and 67.8% and at 0.25 million m−2 41.7 and 41.2%. Forecasting adult emergence and optimal soil moisture conditions are essential for success of the nematode application.  相似文献   

5.
The ability of entomopathogenic nematodes to suppress larval populations of the annual bluegrass weevil, Listronotus maculicollis, was investigated under field conditions over a 3-year period (2006–2008). Combination of nematode species, application rate and timing produced strong numerical yet few statistically significant reductions. Steinernema carpocapsae Weiser, S. feltiae Filipjev, and Heterorhabditis bacteriophora Poinar applied at 2.5×109 IJs/ha reduced first generation late instars between 69 and 94% in at least one field trial. Steinernema feltiae provided a high level of control (94%) to low densities (~20 larvae per 0.09 m2), but gave inadequate control for higher densities (24 and 50% suppression). No significant differences were found among treatment timings. However, applications timed to coincide with the peak of larvae entering the soil (fourth instars) generally performed better than applications made prior to (preemptive) or after the majority of the population advanced from the fourth instar. Nematode populations declined sharply between 0 and 14 days after treatment (DAT). Although nematode populations later increased (at 28 DAT), indicating an ability to recycle within hosts in the environment, they were nearly undetectable 56 DAT when the second generation host larvae were present in the soil. Applying commercially available nematode species at standard field rates cannot reliably reduce L. maculicollis immature densities on golf courses, nor will single applications suppress multiple generations. Future research will need to identify application strategies to improve biocontrol consistency.  相似文献   

6.
Abstract

Biocontrol potential of the entomopathogenic nematodes (EPNs) on the second-instar larvae of the non-target insect predators, Coccinella septumpunctata and Chrysoperla carnea as compared to Spodoptera littoralis (Boisd.) was evaluated. The pathogenicity of EPNs, namely, Heterorhabditis bacteriophora, Steinernema feltiae and Steinernema carpocapsae at concentrations 100, 200, 400, 800 and 1600 IJs/cup) were tested at 2, 4 and 6 days’ post-inoculation. Laboratory results showed significant differences among the mortality rates of different tested larvae, for each concentration at different time intervals. H. bacteriophora induced the highest mortality followed by S. carpocapsae treatment. However, S. feltiae was found to be more safety on predators as it causes less mortality at 6 days of treatment. The values of half lethal concentrations (LC50) were 614.06, 3797.43 and 676.47 IJs/cup for C. Carnea and 390.60, 1209.88 and 503.65 IJs/cup for C. septumpunctata treated by H. bacteriophora, S. feltiae and S. carpocapsae, respectively. In semi-field experiments, there were non-significant differences among mortality of each predator indicated at concentrations of the different EPNs after 2 days or 6 days’ post-inoculation. The study revealed a lethal pathogenic effect of EPNs against insect pests but caused low mortality on the non-target ones.  相似文献   

7.
Entomopathogenic nematodes (EPNs) in the families Heterorhabditidae and Steinernematidae have considerable potential as biological control agents of soil-inhabiting insect pests. In the present study, the control potential of the EPNs Steinernema carpocapsae (TUR-S4), S. feltiae (Nemaplus), S. carpocapsae (Nemastar), S. feltiae (TUR-S3) and Heterorhabditis bacteriophora (Nematop) against a new longicorn pest, Dorcadion pseudopreissi Breuning, 1962 (Coleoptera: Cerambycidae), on turf was examined in laboratory studies. Pathogenicity tests were performed at the following doses: 50, 100 and 150 Dauer Juveniles (DJs)/larva at 25°C. Highest mortalities (75–92%) of the larvae were detected at the dose of 150 DJs/larva for all nematodes used. Reproduction capabilities of the used EPNs were examined at doses of 50, 75, 100 and 150 DJs/larva at 25°C. S. carpocapsae (TUR-S4) had the most invasions (32 DJs/larva) and reproduction (28042 DJs/larva) at the dose of 100 DJs, and the highest reproduction (per invaded DJ into a larva) was observed in H. bacteriophora (Nematop) (2402.85 DJs) at a dose of 50 DJs. The foraging behaviour of the nematodes in the presence of D. pseudopreissi and Galleria mellonella L. (Lepidoptera: Galleriidae) larvae was studied using a Petri dish filled with sand at 20°C. All of the used nematodes accumulated near the larvae section of both insect species (32–53% of recovered DJs) with a higher percentage of S. carpocapsae (TUR-S4) (53%) and H. bacteriophora (48%) (Nematop) moving towards larvae of D. pseudopreissi, than the S. feltiae strains.  相似文献   

8.
The potential of entomopathogenic nematodes as biologicalcontrol agents for carrot weevil (Listronotus oregonensis) was evaluated throughboth laboratory and field experiments. In thelaboratory, Steinernema carpocapsae, S. riobrave, S. feltiae, Heterorhabditis megidis, H. bacteriophora, and a control (water only) werecompared in sand and muck soil against adults,and in sand against larvae. All nematodespecies produced high levels of larvalmortality. S. carpocapsae producedsignificantly greater adult mortality in sandthan other species or the untreated control. H. bacteriophora caused low adultmortality in sand, but the greatest adultmortality among treatments in a similar testthat used muck soil; S. carpocapsae wasranked second on muck soil. Other speciesconsistently produced intermediate (H.megidis and S. riobrave) or low (S.feltiae) levels of mortality on bothsubstrates. In the field, we compared theeffect of early season vs. late seasonapplications of H. bacteriophora or S. carpocapsae on carrot weevil mortality andparsley survival and yield. Significantdifferences among treatments in plant survivaland yield were not found; however treatmentsinvolving H. bacteriophora had higherplant survival than other treatments. Earlierapplication of this species was associated withhigher plant survival. S. carpocapsaetreatments had similar plant survival to thecontrol. Mortality of larvae and combinedstages of carrot weevil was significantlygreater at 1 week following H.bacteriophora application than for othertreatments. H. bacteriophora also showedgreater persistence than S. carpocapsaein treated plots. We conclude that H.bacteriophora is a good candidate for furtherevaluation as a biological control agentagainst carrot weevil on muck soils in theGreat Lakes region.  相似文献   

9.
The effect of five commercial potting media, peat, bark, coir, and peat blended with 10% and 20% compost green waste (CGW) on the virulence of six commercially available entomopathogenic nematodes (EPN), Heterorhabditis bacteriophora UWS1, Heterorhabditis megidis, Heterorhabditis downesi, Steinernema feltiae, Steinernema carpocapsae, and Steinernema kraussei was tested against third-instar black vine weevil (BVW), Otiorhynchus sulcatus. Media type was shown to significantly affect EPN virulence. Heterorhabditis species caused 100% larval mortality in all media whereas Steinernema species caused 100% larval mortality only in the peat blended with 20% CGW. A later experiment investigated the effect of potting media on the virulence of EPN species against BVW by comparing the vertical dispersal of EPN in the presence and absence of BVW larva. Media type significantly influenced EPN dispersal. Dispersal of H. bacteriophora was higher than H. megidis, H. downesi, or S. kraussei in all media, whereas, S. feltiae and S. carpocapsae dispersal was much reduced and restricted to peat blended with 20% CGW and coir, respectively. In the absence of larvae, most of the EPN species remained in the same segment they were applied in, suggesting that the larvae responded to host volatile cues. Greenhouse trials were conducted to evaluate the efficacy of most virulent strain, H. bacteriophora in conditions more representative of those in the field, using 2.5 × 109 infective juveniles/ha. The efficacy of H. bacteriophora UWS1 against third-instar BVW was 100% in peat, and peat blended with 10% and 20% CGW but only 70% in bark and coir, 2 weeks after application. These studies suggest that potting media significantly affects the efficacy and dispersal of EPN for BVW control.  相似文献   

10.
The efficacy of soil treatments of three native entomopathogenic nematodes (Steinernema carpocapsae, S. feltiae and Heterorhabditis bacteriophora) against Tuta absoluta larvae, pupae and adults was determined under laboratory conditions. The effect of three insecticides commonly used against T. absoluta, in the survival, infectivity and reproduction of these nematode strains was also evaluated. When dropped into soil to pupate, soil application of nematodes resulted in a high mortality of larvae: 100, 52.3 and 96.7 % efficacy for S. carpocapsae, S. feltiae and H. bacteriophora respectively. No mortality of pupae was observed and mortality of adults emerging from soil was 79.1 % for S. carpocapsae and 0.5 % for S. feltiae. The insecticides tested had a negligible effect on nematode survival, infectivity and reproduction. No sublethal effects were observed. Infective juveniles that survived to insecticide exposition were able to infect Galleria larvae with no significant differences from the control. The Galleria larvae affected by the three insecticides tested served as suitable hosts for the infection and reproduction of the nematodes. These results suggest that larvae of T. absoluta, falling from leaves following insecticide application, could be suitable hosts for nematodes, thereby increasing their concentration and persistence in the soil.  相似文献   

11.
Use of predators, parasitoids and entomopathogens as biocontrol agents in pome fruit production can lead to more efficient and sustainable pest management programmes. The European earwig (Forficula auricularia Linnaeus [Dermaptera: Forficulidae]) is a major predator of key pests in pome fruit orchards, and entomopathogenic nematodes (EPNs) of the families Steinernematidae and Heterorhabditidae are obligate parasites of a large number of insect species. Therefore, the interaction between earwigs and EPNs can play an important role in pest management programmes. Susceptibility of the European earwig to Steinernema carpocapsae, Steinernema feltiae (Steinernematidae) and Heterorhabditis bacteriophora (Heterorhabditidae) was evaluated. S. carpocapsae was the only tested EPN capable of killing the European earwig. However, the European earwig can detect the presence of S. carpocapsae and therefore avoid nematode‐treated shelters. An earwig deterrent activity in EPN‐killed codling moth larvae that reduces the foraging of European earwig on insect cadavers containing nematodes and allows nematodes to complete their life cycle was also assessed with the three species of nematodes. These findings suggest a positive compatibility between the European earwig and EPNs.  相似文献   

12.
Four entomopathogenic nematode species, Steinernema carpocapsae, S. feltiae, Heterorhabditis bacteriophoraand H. megidis, were tested in a petri dish assay against larvae and adults of the hairy fungus beetle Typhaea stercorea. In general, adults were less susceptible than larvae and the LC50 decreased with the duration of the exposure to nematodes. S. carpocapsae was the most effective species against adult beetles (LC50 after 96 hours exposure =67 nematodes/adult). Against larvae S.carpocapsae and H. megidis were comparablyeffective with an LC50 of 30 and 55nematodes/larvae, respectively. S. carpocapsaewas tested at 70 and 100% RH against adults in baits of either chicken feed or crushed wheat, both supplemented with horticultural capillary matting pieces in order to obtain a wet weight of 50–60%. At70% RH no significant effect of the nematodes was obtained due to desiccation of the bait. In chickenfeed at 100% RH the mortality reached 80% with 500nematodes/adult. In wheat significant mortality was obtained only at 5000 nematodes/adult. Heavy growth of mould probably limited the nematode infection. When the bait was used in tube traps, desiccation and growth of mould was prevented, but nematode efficacy dropped to 4.4% in the traps and 12% in the surrounding litter. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The susceptibility of potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) to native and commercial strains of entomopathogenic nematodes (EPNs) was studied under laboratory conditions. Native strains of EPNs were collected from northeastern Iran and characterised as Steinernema feltiae and Heterorhabditis bacteriophora (FUM 7) using classic methods as well as analysis of internal transcribed spacer (ITS) and D2/D3 sequences of 28S genes. Plate assays were performed to evaluate the efficiency of five EPN strains belonging to four species including Steinernema carpocapsae (commercial strain), S. feltiae, Steinernem glaseri and H. bacteriophora (FUM 7 and commercial strains). This initial assessment with 0, 75, 150, 250, 375 and 500 IJs/ml concentrations showed that S. carpocapsae and H. bacteriophora caused the highest mortality in both larval and prepupal stages of P. operculella, PTM. Thereafter, these three strains (i.e. S. carpocapsae, H. bacteriophora FUM 7 and the commercial strains) were selected for complementary assays to determine the effects of soil type (loamy, loamy–sandy and sandy) on the virulence of EPNs against the second (L2) and fourth instar (L4) larvae as well as prepupa. A soil column assay was conducted using 500 and 2000 IJs in 2-ml distilled water. Mortality in the L2 larvae was not affected by the EPN strain or soil type, while there was a significant interactive effect of nematode strains and soil type on larval mortality. The results also showed that EPN strains have higher efficiency in lighter soils and caused higher mortality on early larvae than that in loamy soil. In L4 larvae, mortality of PTM was significantly influenced by nematode strain and applied concentrations of infective juveniles. The larval mortality induced by S. carpocapsae was higher than those caused either by a commercial or the FUM 7 strain of H. bacteriophora. Prepupa were the most susceptible stage.  相似文献   

14.
The virulence of different entomopathogenic nematode strains of the families Steinernematidae and Heterorhabditidae, isolates from Catalonia (NE Iberian Peninsula), and their symbiotic bacteria was assessed with regard to the larvae and adults of the hazelnut weevil, Curculio nucum L. (Coleoptera: Curculionidae). The nematode strains screened included one Steinernema affine, five Steinernema feltiae, one Steinernema carpocapsae, one Steinernema sp. (a new species not yet described) and one Heterorhabditis bacteriophora. The pathogenicity of all the strains of nematodes was tested on larvae and only four of them on adults of the hazelnut weevil. Larval mortality ranged from 10% with S. affine to 79% with Steinernema sp. Adult mortality was higher in S. carpocapsae, achieving 100% adult weevil mortality. The pathogenicity of the symbiotic bacteria Xenorhabdus bovienii, X. kozodoii, X. nematophila and Photorhabdus luminescens was studied in larvae and adults of C. nucum. In the larvae, X. kozodoii showed a LT50 of 22.7 h, and in the adults, it was 20.5 h. All nematodes species except S. affine tested against larvae showed great potential to control the insect, whereas S. carpocapsae was the most effective for controlling adults.  相似文献   

15.
The efficacies of several entomopathogenic nematodes ofSteinernema andHeterorhabditis spp. were examined against tobacco cutworm,Spodoptera litura Fabricius.H. bacteriophora HY showed 100% mortality after 20 h against 2nd instar of tobacco cutworm. In the case of 3–4th instar,S. carpocapsae PC.,H. bacteriophora HY andS. monticola CR showed 100% mortality after 47 h. In the case of 5–6th instar,S. carpocapsae PC proved more effective than the others. Generally, the number of nematodes harvested increased as their size decreased. Also, the highest number of nematodes was obtained in the 5–6th instar ofS. litura byH. bacteriophora HY, showing about 1.3×106 nematodes per larva.In vitro culturedS. carpocapsae PG showed 100% mortality after 73 h against 5–6th instar tobacco cutworm, indicating that nematodes producedin vitro can be potentially used for the biological control ofS. litura instead of nematodesin vivo.  相似文献   

16.
The survival and infectivity of the infective juveniles of two species of entomopathogenic nematodes, Steinernema feltiae (Rhabditida: Steinernematidae) Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae), were determined after exposure for 72 h to two concentrations of the herbicides glyphosate and MCPA, as well as to the combination of the two herbicides (glyphosate + MCPA). For all herbicide treatments, concentrations and exposure times, S. feltiae was more tolerant to the herbicides than H. bacteriophora. The exposure of entomopathogenic nematodes to glyphosate + MCPA caused significantly higher mortality (26.33–57.33%) than glyphosate (0.67–15%) or MCPA (2.33–19%) alone. These results confirm the synergistic effect of the glyphosate + MCPA combination on the mortality in these nematodes. Nematode infectivity of Galleria mellonella larvae in response to the herbicides presence was evaluated in Petri dish assays containing sterile sand. Nematode infectivity was not significantly reduced by exposure to herbicides in S. feltiae but H. bacteriophora was less tolerant. Synergistic effect was obtained in the nematode mortality test but no synergistic effect was observed in the nematode infectivity assay. Our results suggest that possible synergistic effects of agrochemicals on survival of nematodes should be tested before mixing with entomopathogenic nematodes.  相似文献   

17.
Pathogenicity of a native isolate of Steinernema feltiae (H1) and two exotic strains, Heterorhabditis bacteriophora and Steinernema carpocapsae was assessed under laboratory conditions using different concentrations i.e. 4000, 6000, 8000 and 10,000 infective juveniles/ml against second instar larvae, prepupa and pupa of Thrips tabaci Lindeman. The mortality data were recorded 24 and 48?h post-inoculation. The highest mortality rate was recorded for prepupa (62%) than second instar (12.5%) by H. bacteriophora and S. carpocapsae, respectively, 24?h after treatment. No significant differences were found in mortality between prepupa and pupa with increasing the nematodes concentrations (from 4000 to 10,000 nematode/ml) but increasing nematode concentrations increased the mortality of second instar. At the end of the experiment (48?h.), S. feltiae H1 caused the highest mortality on second instar larvae (74%), whereas all other species caused 80–83% mortalities on pupa. This study suggests that native isolate of S. feltiae (H1) had high potential to infect soil-dwelling stages of T. tabaci.  相似文献   

18.
For commercial use of the entomopathogenic nematodes Steinernema carpocapsae and Steinernema feltiae in biological control of insect pests, they are produced in liquid culture on artificial media pre-incubated with their symbiotic bacteria Xenorhabdus nematophila and Xenorhabdus bovienii, respectively. After 1 day of the bacterial culture, nematode dauer juveniles (DJs) are inoculated, which recover development. The adult nematodes produce DJ offspring, which are harvested and can be sprayed. This study determined optimal temperatures to obtain high DJ progeny within a short process time. Temperatures assessed were 23°C, 25°C, 27°C, and 29°C for S. carpocapsae and 20°C, 23°C, 25°C, and 27°C for S. feltiae. The recovery of inoculated DJs was hardly affected and was reduced only in S. carpocapsae at 29°C. The fecundity (eggs in uterus) in S. carpocapsae reached a maximum at 27°C; whereas, maximum yields were recorded at 25°C. For both Steinernema spp., highest DJ densities were obtained after 15 days incubation at 25°C. Optimal culture temperature for both nematode species is 25°C. S. carpocapsae was more sensible to suboptimal temperature than S. feltiae. Results on total DJ density and DJ proportion of the total nematode population were more variable at non-optimal temperature condition for S. carpocapsae than for S. feltiae. Suboptimal culture temperature also reduced DJ infectivity.  相似文献   

19.
S. Chen  J. Li  X. Han  M. Moens 《BioControl》2003,48(6):713-724
Susceptibility of last instarlarvae of Delia radicum to Steinernema feltiae, S. carpocapsae,S. arenarium, Heterorhabditismegidis and H. bacteriophora wasevaluated in the laboratory at 10 °C,15 °C and 20 °C. S. feltiaewas the only species that killed the larvae at10 °C; S. carpocapsae, S.arenarium and H. megidis were effectiveat 15–20 °C whereas H.bacteriophora killed the maggot only at20 °C. The temperature significantlyaffected the host searching ability of alltested species. Mobility was reduced at lowtemperatures. Significant effects of the hostpresence on nematode mobility were found forS. feltiae, S. arenarium and H. megidis but not for S. carpocapsaeand H. bacteriophora. The dynamics of theattachment to and penetration into the hostwere monitored for S. feltiae at10 °C, 15 °C or 20 °C and forS. carpocapsae at 20 °C. In theperiod of 6–30 hours after inoculation, S.carpocapsae attached in higher number at20 °C than did S. feltiae at alltemperatures. At 20 °C, S.carpocapsae penetrated the host only after 30hours while S. feltiae penetrated alreadyafter 15, 9, 6 hours at 10 °C,15 °C and 20 °C, respectively.  相似文献   

20.
We investigated the existing susceptibility differences of the hazelnut weevil, Curculio nucum L. (Coleoptera:, Curculionidae) to entomopathogenic nematodes by assessing the main route of entry of the nematodes, Steinernema carpocapsae strain B14 and S. feltiae strain D114, into larvae and adult insects, as well as host immune response. Our results suggested that S. carpocapsae B14 and S. feltiae D114 primarily entered adult insects and larvae through the anus. Larvae were more susceptible to S. feltiae D114 than S. carpocapsae B14 and adults were highly susceptible to S. carpocapsae B14 but displayed low susceptibility to S. feltiae D114. Penetration rate correlated with nematode virulence. We observed little evidence that hazelnut weevils mounted any cellular immune response toward S. carpocapsae B14 or S. feltiae D114. We conclude the differential susceptibility of hazelnut weevil larvae and adults to S. carpocapsae B14 and S. feltiae D114 primarily reflected differences in the ability of these two nematodes to penetrate the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号