首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oviposition decisions made by members of a guild of natural enemies can have evolved to avoid intraguild predation, potentially avoiding the disruption of the extraguild prey control. We have studied the oviposition preference of the aphidophagous predator Episyrphus balteatus De Geer (Diptera: Syrphidae) within colonies of Myzus persicae Sulzer (Hemiptera: Aphididae) in the presence of two developmental stages of the aphid parasitoid Aphidius colemani Viereck (Hymenoptera: Aphidiidae). Results from a greenhouse choice experiment showed that E. balteatus females lay significantly fewer eggs in colonies with mummified aphids than in unparasitized colonies. Colonies of parasitized, but not yet mummified did not contain significantly fewer eggs than colonies with unparasitized aphids. In three no-choice experiments, we assessed stimuli coming from aphid honeydew, from the aphids themselves and also from extracts of the aphid bodies, and all of these stimuli mediate the discrimination of mummified aphids from healthy aphids. To a lesser extent these stimuli also contribute to the discrimination against aphids that are parasitized but not yet mummified. These results suggest that the effects of these two species could be complementary for the control of M. persicae, since the species that acts as an intraguild predator, E. balteatus, avoids ovipositing on aphid colonies parasitized by the intraguild prey, A. colemani.  相似文献   

2.
We investigated intraguild predation (IGP) on an aphid parasitoid, Aphelinus asychis Walker (Hymenoptera: Aphelinidae), by the multicolored Asian ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), and used the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae) as the prey/host in the laboratory. The ladybirds reared on artificial diet and on aphids consumed more aphids than mummies, while those reared on parasitized aphids consumed similar numbers of aphids and mummies. The ladybirds chose more mummies in treatments when mummies were more abundant, and more aphids when numbers of aphids and mummies were equal, or when aphids were more abundant. However, at all density treatments, rejection rates of mummies (36%) were much greater than of aphids (2%). H. axyridis prey on more aphids than A. asychis mummies, which enhances biological control by the two species. However, prior feeding experience affected subsequent choice, increasing the competition between natural enemies which would reduce their combined effectiveness for biological control.  相似文献   

3.

To provide fundamental information for the biological control of aphids in vegetable greenhouses, we compared the host ranges of four aphid parasitoid species, Aphidius colemani Viereck, Aphidius gifuensis Ashmead, Diaeretiella rapae (M’Intosh), and Ephedrus nacheri Quilis (Hymenoptera: Braconidae: Aphidiinae). The acceptability as host of 11 vegetable-pest aphids, Acyrthosiphon pisum (Harris), Aphis craccivora Koch, Aphis gossypii Glover, Aulacorthum solani (Kaltenbach), Brevicoryne brassicae (Linnaeus), Chaetosiphon fragaefolii (Cockerell), Lipaphis erysimi (Kaltenbach), Macrosiphoniella sanborni (Gillette), Macrosiphum euphorbiae (Thomas), Myzus persicae (Sulzer), and Uroleucon formosanum (Takahashi), in addition to five aphid species, Melanaphis sacchari (Zehntner), Rhopalosiphum maidis (Fitch), Rhopalosiphum padi (Linnaeus), Schizaphis graminum (Rondani), and Sitobion akebiae (Shinji) (Hemiptera: Aphididae) that serve as alternative hosts in banker–plant systems for the four aphid parasitoid species, were investigated. A newly emerged pair of parasitoid adults were provided to 100 aphids of each species on caged host plants in a 25 °C chamber for 24 h. The numbers of mummified aphids and emerged adults were counted in 10 trials for each aphid species. Aphidius colemani, A. gifuensis, D. rapae and E. nacheri parasitized four, two, three, and eight pest species, respectively, and four, three, three, and five alternative host species, respectively. Ephedrus nacheri had the broadest host range among the four species, and all the four species parasitized M. persicae, R. maidis, and S. graminum. This information will be useful for selecting candidate of biological control agents for aphids and for constructing banker–plant systems.

  相似文献   

4.
Biological control and soybean cultivars bred for increased resistance to the soybean aphid (Aphis glycines) are two approaches used to manage this serious pest of soybeans in North America. However, as with many other pest systems, the compatibility of these two pest management approaches has not been studied in detail. The aphidiine wasp Aphidius colemani is one of several candidate species for biological control of the soybean aphid in soybean in North America. Resistance to the soybean aphid in the USDA soybean cultivar Dowling is largely controlled by a single dominant gene Rag1, which is the focus of plant breeding programs directed against the soybean aphid. In this study, we measured developmental and behavioral differences in the parasitic wasp A. colemani when it attacked soybean aphids feeding on either the aphid-resistant Dowling or aphid-susceptible Glenwood cultivars of soybean. We used a combination of choice and no-choice experiments to examine the effects of host plant cultivar on the number of parasitized aphids formed and the sex ratio and body weights of adult offspring produced. Significantly more aphids were parasitized when they fed on Glenwood compared to Dowling and these offspring were larger when they developed in aphids that fed on Glenwood soybeans. To distinguish between effects on foraging decisions and offspring survivorship, we conducted an additional experiment that followed the oviposition decisions and fate of each parasitized aphid. Foraging female A. colemani spent less time handling individual aphids and encountered and attacked aphids at a higher rate when they fed on aphids feeding on Glenwood soybeans than aphids feeding on Dowling soybeans. Furthermore, wasp survivorship in aphids was greater on Glenwood than Dowling. Taken together, aphid-resistance in soybeans has negative effects on foraging behavior and offspring fitness of A. colemani raising concerns about the compatibility of these two pest management approaches.  相似文献   

5.
Aphidius colemani Viereck(Hymenoptera: Aphidiidae) showed a developmenttime extended by 16% when reared on Myzus persicae Sulzer (Hemiptera: Aphididae) ofdifferent instars on artificial diet or onaphids on Brussels sprout plants. There wasalso a small but statistically significant 2%reduction in size (in hind tibia length) ofadult females. Rearing on diet had nosignificant effect on the number of eggsfemales contained at emergence. In a secondexperiment, aphids from Brussels sprouts ininstars 2–5 were compared with aphids from diettwo days older to give comparably sized aphidsfrom both substrates. Parasitisation by A.colemani gave the same direction of results,but showed that the effects in the firstexperiment were greater than predicted from thereduction in host size alone. However, in bothexperiments effects on parasitoids ofdiet-rearing the host were small, and culturingA. colemani on diet-reared aphids wassuccessful.  相似文献   

6.
Myzus persicae, Macrosiphum euphorbiae, Aphis gossypii and Aulacorthum solani (Homoptera: Aphididae) are principal pests of protected pepper crops in southeastern Spain. Our goal was to determine the incidence of aphids on pepper crops and the role of vegetation surrounding greenhouses as a source of aphids and their parasitoids. The population dynamics were followed in six commercial greenhouses during 3 years. Another 82 greenhouses and their surrounding vegetation were surveyed occasionally. Myzus persicae had the highest incidence in pepper greenhouses followed by M. euphorbiae and A. solani. Parasitism of all aphid species in greenhouses was low, Aphidius matricariae and Aphidius colemani being the most abundant parasitoids. Myzus persicae and Macrosiphum euphorbiae were the most abundant and polyphagous aphids, being present on 77 and 55% of the plants sampled outside greenhouses, respectively; species of Brassicaceae were the main hosts for both aphids. Aulacorthum solani was only present on Malva parviflora and at low numbers. Outside greenhouses, A. matricariae was the most common parasitoid of M. persicae, followed by Diaeretiella rapae and A. colemani. Aphidius matricariae was the most polyphagous, being present in 10 out of 22 aphid species. Macrosiphum euphorbiae and A. solani were both parasitised by A. ervi and Praon volucre. Aphelinus asychis was found on A. solani. Parasitoids were found in other aphids not attacking pepper. The role of natural vegetation as a reservoir of aphid pests of pepper and of parasitoids is discussed.  相似文献   

7.
The successful use of predators in classical biocontrol programmes needs several background laboratory investigations, one of which is the evaluation of predator behavioural responses to changes in the density of their prey. The impact effect of the density of two prey species [Myzus persicae Sulzer and Aphis craccivora Koch (Hemiptera: Aphididae)] on the predation rates of third-instar Chrysoperla carnea Stephens (Chrysopidae: Neuroptera) and fourth-instar Coccinella septempunctata L. and Hippodamia variegata Goeze (Coccinellidae: Coleoptera) larvae was studied. Although prey species, predator species, prey density, and their interactions all had significant effects on the numbers of aphids consumed, the type of functional response did not vary, remaining a type II response in all treatments. However, the type II parameters differed among predator species on the same prey species, and for each predator species on the two prey species. Chrysoperla. carnea on M. persicae and H. variegata on A. craccivora were more voracious than other predators. In the context of functional response and biological control, the release of these predators, that show inverse density-dependent mortality, has to be started in early season to build up their population on low aphid densities and attack later high aphid populations.  相似文献   

8.
Aphelinus asychis Walker (Hymenoptera: Aphelinidae) and Aphidius gifuensis Ashmead (Hymenoptera: Braconidae: Aphidiinae) are solitary kionobiont endoparasitoids, which can parasitize the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). We determined the influence of oviposition sequence and various time intervals (0, 24, 48, and 72 h) between two ovipositions on self‐ and conspecific discrimination and interspecific intrinsic competition between A. asychis and A. gifuensis. When offered unparasitized M. persicae and those parasitized by the other parasitoid species, the two parasitoid species oviposited more often in unparasitized hosts. Aphelinus asychis and A. gifuensis could, however, not avoid to multiparasitize hosts parasitized by the other species. Both parasitoid species had a limited interspecific discrimination ability through ovipositor insertion to detect internal cues. Aphidius gifuensis most often out‐competed A. asychis. The outcome of this interspecific competition was not influenced by oviposition sequence or time intervals between two ovipositions. Aphidius gifuensis eliminated competitors by physical combat at the first instar and probably by physiological suppression in later stages; A. asychis possibly used physiological suppression in all larval stages.  相似文献   

9.
The solitary parasitoids Aphidius erviHaliday (Hymenoptera: Aphidiidae) and Aphelinus asychisWalker (Hymenoptera: Aphelinidae) attacked but generally did not oviposit in pea aphids parasitized by the other species. Wasps selectively oviposited in unparasitized hosts when given a choice. Host discrimination depended on the recognition of internal cues. Females of A. asychiseither could not recognize or ignored A. ervi'sexternal host marking pheromone. Under most conditions, A. ervisurvived in superparasitized hosts, killing competing A. asychislarvae by physical attack and possibly physiological suppression. The outcome of larval competition was not affected by oviposition sequence or age difference between larvae; A. asychissurvived only when it had substantially completed larval development before the host was superparasitized by A. ervi.It is suggested that competition for host resources incurs a cost, for the winner in terms of reduced size or increased development time and for the loser in terms of lost progeny and searching time. Consequently, heterospecific host discrimination can be functional. Internal, and probably general, cues enable wasps to recognize and avoid oviposition in hosts already parasitized by an unrelated species.  相似文献   

10.
Aphids (Hemiptera: Aphididae) are phytophagous insects that are important agricultural pests. The enormous negative economic impacts caused by aphids worldwide are well known, and are mostly due to their high multiplication rate and the transmission of phytopathogenic viruses. Aphid management strategies mainly involve chemical treatments which are pollutants and are increasingly inefficient, since aphids have developed multiple insecticide-resistant mechanisms. Among the most economically important species is the green peach aptfid Myzus persicae Sulzer (Aphididae: Macrosiphini), which is able to colonize a wide range of host plants belonging to many different families, and transmits numerous plant viruses. Because of its large prevalence, M. persicae has been the target of massive insecticide treatments; consequently, it has evolved several insecticide-resistant mechanisms. In this work, a collection of expressed genes from M. persicae is presented in order to identify putative genes involved in xenobiotic detoxification. After cDNA cloning and sequencing, 959 expressed sequence tags (EST) were annotated. Most sequences matched known genes corresponded to metabolism proteins (26%), ribosomal proteins ( 23 % ) and structural proteins (8%). Among them, several sequences corresponded to proteins putatively involved in sensing, degradation or detoxification of plant xenobiotic products.  相似文献   

11.
Four aphidiine parasitoid species (Hymenoptera: Braconidae) were evaluated with respect to their potential to controlAphis gossypii Glover (Homoptera: Aphididae) in glasshouse cucumbers. In a laboratory experiment thirty cotton aphids were offered to individual females for two hours.Aphidius matricariae Haliday parasitized less than six percent of the aphids and was ruled out as potential biological control agent.Ephedrus cerasicola Stary andLysiphlebus testaceipes Cresson parasitized 23 and 26 percent of the aphids, respectively.Aphidius colemani Viereck parasitized 72 to 80 percent of the aphids. With the latter three species, experiments were performed in small glasshouses with cucumbers (Cucumis sativus L. cv. ‘Aramon’). As in the laboratory testA. colemani performed best; significantly more colonies were found and parasitization rates in the colonies were higher byA. colemani than byE. cerasicola andL. testaceipes. Because of the good correspondence between laboratory and glasshouse experiments, it is suggested that bad performance of an aphid parasitoid species in a simple laboratory trial might be sufficient evidence to disregard this species for further tests.  相似文献   

12.
Two-day-old mated females ofAphidius ervi Haliday andMonoctonus paulensis (Ashmead) were each provided with two sequential host patches. Patches were comprised of plastic petri dishes containing either 15 pea aphids,Acyrthosiphum pisum (Harris), or 15 alfalfa aphids,Macrosiphum creelii Davis. Both wasp species parasitized more hosts in patches containing pea aphids than in those containing alfalfa aphids, regardless of sequence. Females ofA. ervi also laid more eggs per aphid in patches containing pea aphids than in patches containing alfalfa aphids. When both patches contained alfalfa aphids,M. paulensis females parsitized more aphids in the second patch than in the first. Fewer alfalfa aphids were parasitized in the second patch when the first patch contained pea aphids, and fewer eggs were laid per alfalfa aphid. Parasitoid females of both species exhibited consistently higher rates of oviposition into their preferred host species and adjusted their reproductive allocation to hosts and host patches as a function of their experience in previous patches.  相似文献   

13.
We measured the acceptance and suitability of four aphid species [Aphis gossypii Glover, Myzus persicae (Sulzer), Rhopalosiphum padi (L.), and Schizaphis graminum (Rondani)] (Homoptera: Aphididae) for the parasitoid Aphidius colemani Viereck (Hymenoptera: Braconidae). Female parasitoids parasitized fewer R. padi than the other three aphid species, and fewer offspring successfully completed development in R. padi than in the other three host species. Sex ratios of emerging adults were more male‐biased from R. padi than from the other three aphid species, suggesting that R. padi is a poor quality host for this population of A. colemani. Ovipositing A. colemani encountered R. padi at a slower rate, spent more time handling R. padi, and parasitoid offspring died at a higher rate in R. padi compared to A. gossypii. Our results show that oviposition behavior and offspring performance are correlated. In each experiment, we tested the effect of the host species in which the parasitoids developed (parental host) on the number of hosts attacked, the proportion of each host species accepted for oviposition and the survival of progeny. Parental host affected maternal body size and, through its effect on body size, the rate of encounter with hosts. Other than this, parental host species did not affect parasitism.  相似文献   

14.
Young leaves of the potato Solanum tuberosum L. cultivar Kardal contain resistance factors to the green peach aphid Myzuspersicae (Sulzer) (Hemiptera: Aphididae) and normal probing behavior is impeded. However, M. persicae can survive and reproduce on mature and senescent leaves of the cv. Kardal plant without problems. We compared the settling ofM. persicae on young and old leaves and analyzed the impact of aphids settling on the plant in terms of gene expression. Settling, as measured by aphid numbers staying on young or old leaves, showed that after 21 h significantly fewer aphids were found on the young leaves. At earlier time points there were no difference between young and old leaves, suggesting that the young leaf resistance factors are not located at the surface level but deeper in the tissue. Gene expression was measured in plants at 96 h postinfestation, which is at a late stage in the interaction and in compatible interactions this is long enough for host plant acceptance to occur. In old leaves of cv. Kardal (compatible interaction), M. persicae infestation elicited a higher number of differentially regulated genes than in young leaves. The plant response to aphid infestation included a larger number of genes induced than repressed, and the proportion of induced versus repressed genes was larger in young than in old leaves. Several genes changing expression seem to be involved in changing the metabolic state of the leaf from source to sink.  相似文献   

15.
A variety of host-related substances was assessed in relation to their ability to induce arrestment and antennal examination behavior in adult females of the aphid hyperparasitoid Alloxysta victrix (Westwood). In laboratory bioassays, whole-body homogenates of both unparasitized host aphids [Myzus persicae (Sulzer)] and those parasitized by the primary parasitoid Aphidius colemani Viereck failed to elicit a response. However, significant kairomonal activity was associated with aphid cornicle secretions, aphid honeydew, and solvent extracts of parasitized aphids. Solvent extracts of unparasitized aphids (in either hexane or butan-1-ol) failed to elicit arrestment or antennal examination behavior in hyperparsitoid females. The response to aphid honeydew was significantly lower in experienced females than in naive individuals, suggesting that even relatively strong innate responses can be modified by learning.  相似文献   

16.
The olfactory response of the parasitoid Aphidius colemani (Viereck) (Hymenoptera: Braconidae) to odours in a tritrophic system involving three cultivars of common cabbage, Brassica oleracea var capitata, characterized by different levels of susceptibility to Myzus persicae (Sulzer) (Hemiptera: Aphididae) was studied in a four‐way olfactometer. Odours influenced A. colemani response in the olfactometer to varying degrees. The magnitude of parasitoid response to odours of uninfested cabbage depended on cultivar, with Derby Day [green‐leaved, susceptible to M. persicae and the crucifer specialist, Brevicoryne brassicae (Linnaeus) (Hemiptera: Aphididae)] and Minicole (green‐leaved, partially resistant with known antibiosis factors for B. brassicae) preferred over Ruby Ball (red‐leaved with antixenosis factors for M. persicae and B. brassicae). The odour of the cabbage cultivar on which the parasitoid had been reared was preferred over the other cultivars. However, when provided with a choice between odours of infested plants, parasitoids did not show a significant preference for the cultivar on which they were reared. Results from the study show that parasitioids differentiated between odour of the three cultivars in dependence of their rearing history when the plant is uninfested.  相似文献   

17.
One of the key questions in ecology is how animals optimally allocate their time in an environment with patchily distributed resources and competing organisms. Here we investigate the effects that an aphid predator, Macrolophus caliginosus (Wagner) (Hemiptera: Miridae), has on the searching behavior and the patch residence decisions of an aphid parasitoid, Aphidius colemani (Viereck) (Hymenoptera: Aphidiidae). A computer programme was designed that allowed the recording and saving of direct observations. The time allocated to different activities by a female parasitoid wasp in the presence or absence of the predator M. caliginosus was investigated. The experiments were conducted under controlled environment conditions using leaves of sweet pepper, Capsicum annuum L. (Solanaceae) and Myzus persicae (Sulzer) (Hemiptera: Aphididae) as the host plant–prey species system. The parasitoid spent significantly less time on ‘secondary’ activities, such as preening and resting, when the predator was present. Survival analysis showed that the parasitoid had a higher patch-leaving tendency when the predator was present.  相似文献   

18.
The green peach aphid, Myzus persicae Sulzer (Hemiptera: Aphididae) is one of the potato important pests; it is the most efficient vector of potato viruses. Myzus persicae harbors the endosymbiotic bacteria Buchnera aphidicola which supplements their diet. There is increasing evidence that B. aphidicola is involved in plant–aphid interactions and we previously demonstrated that B. aphidicola disruption (aposymbiosis) affected the probing behavior of M. persicae on radish plants, delaying host plant acceptance. In this work, we evaluated the effect of aposymbiosis on the probing behavior of M. persicae on 2 Solanum species with different compatibility with M. persicae, Solanum tuberosum (susceptible) and Solanum stoloniferum (resistant) with the electrical penetration graph technique (EPG). To disrupt B. aphidicola, rifampicin was administered to aphids through artificial diets. Aposymbiotic aphids, on both plant species, showed increased pathway activities, mechanical problems with the stylets, and delayed salivation in the phloem. The extended time in derailed stylet mechanics affected the occurrence of most other probing activities; it delayed the time to the first phloem phase and prevented ingestion from the phloem. The effect of aposymbiosis was more evident in the compatible interaction of M. persicaeS. tuberosum, than in the incompatible interaction with S. stoloniferum, which generated the M. persicaeS. tuberosum interaction to become incompatible. These results confirm that B. aphidicola is involved in the plantaphid interaction in relation to plant acceptance, presumably through a role in stylets penetration in the plant.  相似文献   

19.
We investigated the spectral sensitivity and response to light intensity of Aphidius gifuensis (Hymenoptera: Braconidae), a key natural enemy of the green peach aphid, Myzus persicae (Hemiptera: Aphididae). We used 15 monochromatic lights (emitting various specific wavelengths from 340 to 689 nm) and white light. Monochromatic light of different wavelengths and white light elicited photopositive behaviour from A. gifuensis. The strongest response was stimulated by blue light (492 nm), which induced a movement of 43.5 cm, a response that differed from all other groups. This was followed by green light (568 nm) and UV-light (380 nm). There was no significant response to orange light (601 nm) or red light (649, 668 and 689 nm) from A. gifuensis. The response intensity curve for A. gifuensis to monochromatic light (492 nm) decreased as light intensity increased. At 568 nm, the phototactic response showed an ‘S’ shaped curve. But at 628 nm, the phototactic response rose continuously with increasing intensity. We report here that the visual system of A. gifuensis is composed of three spectrum receptors, attuned to UV, blue and green light. While light intensity is a key factor in determining the photopositive response of A. gifuensis, the effect of intensity varies by wavelength.  相似文献   

20.
《Journal of Asia》2021,24(3):912-917
Efficacy of Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae) was determined by studying its biological and behavioural attributes on the aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Total developmental duration of the parasitoid was longer in younger instars compared to that in older instars of aphid. Host age negatively affected the oviposition period and fecundity of the ovipositing parasitoid. Survival of the immatures was higher in older than the younger instars of the aphid. Sex ratio for the parasitoid was female-biased. Longevity of female parasitoid was higher while parasitizing aphid nymphs of younger age groups (1–2 days old) compared to that of older age groups (4–5 days old). Parasitoid showed a higher preference towards second instar of M. persicae both in choice and no-choice tests. Results on mutual interference revealed that per capita searching efficiency decreased from 0.91 to 0.07 as parasitoid densities increased from 1 to 8. Logistic regression exhibited a type II functional response for D. rapae. The estimated values of search-efficiency (a) and handling time (Th) were 0.038 h−1 and 1.59 h, respectively. The maximum parasitization rate was 15.08. This investigation suggests that D. rapae could be an effective candidate for augmentative biological control of M. persicae which infests several plant species of economic importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号