首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cry1Ac δ-endotoxin produced by Bacillus thuringiensis (Bt) is used as a bio-pesticide for the control of Helicoverpa armigera. Aminopeptidases N (APN) and alkaline phosphatase (ALP) play critical roles in its action against H. armigera larvae. The binding of Cry1Ac with brush border membrane vesicle (BBMV) proteins was increased with the larval development although the sensitivity of larvae to δ-endotoxins decreased. There was higher expression of ALP than APN in early instar larvae with a ~10-fold higher affinity of Cry1Ac towards ALP than to APN. Binding to a specific receptor is therefore more important for the insecticidal activity rather than overall binding to the BBMV proteins. ALP might play a major role in toxicity as compared to APN.  相似文献   

2.
Toxicity of insecticidal endotoxins produced by Bacillus thuringiensis correlates with the presence of specific proteins in the midgut of susceptible larvae. This study was aimed at identifying and purifying Cry 1A binding proteins from Helicoverpa armigera, an important crop pest of India. B. thuringiensis strain HD 73 which produces Cry 1Ac toxin, specific for H. armigera was used in this study. Toxin-binding proteins from insect larvae were detected by employing a toxin overlay assay using both radiolabelled as well as unlabelled toxin. Detergent-solubilized fractions of larval brush border membranes were subjected to soybean agglutinin (SBA) chromatography, from which N-acetylgalactosamine (NAG)-containing proteins were eluted. Analysis of the SBA-purified proteins indicated that four proteins of approximately 97, 120, 170 and 200 kDa could bind to Cry 1Ac toxin, and three proteins of 97, 170 and 200 kDa proteins could bind to Cry 1Ab. Furthermore, in the presence of excess Cry 1Ab toxin, the labelled Cry 1Ac toxin could bind only to 170 and 200 kDa proteins, implying that Cry 1Ab can also bind the 120 kDa protein. This study therefore demonstrates that in H. armigera, midgut proteins of 97, 120, 170 and 200 kDa have the ability to bind both Cry 1Ab and Cry 1Ac. Furthermore, while the 170 and 200 kDa proteins have higher affinity for Cry 1Ac, the 97 kDa has higher affinity for Cry1 Ab. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The use of combinations of Bacillus thuringiensis (Bt) toxins with diverse modes of action for insect pest control has been proposed as the most efficient strategy to increase target range and delay the onset of insect resistance. Considering that most cases of cross-resistance to Bt toxins in laboratory-selected insect colonies are due to alteration of common toxin binding sites, independent modes of action can be defined as toxins sharing limited or no binding sites in brush border membrane vesicles (BBMV) prepared from the target insect larvae. In this paper, we report on the specific binding of Cry2Ae toxin to binding sites on BBMV from larvae of the three most commercially relevant heliothine species, Heliothis virescens, Helicoverpa zea, and Helicoverpa armigera. Using chromatographic purification under reducing conditions before labeling, we detected specific binding of radiolabeled Cry2Ae, which allowed us to perform competition assays using Cry1Ab, Cry1Ac, Cry1Fa, Vip3A, Cry2Ae, and Cry2Ab toxins as competitors. In these assays, Cry2Ae binding sites were shared with Cry2Ab but not with the tested Cry1 or Vip3A toxins. Our data support the use of Cry2Ae toxin in combination with Cry1 or Vip3A toxins in strategies to increase target range and delay the onset of heliothine resistance.  相似文献   

4.
δ-Endotoxins produced by Bacillus thuringiensis (Bt) have been used as bio-pesticides for the control of lepidopteran insect pests. Garlic (Allium sativum L.) leaf agglutinin (ASAL), being toxic to several sap-sucking pests and some lepidopteran pests, may be a good candidate for pyramiding with δ-endotoxins in transgenic plants for enhancing the range of resistance to insect pests. Since ASAL shares the midgut receptors with Cry1Ac in Helicoverpa armigera, there is possibility of antagonism in their toxicity. Our study demonstrated that ASAL increased the toxicity of Cry1Ac against H. armigera while Cry1Ac did not alter the toxicity of ASAL against cotton aphids. The two toxins interacted and increased binding of each other to brush border membrane vesicle (BBMV) proteins and to the two important receptors, alkaline phosphatase (ALP) and aminopeptidase N (APN). The results indicated that the toxins had different binding sites on the ALP and APN but influenced mutual binding. We conclude that ASAL can be safely employed with Cry1Ac for developing transgenic crops for wider insect resistance.  相似文献   

5.
With the deployment of transgenic crops expressing δ‐endotoxins from Bacillus thuringiensis (Bt) for pest management, there is a need to generate information on the interaction of crop pests with their natural enemies that are important for regulation of pest populations. Therefore, we studied the effects of the Bt δ‐endotoxins Cry1Ab and Cry1Ac on the survival and development of the parasitoid Campoletis chlorideae Uchida (Hymenoptera: Ichneumonidae) reared on Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae fed on Bt toxin‐intoxicated artificial diet. The H. armigera larvae fed on artificial diet impregnated with Cry1Ab and Cry1Ac at LC50 (effective concentration to kill 50% of the neonate H. armigera larvae) and ED50 (effective concentration to cause a 50% reduction in larval weight) levels before and after parasitization resulted in a significant reduction in cocoon formation and adult emergence of C. chlorideae. Larval period of the parasitoid was prolonged by 2 days when fed on Bt‐intoxicated larvae. No adverse effects were observed on female fecundity. The observed effects appeared to be indirect in nature, because no Bt proteins were detected through enzyme‐linked immunosorbent assay in the C. chlorideae larvae, cocoons, or adults fed on Cry1Ab‐ or Cry1Ac‐treated H. armigera larvae. The effects of Bt toxin proteins on C. chlorideae were due to early mortality of H. armigera larvae, that is, before completion of parasitoid larval development.  相似文献   

6.
Insecticidal proteins produced by strains of Bacillus thuringenesis are specific toward target pests. One of the Bt proteins, Cry 1Ac has been used successfully for controlling crop predation by polyphagous pests Helicoverpa armigera. Structurally, Bt proteins consist of three domains; domain I and III are fairly homologous in various Bt proteins while domain II is hypervariable. The hypervariable domain II is believed to be responsible for specificity toward target pest. Successful deployment of Bt proteins requires knowledge of its specificity toward the insect. Various Bt proteins have been characterized for activity against coleopteran pests. Some Bt proteins of class Cry6 have been found to be active against potato weevil. We have evaluated the activity of Cry6B protein (BGSC-4D8) against lucerne weevil, Hypera postica, which is a major pest of forage crop Medicago sativa. Results revealed that the purified Cry6B protein is significantly active against the coleopteran pest with LC50 value 280 ng/μl. The leaves coated with the purified Cry6 toxin were three times less damaged as compared with the negative control.  相似文献   

7.
Genetically engineered crops simultaneously produce defensive allelochemicals and Bacillus thuringiensis (Bt) toxin proteins to kill some of the world's most devastating insect pests. How the two types of toxins, when ingested sequentially or simultaneously, interact at both lethal and sublethal doses in these pests remains underexplored. Here, we examined the toxicological interactions between the Bt toxin Cry1Ac and the flavonoid allelochemical flavone in Helicoverpa armigera. Simultaneous exposure of H. armigera neonates to lethal doses (LC25) of Cry1Ac and flavone caused a mortality significantly higher than that of either toxin alone and their expected additive mortality. Preexposure for 24 h to a sublethal dose (LC10) of Cry1Ac followed by 6-d simultaneous exposure to the same dose of Cry1Ac plus a lethal dose (1.6 mg/g diets, LC50) of flavone resulted in a mortality significantly higher than that of the LC50 dose of flavone alone and the expected additive mortality of the LC50 dose of flavone plus the LC10 dose of Cry1Ac. One-day preexposure to the sublethal dose (LC10) of flavone followed by 6-d simultaneous exposure to the LC50 dose (6 ng/cm2) of Cry1Ac plus the LC10 dose of flavone yielded a mortality significantly higher than that of the LC50 dose of Cry1Ac but similar to the expected additive mortality of the LC50 dose of Cry1Ac plus the LC10 dose of flavone. The results suggest that Cry1Ac induces and synergizes the toxicity of flavone against H. armigera larvae.  相似文献   

8.
The relatively low susceptibility ofHelicoverpa armigera to CrylAc, its history of resistance to chemical insecticides and the seasonal decline in expression of CrylAc in transgenic cotton necessitated the development of cotton expressing two insecticidal proteins to provide sustainable control of this multinational pest. To manage the resistance issue, it was essential that the second insecticidal protein have a significantly different mode of action to CrylAc. A common feature of resistance to CrylA proteins in several species as well as H. armigera has been a change in the binding site. A study of binding sites for some Cry proteins in the brush border membrane vesicles (BBMV) ofH. armigera and Helicoverpa punctigera was undertaken. The binding affinity for CrylAc was higher than for CrylAb, matching their relative toxicities, and CrylAc and CrylAb were found to share at least one binding site in both I-1. armigera and I-1. punctigera. However Cry2Aa did not compete with CrylAc for binding and so could be used in transgenic cotton in combination with CrylAc to control H. armigera and manage resistance. Variation in the susceptibilities of three different H. armigera strains to CrylAc correlated with the parameter Bmax/Kcom.  相似文献   

9.
Laboratory experiments were conducted to evaluate the behavior of Helicoverpa armigera (Hübner) and Spodoptera litura (Fabricius) larvae on meridic diet with different concentrations of Bt spray formulation Delfin or isolated Cry1Ac protein or the foliage and bolls from transgenic cotton, Bollgard hybrid RCH-317 Bt. Both insect species selectively fed on nontreated diet compared with the diet treated with Delfin. While H. armigera exhibited concentration response with Cry1Ac, this protein did not affect S. litura larvae. In general Helicoverpa selected diet with low concentrations (EC20 and EC50 levels) of Cry1Ac compared with higher concentrations of Cry1Ac. In order to develop appropriate management strategies, a thorough understanding of the behavioral mechanisms leading to the responses of insects to the proteins in transgenic varieties is required. Thus, based on results of the insects fed individually on the leaf discs or bolls from transgenic cotton plants alone or under choice situation with meridic diet revealed that H. armigera larvae preferred meridic diet to transgenic leaves or bolls expressing Cry1Ac protein. H. armigera larvae preferred meridic diet to plant material; more than 70% larvae were seen on the meridic diet, and average larval weight gain was in the range of 121.7–130.5 mg. However, in case of S. litura the larvae showed no significant discrimination between meridic diet and the leaf discs. In fact more than 60% larvae preferred leaf discs for feeding, though Cry1Ac expression in leaf discs was in the range of 0.9–2.18 μg/g. Thus differences in behavioral response could potentially impact the level of efficacy of crop cultivars that have been genetically engineered to produce these proteins.  相似文献   

10.
There is no conclusive evidence that Helicoverpa spp. (Lepidoptera: Noctuidae) in Australia have evolved significant levels of resistance to Bollgard II® cotton (which expresses two Bt toxin genes, cry1Ac and cry2Ab). However, there is evidence of surviving larvae on Bollgard II cotton in the field. The distribution and survival of early‐instar Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae were examined on whole Bollgard II and non‐Bt cotton plants in greenhouse bioassays. The expression of Cry toxins in various parts of Bollgard II plants was compared to the survival of larvae in those locations. Only 1% of larvae survived after 6 days on greenhouse‐grown Bollgard II plants compared to 31% on non‐Bt cotton plants. Overall, and across all time intervals, more larvae survived on reproductive parts (squares, flowers, and bolls) than on vegetative parts (leaves, stems, and petioles) on Bollgard II plants. The concentration of Cry1Ac toxin did not differ between plant structures, whereas Cry2Ab toxin differed significantly, but there was no relationship between the level of expression and the location of larvae. This study provides no evidence that lower expression of Cry toxins in the reproductive parts of plants explains the survival of H. armigera larvae on Bollgard II cotton.  相似文献   

11.
Wide planting of transgenic Bt cotton in China since 1997 to control cotton bollworm (Helicoverpa armigera) has increased yields and decreased insecticide use, but the evolution of resistance to Bt cotton by H. armigera remains a challenge. Toward developing a new generation of insect-resistant transgenic crops, a chimeric protein of Vip3Aa1 and Vip3Ac1, named Vip3AcAa, having a broader insecticidal spectrum, was specifically created previously in our laboratory. In this study, we investigated cross resistance and interactions between Vip3AcAa and Cry1Ac with three H. armigera strains, one that is susceptible and two that are Cry1Ac-resistant, to determine if Vip3AcAa is a good candidate for development the pyramid cotton with Cry1Ac toxin. Our results showed that evolution of insect resistance to Cry1Ac toxin did not influence the sensitivity of Cry1Ac-resistant strains to Vip3AcAa. For the strains examined, observed mortality was equivalent to the expected mortality for all the combinations of Vip3AcAa and Cry1Ac tested, reflecting independent activity between these two toxins. When this chimeric vip3AcAa gene and the cry1Ac gene were introduced into cotton, mortality rates of Cry1Ac resistant H. armigera larvae strains that fed on this new cotton increased significantly compared with larvae fed on non-Bt cotton and cotton producing only Cry1Ac. These results suggest that the Vip3AcAa protein is an excellent option for a “pyramid” strategy for pest resistance management in China.  相似文献   

12.
Cry1Ac insecticidal crystal proteins produced by Bacillus thuringiensis (Bt) have become an important natural biological agent for the control of lepidopteran insects. In this study, a cry1Ac toxin gene from Bacillus thuringiensis 4.0718 was modified by using error-prone PCR, staggered extension process (StEP) shuffling combined with Red/ET homologous recombination to investigate the insecticidal activity of delta-endotoxin Cry1Ac. A Cry1Ac toxin variant (designated as T524N) screened by insect bioassay showed increased insecticidal activity against Spodoptera exigua larvae while its original insecticidal activity against Helicoverpa armigera larvae was still retained. The mutant toxin T524N had one amino acid substitution at position 524 relative to the original Cry1Ac toxin, and it can accumulate within the acrystalliferous strain Cry-B and form more but a little smaller bipyramidal crystals than the original Cry1Ac toxin. Analysis of theoretical molecular models of mutant and original Cry1Ac proteins indicated that the mutation T524N located in the loop linking β16–β17 of domain III in Cry1Ac toxin happens in the fourth conserved block which is an arginine-rich region to form a highly hydrophobic surface involving interaction with receptor molecules. This study showed for the first time that single mutation T524N played an essential role in the insecticidal activity. This finding provides the biological evidence of the structural function of domain III in insecticidal activity of the Cry1Ac toxin, which probably leads to a deep understanding between the interaction of toxic proteins and receptor macromolecules.  相似文献   

13.
A cadherin-like protein has been identified as a putative receptor for Bacillus thuringiensis (Bt) Cry1Ac toxin in Helicoverpa armigera and plays a key role in Bt insecticidal action. In this study, we produced a fragment from this H. armigera Cry1Ac toxin-binding cadherin that included the predicted toxin-binding region. Binding of Cry1Ac toxin to this cadherin fragment facilitated the formation of a 250-kDa toxin oligomer. The cadherin fragment was evaluated for its effect on Cry1Ac toxin-binding and toxicity by ligand blotting, binding assays, and bioassays. The results of ligand blotting and binding assays revealed that the binding of Cry1Ac to H. armigera midgut epithelial cells was reduced under denaturing or native conditions in vitro. Bioassay results indicated that toxicities from Cry1Ac protoxin or activated toxin were reduced in vivo by the H. armigera cadherin fragment. The addition of the cadherin fragment had no effect on Cry2Ab toxicity.  相似文献   

14.
Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) causes huge economic losses in cotton production around the world. Tannin, one of the important secondary substances in cotton plants, can increase the δ‐endotoxin activity of Bacillus thuringiensis ssp. kurstaki. The mechanism of interaction between tannin and Bt toxin on H. armigera is unclear. We investigated the interaction between tannic acid and Cry1Ac toxin in H. armigera, and monitored survival, growth, and development during the larval period after treating the larvae with four concentrations of Cry1Ac toxin (0, 2, 8, and 14 μg?1) alone or in combination with four concentrations of tannic acid (0, 0.5, 1, and 2 mg g?1). Mortality of larvae treated with both tannic acid and Cry1Ac was higher than the mortality of larvae treated with tannic acid or Cry1Ac alone. Mortality was 47.5 and 51.5% in larvae treated with 14 μg g?1 Cry1Ac alone or 2 mg g?1 tannic acid alone, respectively. In contrast, larval mortality was 75% when treated with the mixture of 14 μg g?1 Cry1Ac and 2 mg g?1 tannic acid, suggesting that a mixture of the two enhanced the effectiveness of each one alone. The developmental time of larvae treated with the combination of tannic acid and Cry1Ac was significantly longer than when they were treated with Cry1Ac or tannic acid alone. Larval weight, pupal weight, and pupation rate were also significantly reduced in larvae treated with both toxins, compared with the larvae treated with either toxin alone. These results showed that the interactive effect of tannic acid and Cry1Ac on larval growth inhibition is additive, and that tannic acid improves Cry1Ac toxicity to insects. Tannic acid used in combination with B. thuringiensis might potentially reduce overall insecticide use, thus delaying development of insecticide resistance.  相似文献   

15.
16.
Brush border membrane vesicles (BBMVs) were prepared from the 2nd instar larvae of Helicoverpa armigera. Binding of the activated Cry1Ac of Bacillus thuringiensis (Bt) toxin was shown by immunoblot. A 120-kDa protein was identified as a receptor for the Cry1Ac type δ-endotoxin. The aminopeptidase-N activity of BBMVs was measured as the hydrolysis of L-leucine p-nitroanilide. The specific activity was 35 units/mg protein. The BBMV preparation also showed low level of alkaline phosphatase activity. Zn++ chelating agents 2,2′-dipyridyl and 1,10-phenanthroline inhibited aminopeptidase activity at 10 mM concentration, indicating the presence of zinc-dependent aminopeptidase in the brush border of H. armigera. The aminopeptidase activity was increased with increasing concentration of δ-endotoxin. The purified 120-kDa binding protein was N-terminally sequenced. The first 10-amino-acid sequence showed 60–77% similarity with human cysteine-rich secretory protein-1 precursor, inhibin alpha chain precursor. Salmonella flagellar hook protein and yeast carboxypeptidase S. Received: 4 January 2001 / Accepted: 6 February 2001  相似文献   

17.
In Australia, the cotton bollworm, Helicoverpa armigera, has a long history of resistance to conventional insecticides. Transgenic cotton (expressing the Bacillus thuringiensis toxin Cry1Ac) has been grown for H. armigera control since 1996. It is demonstrated here that a population of Australian H. armigera has developed resistance to Cry1Ac toxin (275-fold). Some 70% of resistant H. armigera larvae were able to survive on Cry1Ac transgenic cotton (Ingard) The resistance phenotype is inherited as an autosomal semidominant trait. Resistance was associated with elevated esterase levels, which cosegregated with resistance. In vitro studies employing surface plasmon resonance technology and other biochemical techniques demonstrated that resistant strain esterase could bind to Cry1Ac protoxin and activated toxin. In vivo studies showed that Cry1Ac-resistant larvae fed Cy1Ac transgenic cotton or Cry1Ac-treated artificial diet had lower esterase activity than non-Cry1Ac-fed larvae. A resistance mechanism in which esterase sequesters Cry1Ac is proposed.  相似文献   

18.
以棉铃虫Helicoverpa armigera (Hübner)室内敏感品系和田间品系为寄主,研究了亚致死浓度的Bt杀虫蛋白对中红侧沟茧蜂Microplitis mediator (Haliday)生长发育的影响。结果表明: 当寄主一直取食,或者在被寄生前12小时开始取食含Bt杀虫蛋白浓度为0,0.5,1.0, 2.0,4.0,8.0 μg/g的饲料时,与对照相比,中红侧沟茧蜂的卵-幼虫历期延长,茧重和成虫体重降低,成虫寿命缩短,但对茧期没有明显影响。Bt杀虫蛋白能有效抑制两个棉铃虫品系幼虫的生长,显著降低棉铃虫蛹重;当Bt蛋白浓度为4.0 μg/g时,显著降低棉铃虫化蛹率。用转双基因抗虫棉SGK321(表达Cry1A+CpTI蛋白)饲喂两个棉铃虫品系初孵幼虫,室内品系的第2、3、4和5天校正死亡率分别为48.5%、87.8%、96.6%和 95.8%,显著高于田间品系(30.9%、59.6%、80.9%及86.1%)。本研究表明,不论是田间品系还是室内品系,棉铃虫取食含Bt杀虫蛋白的饲料后,对中红侧沟茧蜂的生长发育都具有显著的负面作用。  相似文献   

19.
Interactions between the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), its larval parasitoid Microplitis mediator (Haliday) (Hymenoptera: Braconidae), and the Cry1Ac toxin of Bacillus thuringiensis Berliner were evaluated under laboratory conditions. The growth of H. armigera larvae was delayed and its pupal rate and pupal weight decreased when they were fed on a diet containing Cry1Ac toxin. Due to the lowered growth rate of the host larvae, the time available for parasitization of H. armigera by M. mediator increased when the host larvae were reared on a diet containing Cry1Ac toxin at concentrations of 0.5, 1, 2, and 4 µg g?1. The longevity of female and male parasitoids was not significantly affected when newly emerging wasps fed on honey solutions containing three different concentrations of Cry1Ac toxin (125, 250, and 500 µg ml?1). When female parasitoids were fed on honey solutions containing Cry1Ac, their offsprings’ egg and larval development period, pupal weight, length of pupation, adult weight, and adult longevity did not change significantly in most of the treatments compared with controls. When the female parasitoids parasitized host larvae that had been fed on a diet containing 0.5, 1, 2, 4, and 8 µg g?1 Cry1Ac toxin, their offsprings’ eggs and larvae were significantly delayed. Their pupal weight, adult weight, and adult longevity were also significantly less than controls.  相似文献   

20.
The expression of a synthetic Bacillus thuringiensis ( Bt ) cry1Ac gene in oilseed rape (OSR, Brassica napus ) was monitored under field conditions in China, and performance against Helicoverpa armigera larvae was compared in intraspecific hybrids with a Chinese OSR variety. Leaf samples from transgenic OSR were collected at various developmental stages in two separate field experiments. The Bt Cry1Ac concentrations in the third uppermost leaves increased before pod formation stage and either increased or decreased after pod formation stage whereas the total soluble protein increased before and decreased after pod-fill in the later growing season. Spontaneously formed intraspecific hybrids between transgenic OSR and a Chinese conventional OSR were obtained in the field and transgenic status was confirmed by a green fluorescent protein (GFP) phenotype and polymerase chain reaction. A bioassay on the neonate larvae of a susceptible strain of H.   armigera was performed to test the efficacy of Bt Cry1Ac toxin in hybrid OSR plants. Both the original transgenic OSR and hybrid plants had a negative effect on body-weight gain of insect larvae. It was assumed that Bt Cry1Ac toxin concentration was similar in hybrids compared to the original transgenic OSR at the investigated developmental stages. The frequency of hybrid production and volunteerism could potentially enhance the evolution of insect pest tolerance in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号