首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interspecific competition between individuals of different species can result in reductions in their fecundity, growth or survival, reflecting differential exploitation of resources that become intensified due to spatial co-occurrence, ecological similarity and increased population densities. As two species cannot occupy the same niche, coexistence is only possible if the available resources are used in non-overlapping manners such as niche partitioning or the use of refuges. Among agricultural insect pests, such as fruit flies of the family Tephritidae, competitive interactions can result in competitive displacement, host changes, or the expansion or restriction of the numbers of hosts utilized that can have negative consequences for human agricultural activities. We evaluated the competitive interactions between two fruit fly species of the genus Anastrepha, Anastrepha obliqua (Macquart, 1835) and Anastrepha fraterculus (Wiedmann, 1830), on their respective preferred hosts (mangoes and guava). Experiments of larval competition and competition for ovipositioning sites by adult females were performed to compare the parameters of larval development time, numbers of pupae and emerged adults and numbers of ovipositions in the presence or absence of interspecific competition. We observed that the interactions between those species were asymmetrical and hierarchical, and our results suggest a competitive displacement of A. fraterculus by A. obliqua when those two species are present on the same fruit, whether mangoes or guavas.  相似文献   

2.
The electrophoretic patterns of the enzyme alcohol dehydrogenase (ADH) from Anastrepha fraterculus and A. obliqua were studied. Two loci were found to code for the enzyme in A. fraterculus, and three in A. obliqua. In both species, all isozymes were active in third-instar larvae. A cationic isozyme (Adh-1) was active mainly in the visceral fat body of both species. In A. fraterculus, the locus had an anionic polymorphic isozyme (Adh-3) that was detected in the parietal fat body. In addition to these two loci, a third locus for an anionic isozyme (Adh-2), which was active in the digestive tube of larvae, was present in A. obliqua and probably resulted from gene duplication. For both species, multiple forms of the isozymes are formed by binding of an NAD-carbonyl compound, as in Drosophila melanogaster. Both larvae and early pupae of A. obliqua had almost twice the specific ADH activity as A. fraterculus. The ethanol content of the host fruit infested with A. obliqua (red mombim) was also higher than that of the host fruit infested with A. fraterculus (guava).This research was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnologico (CNPq-PIG 40.2486/82).  相似文献   

3.
A total of 1,302 parasitoids representing 8 species and 4 families were recovered from 9,818 fruit fly host fruits sampled. The most common parasitoid species wasDiachasmimorpha longicaudata (Ashmead). Average percent parasitism ranged between 0.44 and 29.23%. Parasitoid emergence data indicate thatAnastrepha ludens (Loew),A. obliqua (Sein),A. serpentina (Wiedeman),A. striata (Schiner) andToxotrypana curvicauda (Gerstaecker) were subject to parasitism. We provide information on the population fluctuation ofAnastrepha ludens, A. obliqua, A. serpentina, A. distincta (Greene),A. striata, A. fraterculus (Wiedeman),A. chiclayae (Greene),A. montei (Costa Lima),A. leptozona (Hendel) andA. tripunctata (Wulp).Anastrepha ludens andA. obliqua were the most common species, representing 95.3% of all fruit fly species caught in McPhail traps.   相似文献   

4.
The Neotropical‐native figitid Aganaspis pelleranoi (Brèthes) and the Asian braconid Diachasmimorpha longicaudata (Ashmead) are two parasitoids of Tephritidae fruit flies with long and recent, respectively, evolutionary histories in the Neotropics. Both species experienced a recent range of overlap. In Argentina, A. pelleranoi is a potential species in biological control programs against the pestiferous tephritid species, Anastrepha fraterculus (Wiedemann) and Ceratitis capitata (Wiedemann), whereas D. longicaudata is already used in open‐field releases against Medfly in central‐western Argentina. To characterize the host‐foraging strategies of A. pelleranoi and D. longicaudata, olfactometer experiments were conducted comparing responses to C. capitata and A. fraterculus larvae, in two kinds of food substrate: fruit and artificial larval medium. To control the possible influence of host larvae used for parasitoid rearing on olfactory response, two strains of both parasitoid species, reared on both tephrtid species, were studied. Volatiles directly emanating either from A. fraterculus or C. capitata larvae may be detected by both A. pelleranoi and D. longicaudata, although chemical stimuli originating from the combination of host larvae and the habitat of the host were preferred. However, olfactory cues associated with host larvae probably play a relevant role in host searching behaviour of A. pelleranoi, whereas for D. longicaudata, the host‐habitat olfactory stimuli would be highly essential in short‐range host location. The strain of the parasitoids did not affect host search ability on the two tephritid species evaluated. These evidences are relevant for mass production of both parasitoids and their impact following open‐field augmentative releases.  相似文献   

5.
Hyperparasitism is a normal behavior of parasitoids, which often happens among species. Conspecific hyperparasitism, such as some kinds of heteronomous hyperparasitic behaviors, has been only reported in some species belonging to Aphelinidae. In this article, the conspecific hyperparasitism of Pachycrepoideus vindemmiae (Pteromalidae) is reported, with Drosophila puparia as hosts. Hosts were exposed to P. vindemmiae females twice to parasitism with nine, twelve, and fifteen day intervals between the two exposures. None of the infested hosts emerged more than one offspring, and emergence of parasitoid offspring occurred in two obvious events, synchronously with the exposure time intervals, which suggested that offspring emerging during the first and second events would come from the primary and secondary parasitoids, respectively, and the inference with the developmental duration of offspring also indicated this. With two P. vindemmiae strains that could be identified by a simple sequence repeat marker, the above speculation of the origin of those offspring emerging during the two events was confirmed. Dissection of hosts exposed twice revealed a cannibalism behavior of larvae from the secondary foundresses on the primary conspecific pupae. Our results suggested a conspecific hyperparasitism behavior of the secondary parasitoids on the primary conspecifics. Measures showed a reduced body size for the adults from the conspecific hyperparasitism. Foundresses from the conspecific hyperparasitism had less fitness variables than those from primary parasitism, with shorter longevity, less life time fecundity, lower values of infestation degree, and lower success rate of parasitism. However, when the parasitoids from the conspecific hyperparasitism met healthy Drosophila puparia, their offspring would recover to normal size. Frequency of the conspecific hyperparasitism behavior enhanced with the decreasing of proportion of healthy hosts in the oviposition patch. The conspecific hyperparasitism of P. vindemmiae on the primary conspecifics would be helpful to last the population when healthy hosts are absent in the oviposition patch.  相似文献   

6.
Host rejection, superparasitism, and ovicide are three possible host selection strategies that parasitoid females can adopt when they encounter parasitized hosts. These differ in costs (in terms of time and energy required) and benefits (in terms of number and quality of offspring produced). Their relative payoff should vary with patch quality, (i.e., proportion of parasitized hosts present), and female choice between them should be adapted accordingly. We conducted behavioral observations to test the effect of the ratio of parasitized/unparasitized hosts present in a patch on the host selection strategies of Pachycrepoideus vindemmiae Rondani (Hymenoptera: Pteromalidae). This species being a generalist known to attack hosts of a great range of size, we also tested the impact of host size on female decisions with two host species differing greatly in size (Drosophila melanogaster and Delia radicum). We evaluated the adaptive value of each strategy in relation to host parasitization status and host size by measuring their duration and the potential number of offspring produced.  相似文献   

7.
The olfactory responses of the native parasitoids Doryctobracon areolatus (Szépligeti) and Asobara anastrephae (Muesebeck) and of the exotic parasitoid Diachasmimorpha longicaudata (Ashmead) to guava (Psidium guajava L.) infested or not with fruit fly larvae were evaluated. D. areolatus and D. longicaudata females responded to the odors of uninfested rotting guavas, although D. areolatus was also attracted to fruits at the initial maturation (turning) stage. The females of these species recognized the volatiles of guavas containing Ceratitis capitata (Wied.) larvae. However, in bioassays involving fruits with larvae of different instars, D. longicaudata females were not able to separate between fruits containing C. capitata larvae at the initial instars and larvae at the third instar. In the evaluations of volatiles released by guavas containing C. capitata and Anastrepha fraterculus (Wied.) larvae, the D. longicaudata females were oriented toward the volatiles of fruits containing both host species, but differed significantly from volatiles of guavas containing C. capitata larvae. The D. areolatus females also showed responses to both species, although with a preference for volatiles of fruits containing A. fraterculus larvae. The A. anastrephae females were oriented toward the odors of fruits infested with both fruit fly species. In the shade house, D. longicaudata females were oriented to volatiles of rotting fruits containing larvae or not, but could not significantly differentiate between hosts. D. areolatus females were not attracted toward fruits on the ground in the shade house, regardless of host, suggesting that this parasitoid does not forage on fallen fruits.  相似文献   

8.
Opius bellus is a neotropical larval-prepupal parasitoid known to attack the pestiferous fruit fly, Anastrepha fraterculus. Due to interest in the use of native parasitoids in forthcoming fruit fly biocontrol programmes in Argentina, O. bellus was colonised for the first time using laboratory-reared A. fraterculus larvae. A series of experiments were conducted to (1) best achieve an efficient parasitoid rearing by determining optimal larval host age, host:parasitoid ratio and host exposure time and (2) assess their potential as biological control agents by determining reproductive parameters. The most productive exposure regimen was: 7–9 d-old (early and middle third-instars) A. fraterculus larvae for 4 h at a 4:1 host:parasitoid ratio; this array of factors was sufficient to achieve the highest average adult emergence (48%) and an offspring sex ratio at equitable proportion. Increasing both host:parasitoid ratio further than 4:1 and the host exposure time beyond 4 h did not significantly enhance parasitoid female offspring yield. Females produced eggs for 29.5 ± 1.4 days. At 32 days of age, 50% of the females were still alive. The majority of the progeny were produced by females between 20 and 24 d-old. At 26°C, gross fecundity rate, net reproductive rate, intrinsic rate of increase and mean generation time were 20.7 ± 4.2 offspring/female, 9.6 ± 2.5 females/newborn females, 0.06 ± 0.01 females/female/day and 8.4 ± 0.2 days, respectively. The long lifespan and reproductive parameters suggest that this parasitoid species has suitable attributes for mass-rearing.  相似文献   

9.
An investigation was undertaken to record the influence of host age on the reproductive performance of Nesolynx thymus (Hymenoptera:Eulophidae). This is an indigenous, gregarious, ecto-pupal parasitoid of certain dipteran insects, including the tachinid fly, Exorista bombycis (Louis) which is a well-known endo-larval parasitoid of the silkworm, Bombyx mori. Each gravid N. thymus female was allowed to parasitise 1–4-day-old puparia of Musca domestica L. for 2 days at a parasitoid–host ratio of 1:20. The parasitised host puparia were observed for progeny recovery, sex ratio, female longevity and fitness (adult size). In addition, reproductive performance of the parasitoid progeny was assessed by allowing its females to parasitise for 2 days, 3-day-old puparia of E. bombycis at a parasitoid–host ratio of 1:4. There was a significant negative correlation between host age and parasitisation rate, parasitoid developmental duration, sex ratio and female longevity while the correlation was positive between host age and parasitoid recovery per host puparium. Similarly, negative correlation was observed between host age and morphometric parameters (body length, head width and wing span of male and female and length and width of female abdomen) of the progeny adults. Host age did not have any impact on the reproductive performance of progeny adults when allowed to parasitise puparia of E. bombycis.  相似文献   

10.
Biological control of bruchid beetles, Callosobruchus maculatus (Fabricius) (Coleoptera: Bruchidae), infesting cowpea seeds, Vigna unguiculata (L.) Walpers (Fabaceae), can be performed via augmentative releases of Dinarmus basalis Rondani (Hymenoptera: Pteromalidae) parasitoid wasps. Females of the latter species are therefore likely to experience intense intraspecific competition: they should encounter numerous previously parasitized hosts but also conspecific competitors, with which they may fight to secure hosts on which to lay their eggs. Such contests might therefore disrupt biological control programs. Here, we studied aggressive behavior that D. basalis females show toward conspecific competitors and subsequent host exploitation strategies. We further investigated factors that classically affect contest intensity and outcomes in animals, such as the effect of ownership status, by manipulating the residency period before the intruder's arrival. In addition, we tested the effect of the size of female reproductive tissue (measured in terms of egg load) and the quality of the habitat previously experienced by females (either rich or poor in hosts). These two factors are expected to influence the value that females place on the host and therefore the costs they are willing to pay to win it. Finally, we discussed the consequences of agonistic behaviors on females' host exploitation strategies. Our results suggest that contest competition may actually enhance host control by favoring parasitoid dispersion, rather than disrupting it.  相似文献   

11.
The quantity and quality of host nutrients can affect fitness‐related traits in hymenopteran parasitoids, including oogenesis. The present study tested the prediction that a high host quality will influence oogenesis‐related traits positively in synovigenic parasitoids, and that a high‐quality adult parasitoid diet can positively affect the same parameters, potentially compensating for development on low‐quality hosts. Four braconid parasitoid species with contrasting life histories are reared on a low‐quality diet [Anastrepha ludens Loew (Diptera: Tephritidae) larvae reared on mango] or a high‐quality (artificial) diet. Adult parasitoids are provided with a high‐quality (honey ad libitum), moderate‐quality (honey every other day) or low‐quality (guava pulp) diet. Generalist species that encounter high variation in host quality naturally are predicted to be more flexible in dealing with nutrient shortfalls than specialist species. By contrast to the predictions, low‐quality hosts yield parasitoids with higher egg loads in two species: Opius hirtus Fisher and Diachasmimorpha longicaudata Ashmead. However, as predicted, a high‐quality adult diet exerts a positive effect on egg load (Utetes anastrephae Viereck), egg size (Doryctobracon crawfordi Viereck) and egg maturation rate (D. longicaudata, O. hirtus and U. anastrephae). The generalist D. longicaudata varies in egg load and maturation rate depending on host quality and adult diet, respectively. Evidence of the combined effect of both factors on parasitoid fertility is presented for the specialist O. hirtus. The theoretical and practical implications of these findings are discussed.  相似文献   

12.
The fraterculus species group, composed of 34 species in the genus Anastrepha (Diptera: Tephritidae), includes the fraterculus cryptic species complex formed by eight reproductively isolated morphotypes. A previous study revealed six genetic mitochondrial types of Anastrepha obliqua, suggesting the existence of a second cryptic species complex. However, marked discrepancies between nuclear and mitochondrial loci rather suggest incomplete lineage sorting or introgression between A. obliqua and A. fraterculus. Such hybridization could nevertheless result in reproductive isolation, an outcome that could affect efficacy of area‐wide management for the most important pest of mangos in America. Two mitochondrial types occur in Mexico, and the limits of a third one, encompassing Central American populations, have not been clearly established. Here, we tested reproductive compatibility among three A. obliqua populations from the Pacific and a population from the Gulf of Mexico. No evidence of pre‐zygotic isolation was found. Flies from the Atlantic mated randomly for equal duration with individuals from three Pacific populations. Homotypic and heterotypic crosses produced similar numbers of eggs, with heterotypic crosses of Pacific males and Atlantic females hatching in lower proportions. Larvae of all cross types developed equally in mangos and exhibited no sex ratio distortion of hybrid F1. The three mitochondrial types identified in Mexico and Central America do not appear to be cryptic species and can be managed using one single strain for the sterile insect technique.  相似文献   

13.
Optimal Foraging Theory predicts that parasitoid females should optimize their host selection to maximize their lifetime fitness gain and parasitize the most profitable hosts. In particular, in solitary parasitoids, females should avoid superparasitism, at least when sufficient unparasitized hosts are available. However, when unparasitized hosts are scarce, they should prefer, among already parasitized hosts, those that provide the best survival probability to their progeny, which depends on the age and the developmental stage of the first parasitoid. To test this hypothesis in a solitary ectoparasitoid, Pachycrepoideus vindemmiae Rondani (Hymenoptera: Pteromalidae), we first assessed the survival probability of a second parasitoid according to the time elapsed since initial parasitism. We then analyzed the female selection behavior in patches containing a mixture of hosts parasitized over various time intervals. Our results showed that the older the opponent larva was, the lower the survival probability of the second parasitoid was. However, when the first individual had reached the prepupal stage, both individuals could complete their development. At this stage, the survival probability of the second parasitoid was surprisingly high but such individuals were reduced in size. Our study also showed that host acceptance by females was strongly correlated with the survival probability of their progeny when the first parasitoid was from 0 to less than 10 days‐old. When the first parasitoid had reached the prepupal stage, females usually rejected these hosts, although the survival probability of the offspring was quite high. This discordance between female host selection behavior and progeny survival probability is discussed.  相似文献   

14.
Herbivore fitness can be altered by a combination of interacting organisms, such as its food plant, conspecifics, and predators/parasitoids. Here, we tested relative effects of plant species, herbivore intraspecific competition type, and spatial distribution of the herbivore among plant units on herbivore survival and whether parasitoids modified these effects. We used an endophagous bruchine seed predator Callosobruchus maculatus for the herbivore, and a braconid wasp Heterospilus prosopidis for the parasitoid. The survival rate of C. maculatus was measured for each of 16 combinations of two plants (bean species, Vigna unguiculata and V. radiata), two competition types of C. maculatus larvae (contest and scramble), two spatial distributions of hosts [sparse (1 C. maculatus larva per seed over 20 seeds) and dense (2 C. maculatus larvae per seed over ten seeds)], and with/without a parasitoid pair. In the absence of the parasitoid, C. maculatus survival rate was lower with V. radiata and in the contest type. With the parasitoid, the proportion parasitized hosts was independent of total host density. Neither the proportion of parasitized hosts nor host survival rate was affected by plant species or host strain, but they were affected by host spatial distribution. When host distribution was dense, a higher proportion of hosts were parasitized, and C. maculatus survival rate was lower. Here we discuss parasitoid potential as a selective agent for the sparse within-pod distribution of its hosts in the field.  相似文献   

15.
Reproductive opportunities in insects that deposit their eggs in discrete resource patches are frequently limited because the availability of oviposition substrates is often spatially and temporally restricted. Such environmental variability leads individuals to confront time‐ or egg‐limitation constraints. Additionally, species with different oviposition strategies (i.e. single egg layers vs clutch layers) commonly deal with different structural and ecological characteristics of larval host plants. To test the hypothesis that oviposition strategies such as laying eggs singly or in batches (clutches) are related to these constraints (i.e. egg vs time limitation), we compared the lifetime oviposition patterns of two closely related sympatric species of Anastrepha (Diptera: Tephritidae) with different oviposition strategies. We exposed five cohorts of A. obliqua and A. ludens females, over the course of their adult lifetimes, to three conditions of “habitat quality” (measured as host density per cage): unpredictable habitat quality (host density varied randomly from day to day between 1, 5, 15, 30 and 60 hosts/cage), low habitat quality (fixed density of one host/cage) and high habitat quality (fixed density of 60 hosts/cage).
Responses to host density conditions were strikingly different in the two species. (1) Frequency of host visits and oviposition events increased in A. obliqua but not in A. ludens when host densities increased. (2) Anastrepha ludens females accepted low quality hosts (i.e. fruits on which eggs had already been laid and were therefore partially covered with host marking pheromone) significantly more often than A. obliqua females did. (3) Females of A. obliqua adjusted their oviposition activity to variations in host density, whereas A. ludens females exhibited a constant oviposition pattern (i.e. did not respond to variations in host density). Based on the above, it is likely that in A. obliqua oviposition is governed by egg‐limitation and in A. ludens by time‐limitation constraints. We discuss the relationship between the oviposition strategies of each fly species and the fruiting phenology and density of their native host plants. We also address the possible influence of oogenesis modality and parasitism by braconid wasps in shaping oviposition behaviour in these insects.  相似文献   

16.
Intraspecific competition for resources is common in animals and may lead to physical contests. Contest outcomes and aggressiveness can be influenced by the resource holding potential of contestants but also by their perception of the resource value (RV). Competitors may assess resource quality directly (real RV) but may also estimate it according to their physiological status and their experience of the habitat quality (subjective RV). In this article, we studied contests between females of the solitary parasitoid Pachycrepoideus vindemmiae Rondani (Hymenoptera: Pteromalidae) when exploiting simultaneously a host, a Delia radicum L. (Diptera: Anthomyiidae) pupa. We tested the effect of factors modifying host value on the occurrence of agonistic behaviours, contest outcomes and host exploitation. The factors tested were: the quality of the previous habitat experienced by females, female egg load, host parasitism status and the stage reached by the owner female in her behavioural oviposition sequence. Females successfully protected their host against intruders during its exploitation, but not after oviposition, and their aggressiveness did not seem to be influenced by their perception of the RV. The fact that the host is subsequently parasitized by the opponent females appears to mainly depend on the host selectiveness of females.  相似文献   

17.
18.
Adult parasitoids often feed on sugar sources for survival and to fuel energy. Therefore, the provision of sugar sources, such as nectar from flowers, can enhance biological control. We assessed whether Pachycrepoideus vindemmiae and Trichopria drosophilae, two pupal parasitoids of Drosophila spp., can profit from different sugar sources. In a laboratory experiment, we offered honey, cornflower and buckwheat flowers, crushed and Drosophila suzukii-infested blueberries as well as hosts together with honey. In both parasitoid species, all food sources significantly prolonged the lifespan of females compared to the control. The flowers prolonged the lifespan in both species threefold or fourfold, in Pvindemmiae from a mean of 6 to 28 days, in T. drosophilae from 13 to 49 days. Infested and damaged blueberries also enhanced mean survival in both species. When fed honey, the presence of hosts slightly decreased lifespan in Pvindemmiae and strongly decreased it in T. drosophilae. Our results suggest that the parasitoids can utilize the fruits they encounter during host search. Flowers could enhance their biological control function even further, as long as they do not benefit the pest.  相似文献   

19.
Various physiological effects of Wolbachia infection have been reported in invertebrates, but the impact of this infection on behavior and the consequences of these behavioral modifications on fitness have rarely been studied. Here, we investigate the effect of Wolbachia infection on the estimation of host nutritive resource quality in a parasitoid wasp. We compare decision‐making in uninfected and Wolbachia‐infected strains of Trichogramma brassicae Bezdenko (Hymenoptera: Trichogrammatidae) on patches containing either fresh or old host eggs. For both strains, fresh eggs were better hosts than older eggs, but the difference was smaller for the infected strain than for the uninfected strain. Oviposition behavior of uninfected wasps followed the predictions of optimal foraging theory. They behaved differently toward high‐ vs. low‐quality hosts, with more hosts visited and more ovipositions, fewer high‐quality hosts used for feeding or superparasitism, and a sex ratio that was more biased toward females in patches containing high‐quality hosts than in patches containing low‐quality ones. Uninfected wasps also displayed shorter acceptance and rejection times in high‐quality hosts than in hosts of lower quality. In contrast, infected wasps were less efficient in evaluating the nutritive quality of the host (fresh vs. old eggs) and had a reduced ability to discriminate between unparasitized and parasitized hosts. Furthermore, they needed more energy and therefore engaged in host feeding more often. This study highlights possible decision‐making manipulation by Wolbachia, and we discuss its consequences for Wolbachia fitness.  相似文献   

20.
Background

The interaction between gut bacterial symbionts and Tephritidae became the focus of several studies that showed that bacteria contributed to the nutritional status and the reproductive potential of its fruit fly hosts. Anastrepha fraterculus is an economically important fruit pest in South America. This pest is currently controlled by insecticides, which prompt the development of environmentally friendly methods such as the sterile insect technique (SIT). For SIT to be effective, a deep understanding of the biology and sexual behavior of the target species is needed. Although many studies have contributed in this direction, little is known about the composition and role of A. fraterculus symbiotic bacteria. In this study we tested the hypothesis that gut bacteria contribute to nutritional status and reproductive success of A. fraterculus males.

Results

AB affected the bacterial community of the digestive tract of A. fraterculus, in particular bacteria belonging to the Enterobacteriaceae family, which was the dominant bacterial group in the control flies (i.e., non-treated with AB). AB negatively affected parameters directly related to the mating success of laboratory males and their nutritional status. AB also affected males’ survival under starvation conditions. The effect of AB on the behaviour and nutritional status of the males depended on two additional factors: the origin of the males and the presence of a proteinaceous source in the diet.

Conclusions

Our results suggest that A. fraterculus males gut contain symbiotic organisms that are able to exert a positive contribution on A. fraterculus males’ fitness, although the physiological mechanisms still need further studies.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号