首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of culture age on yields, desiccation tolerance and resistance to ultraviolet radiation of Plectosporium alismatis, a potential mycoherbistat of aquatic weeds in Australian rice fields, was studied. P. alismatis was grown in a liquid basal medium supplemented with malt extract and sodium nitrate and harvested after 7, 14 or 21 days incubation. Although chlamydospore yields harvested from 14-day-old liquid cultures were significantly higher (29.2×105 chlamydospores mL?1) than chlamydospore yields harvested from 7-day-old liquid cultures (1.07×105 chlamydospores mL?1) or from 21-day-old liquid cultures, the germination of freshly-harvested chlamydospores from 7-day-old cultures (72.7%) was significantly reduced when propagules were grown for 14 days (55.3%). When exposed to UV-radiation, conidia and chlamydospores harvested from 14-day-old cultures germinated at a lower rate (<20%) than conidia and chlamydospores harvested from 7-day-old cultures (>40%). When conidia and chlamydospores were dried and subsequently exposed to UV, less than 30% of propagules harvested from 7-day-old cultures germinated, whereas less than 10% of propagules harvested from 14-day-old cultures germinated. A three-way analysis of variance including culture age, UV exposure and type of propagules confirmed that the culture age had more impact on the germination of fresh or dry propagules (P=0.00001 and P=0.0004, respectively) than the type of propagules considered (P=0.5). These results demonstrate that the culture age impacts significantly propagule yields and germination of P. alismatis conidia and chlamydospores, particularly after stress caused by dehydration and/or exposure to UV-B radiation.  相似文献   

2.
The potential bio-herbicide Plectosporium alismatis produces drying and UV tolerant micro-sclerotia-like structures named aggregates, effective against the weed Alisma plantago-aquatica. In this study, we evaluated (i) optimal liquid culture conditions that supported the high dry weight, conidia and aggregate yields and (ii) stress-tolerance and effectiveness of aggregates. Using a full factorial 25 design, we studied the impact of agitation (A), glucose concentration (B), Tween 80 concentration (C), malt extract concentration (D), and inoculum density (E), on P. alismatis growth yields. The inoculum density (E), the agitation rate (A), and 3-factor interactions involving E and/or A had significant effects on aggregate yields (average 213 aggregates mL?1; main effect of E: +112.87; main effect of A: ?74.81), but no significant effect on conidial yields and dry weight. The agitation was maintained at 100?rpm and increasing numbers of conidia were inoculated into the culture media. Maximal aggregate yields (3.6?×?103 aggregates mL?1) were obtained with an initial conidial density of 4?×?106 conidia mL?1. While freshly-harvested, dried and/or UV exposed aggregates germinated at high rates (respectively: 100%; 99%; 76%; 85%), sporogenesis significantly decreased after stress exposure. In bioassays using leaf discs of A. plantago-aquatica, chlorosis and/or necrosis was observed after 8 days incubation, regardless of whether aggregates had been exposed to desiccation and/or UV-radiations prior to application on leaf discs. These data provide a cultural protocol for the production of high numbers of UV and drying resistant aggregates effective against weed species of Alismatacae.  相似文献   

3.
The effect of nutritional conditions on spore qualities was investigated in order to select which propagules, conidia or chlamydospores, would be most suitable for mycoherbicide development. Plectosporium alismatis was grown in a liquid basal medium supplemented with glucose and a mineral nitrogen source (sodium nitrate) or an organic nitrogen source (casamino acids). Conidial and chlamydospore yields, germination rate and shelf-life were compared. Two growth models were developed: on one hand, sodium nitrate added as the sole nitrogen source was partially utilised (8%), resulting in poor growth (1.77±0.02 mg mL?1; 6±1.7×105 conidia mL?1). Under these conditions, P. alismatis produced dense, melanised-like aggregates that contained chlamydospores (12.4±0.7×104 chlamydospores mL?1). Germination rates of chlamydospores and conidia produced under these conditions was high (80%). Twenty percent of chlamydospores were able to germinate after 4 months storage at 25°C, while survival of conidia declined rapidly (<2%). When casamino acids were added to the liquid medium as the sole nitrogen source, P. alismatis produced sparser pellets resulting in high dry weights (5.37±0.09 mg mL?1 and high conidia numbers (9.6±1.5×106 conidia mL?1), while no chlamydospore were observed. The germination rate of conidia produced in casamino acids was low (33±13%) after 8 h incubation and microcycle conidiation occurred. Five percent of these conidia germinated after 4 months storage. These data indicate that chlamydospores may be suitable for mycoherbicide development, provided further optimisation of yields is achieved.  相似文献   

4.
The interactive effects of light intensity, NaCl, nitrogen, and phosphorus on intracellular biomass content and extracellular polymeric substance production were assessed for Arthrospira sp. (Spirulina) in a two-phase culture process using principal component analysis and central composite face design. Under high light intensity (120 μmol photons m?2?s?1) and low NaCl (1 gL?1), NaNO3, and K2HPO4 (0.5 g L?1), the carbohydrate content was maximized to 26.61%. Interaction of both K2HPO4 (1.6 gL?1) and NaCl (1.19 gL?1) with low NaNO3 (0.5 gL?1) achieved the maximum content of lipids (15.62%), while high NaCl (40 gL?1), K2HPO4, and NaNO3 (4.5 gL?1) enhanced mainly total carotenoids (0.85%). Conversely, under low light intensity of 10 μmol photons m?2?s?1 combined with 11.76 gL?1 of NaCl, 0.5 gL?1 of NaNO3, and 2.68 gL?1 of K2HPO4, the phycobiliprotein content reached its highest level (16.09%). The maximum extracellular polymeric substance (EPS) production (0.902 gg?1?DW) was triggered under moderate light of 57.25 μmol photons m?2?s?1 and interaction of high NaCl (40 gL?1) and K2HPO4 (4.5 gL?1) with low NaNO3 (0.5 gL?1). The maximization ratios of intracellular biomass content in terms of carbohydrate, lipid, total carotenoid, phycobiliprotein, and EPS production were 3.55-, 1.73-, 9.55-, 2.92-, and 1.46-fold, respectively, greater than those obtained at optimal growth conditions. This study demonstrated that the multiple stress factors applied to the adopted two-phase culture process could be a promising strategy to produce biomass enriched in various high-value compound.  相似文献   

5.
In this study, the oxygen consumption, ammonia excretion, and filtration rate were monitored in Mytilus edulis in response to administration of the two pesticides, methamidophos and omethoate. Five sublethal concentrations (1, 10, 50, 100, and 200 µgL?1) were administered over 96 h. Oxygen consumption rates increased following administration of all concentrations of methamidophos for 96 h and to the lower concentrations of omethoate (1, 10, and 50 µg L?1) from 6 to 24 h. Over 24 h, oxygen consumption decreased significantly. Ammonia excretion rates were higher than the control after 36 h of exposure to methamidophos, while reduction was observed when M. edulis was exposed to omethoate. The O:N ratios increased when the animals were first exposed to these two pesticides and then decreased at all the concentrations. At the concentrations of 100 and 200 µgL?1, the O:N ratio was below 30 after 72 h. The filtration rate of M. edulis decreased with the increasing concentration of pesticide exposure.  相似文献   

6.
The keystone role of leaf-removing crabs in mangrove forests of North Brazil   总被引:11,自引:4,他引:7  
Principle factors which influence mangroveleaf litter turnover, in particular therole of leaf-removing crabs, were evaluatedin a riverine mangrove site nearBragança (Pará, North Brazil). Ourspecial interest was focussed on the roleof the leaf-removing crab Ucidescordatus. Leaf litter fluxes between themangrove forest and the adjacent estuarywere investigated by estimating the biomassand fate of leaf litter material and propagules. Vegetation is dominated by Rhizophora mangle, with Avicenniagerminans trees, both up to 25 m high,found intermittently. During 1997, Rhizophora trees produced around 1.40 gDW m-2 d-1 of leave fall and0.75 g DW m-2 d-1 of propagules.Leaf decomposition rates on the ground wereabout 0.06 g DW m-2 d-1,irrespective of species, habitat or siteexposure. This amount accounts for <3%of total leaf fall. Average leaf litterbiomass present on the ground was 0.01 gDW m-2 d-1. When the mangroveforest was flooded (on average 10 days permonth) the quantity of leaf litterand propagules washed out with the springtide was 10 and 17 times greater thanduring neap tide. Nevertheless, tidalexport and decomposition together made upless than 39 percent of annual leaf litterfall. The bulk of the remaining amount isapparently removed by Ucides. Eachcrab consumed about 1.30 g DW of leaflitter material and propagules per day.Since the average density of these crabswas 1.38 crabs m-2, it is proposedthat Ucides is a keystone species inBragantinian mangroves.  相似文献   

7.
Photoinhibition has been often evaluated with leaf discs floated on water or placed on wet papers to prevent desiccation. Under these conditions, there is a possibility that CO2 diffusion is blocked by water, which may lead to reduction in photosynthetic CO2 assimilation. Using Chenopodium album L. grown at two irradiances, photosynthesis, quantum yield of Photosystem II (ΔF/F m′), non-photochemical quenching (qN), and photoinhibition were compared between detached leaves and leaf discs. In low-light-grown plants, photoinhibition was greater in leaf discs than in detached leaves, while in high-light-grown plants, there was little difference. Leaf discs showed lower rates of photosynthesis and ΔF/F m′, and higher qN. The ΔF/F m′ in leaf discs increased when leaf discs were exposed to high concentration of CO2, suggesting that CO2 diffusion to chloroplasts was limited in leaf discs floated on water. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
The Escherichia coli gene katE, which is driven by the promoter of the Rubisco small subunit gene of tomato, rbcS3C, was introduced into a tomato (Lycopersicon esculentum Mill.) by Agrobacterium tumefaciens‐mediated transformation. Catalase activity in progeny from transgenic plants was approximately three‐fold higher than that in wild‐type plants. Leaf discs from transgenic plants remained green at 24 h after treatment with 1 µm paraquat under moderate light intensity, whereas leaf discs from wild‐type plants showed severe bleaching after the same treatment. Moreover, ion leakage from transgenic leaf discs was significantly less than that from wild‐type leaf discs at 24 h after treatment with 1 µm paraquat and 10 mm H2O2, respectively, under moderate light intensity. To evaluate the efficiency of the E. coli catalase to protect the whole transgenic plant from the oxidative stress, transgenic and wild‐type plants were sprayed with 100 µm paraquat and exposed to high light illumination (800 µmol m?2 s?1). After 24 h, the leaves of the transgenic plants were less damaged than the leaves of the wild‐type plants. The catalase activity and the photosynthesis activity (indicated by the Fv/Fm ratio) were less affected by paraquat treatment in leaves of transgenic plants, whereas the activities of the chloroplastic ascorbate peroxidase isoenzymes and the ascorbate content decreased in both lines. In addition, the transgenic plants showed increased tolerance to the oxidative damage (decrease of the CO2 fixation and photosystem II activity and increase of the lipid peroxidation) caused by drought stress or chilling stress (4 °C) under high light intensity (1000 µmol m?2 s?1). These results indicate that the expression of the catalase in chloroplasts has a positive effect on the protection of the transgenic plants from the photo‐oxidative stress invoked by paraquat treatment, drought stress and chilling stress.  相似文献   

9.
Five reactor systems (free cell batch, free cell continuous, entrapped cell immobilized, adsorbed cell packed bed, and cell recycle membrane reactors) were compared for ethanol production from xylose using Escherichia coli FBR5. In the free cell batch and free cell continuous reactors (continuous stirred tank reactor‐CSTR) productivities of 0.84 gL?1 h?1 and 1.77 gL?1 h?1 were achieved, respectively. A cell recycle membrane reactor resulted in the highest productivity of 55.56 gL?1 h?1, which is an increase of 66‐fold (e.g., 6614%) over the batch reactor. Calcium alginate gel CSTR resulted in a productivity of 2.04 gL?1 h?1 whereas adsorbed cell packed bed reactor resulted in a productivity of 4.39 gL?1 h?1. In the five reactor systems, ethanol concentrations ranged from 18.9 to 40.30 gL?1 with metabolic yields from 0.44 to 0.51. Published 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

10.
Realizing the importance of xylitol as a high‐valued compound that serves as a sugar substitute, a new, one step thin layer chromatographic procedure for quick, reliable, and efficient determination of xylose and xylitol from their mixture was developed. Two hundred and twenty microorganisms from the laboratory stock cultures were screened for their ability to produce xylitol from D ‐xylose. Amongst these, an indigenous yeast isolate no.139 (SM‐139) was selected and identified as Debaryomyces hansenii on the basis of morphological and biochemical characteristics and (26S) D1/D2 r DNA region sequencing. Debaryomyces hansenii produced 9.33 gL?1 of xylitol in presence of 50.0 gL?1 of xylose in 84 h at pH 5.5, 30°C, 200 rpm. In order to utilize even higher concentrations of xylose for maximum xylitol production, a xylose enrichment technique was developed. The strain of Debaryomyces hansenii was obtained through xylose enrichment technique in a statistically optimized medium containing 0.3% yeast extract, 0.2% peptone, 0.03% MgSO4.7H2O along with 1% methanol. The culture was inoculated with 6% inoculum and incubated at 30°C and 250 rpm. A yield of 0.6 gg?1 was obtained with a xylitol volumetric productivity of 0.65 g/L h?1 in the presence of 200 gL?1 of xylose although up to 300 gL?1 of xylose could be tolerated through batch fermentation. Through this technique, even higher concentrations of xylose as substrate could be potentially utilized for maximum xylitol production. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

11.
There is a lack of information comparing UV-B radiation conidial sensitivity of the biocontrol agent Clonostachys rosea (Cr) and its target pathogen, Botrytis cinerea (Bc). We investigated the interactions in vitro and on strawberry leaf discs between previously selected Cr and Bc strains tolerant to UV-B radiation. Strawberry leaf discs inoculated with Bc, Cr, or combinations of both fungi were exposed to UV-B doses (2.9, 5.9, and 8.9?kJ?m?2). Incidence and sporulation of both fungi were evaluated, and the Area Under Incidence Progress Curve (AUIPC) and Area Under Sporulation Progress Curve (AUSPC) were calculated. AUIPC and AUSPC of Cr on leaf discs were negatively correlated to increased UV-B. When inoculated alone on leaf discs, Bc was not affected by UV-B, but when inoculated with Cr the incidence and sporulation of Bc were positively correlated to UV-B radiation dose. In the absence of UV-B, Cr reduced incidence and sporulation of Bc. However, the ability of Cr to control Bc was reduced by 20% to 50% with increasing UV-B radiation. Increasing the applied concentration of Cr conidia 10-fold partially overcame the deleterious effects of UV-B on the ability of the biocontrol agent to reduce Bc sporulation in strawberry leaves. The selection of antagonists must fulfil many requirements; besides being active against the specific targeted plant pathogens, they must be cost-effective and have ecological characteristics suitable for the desired use conditions. We suggest that UV-B exposure must be taken into account during the development of bio-fungicides based on Cr.  相似文献   

12.
The effects of light and elevated temperatures on the efficiency of energy conversion in PSII [?PSII = (Fm′−Fs)/Fm′], pigment composition and heat tolerance of shade-acclimated Alocasia macrorrhiza were investigated. Leaf discs were exposed for 3 h to high light (HL; 1600 μmol photons · m−2 · s−1) or low light (LL; 20 μmol photons · m−2 · s−1) and a series of constant temperatures ranging from 30 to 49 °C. All HL treatments led to rapid and severe decreases in ?PSII. During the 2-h recovery period (LL, 25 °C) following the HL treatments, fast and slow recovery phases could be distinguished. Leaf discs that had experienced HL and 30 °C recovered completely while no recovery of ?PSII was seen after a 3-h exposure to HL and 45 °C. A 3-h exposure to 45 °C at LL led to a less severe decrease in ?PSII and complete recovery was accomplished after less than 1 h. Under LL conditions a temperature of 49 °C was necessary to cause an irreversible decrease in ?PSII, followed by necrosis the next day. Streptomycin had no effect on the degree of reduction and recovery in ?PSII discs exposed to HL and 35–45 °C, but partially inhibited recovery in discs exposed to HL and 30 °C. Streptomycin led to a more severe decrease in ?PSII at LL and 49 °C and completely inhibited recovery. Streptomycin had no effect on the conversion of the xanthophyll-cycle pigments during the treatment or the recovery. The epoxidation state was roughly the same in all leaf discs after a 3-h HL treatment (0.270–0.346) irrespective of the exposure temperature. The back-conversion of zeaxanthin into violaxanthin after a 2-h recovery period was only seen in leaf discs that had been exposed to HL and 30 °C. The thermotolerance of shade A. macrorrhiza leaves of 49.0 ± 0.7 °C (determined by fluorescence) coincided with the temperature at which damage occurred in leaf discs exposed to LL. However, under HL the critical temperature under which necrosis occurred was much lower (42 °C). The thermotolerance of A. macrorrhiza shade leaves could be increased by a short exposure (<20 min) to slightly elevated temperatures. Received: 11 June 1997 / Accepted: 9 September 1997  相似文献   

13.
Enhancement of callus induction and its regeneration efficiency through in vitro techniques has been optimized for 2 abiotic stresses (salt and air desiccation) using 3 rice genotypes viz. BR10, BRRI dhan32 and BRRI dhan47. The highest frequency of callus induction was obtained for BRRI dhan32 (64.44%) in MS medium supplemented with 2, 4-D (2.5 mgL−1) and Kin (1.0 mgL−1). Different concentrations of NaCl (2.9, 5.9, 8.8 and 11.7 gL−1) were used and its effect was recorded on the basis of viability of calli (VC), relative growth rate (RGR), tolerance index (TI) and relative water content (RWC). It was observed that in all cases BRRI dhan47 showed highest performance on tolerance to VC (45.33%), RGR (1.03%), TI (0.20%) and RWC (10.23%) with 11.7 gL−1 NaCl. Plant regeneration capability was recorded after partial air desiccation pretreatment to calli for 15, 30, 45 and 60 h. In this case BRRI dhan32 gave maximum number of regeneration (76.19%) when 4 weeks old calli were desiccated for 45 h. It was observed that air desiccation was 2-3 folds more effective for enhancing green plantlet regeneration compared to controls. Furthermore, desiccated calli also showed the better capability to survive in NaCl induced abiotic stress; and gave 1.9 fold (88.80%) increased regeneration in 11.7 gL−1 salt level for BRRI dhan47. Analysis of variance (ANOVA) showed that the genotypes, air desiccation and NaCl had significant effect on plant regeneration at P < 0.01.  相似文献   

14.
Effects of deficient (20mmol m?3) and sufficient (1000 mmol m?3) magnesium (Mg) supply and of varied light intensity (100 μmol m?2 s?1 to 580 μmol m?2 s?1) on paraquat-dependent chlorophyll destruction in bean (Phaseolus vulgaris) plants grown in nutrient solution were studied over a 12-d period using leaf discs or intact primary leaves. Treatment of leaf discs with 10mmol m 3 paraquat for 15h caused severe chlorophyll loss, especially with increasing light intensity. This chlorophyll destruction by paraquat was very much higher in Mg-sufficient than Mg-deficient leaves. The occurrence of paraquat resistance in Mg deficient leaves was already apparent after 6d growth in nutrient solution, i.e. before any decrease in chlorophyll or growth by Mg deficiency was evident. Also, following foliar application of paraquat (10–140 mmol m?3) to intact plants, Mg-deficient plants were much more resistant to paraquat, even following longer exposure duration (72 h) and four to 14 times higher paraquat concentrations than those received by Mg sufficient plants. From experiments where exogenous scavengers of superoxide radical (O2.-), hydroxyl radical (OH·) and singlet oxygen (1O2) were applied to leaf discs, it appears that O2.-, and partly, OH· are the main O2 species which contribute to chlorophyll destruction by paraquat. The results demonstrate that Mg-deficient bean plants become highly resistant to O2.--mediated and light-induced paraquat injury. The mode of this paraquat resistance is attributed to well-known stimulative effects of Mg deficiency on O2.- and H2O2 scavenging enzymes and antioxidants.  相似文献   

15.
16.
We examined ethylene effects on root regeneration in tomato leaf discs cultured in vitro. Applied ethylene or Ethephon did not stimulate rooting in the leaf discs. In the presence of indoleacetic acid. 5 × 10-6M, these substances significantly inhibited root formation. Ethylene production (nl C2H4· (24 h)-1. flask-1) was positively correlated with increased IAA concentrations at various times during the culture period and, as a consequence, with the rooting response after 168 h. However, separate testing of equimolar concentrations of seven different auxins and auxin-like compounds showed no positive correlation between the rate of ethylene production and subsequent rooting response. Aeration of gas-tight flasks containing leaf discs and absorption of ethylene evolved from the discs by mercuric perchlorate in gas-tight flasks or pre-treatment of leaf discs with AgNO3 significantly enhanced IAA induced root regeneration. Thus, these studies indicate that ethylene is not a rooting hormone per se. Furthermore, ethylene (whether applied externally or synthesized by the tissue) does not appear to account for the ability of auxin to stimulate rooting.  相似文献   

17.
Consumption of hexoses/pentoses and production of lactic acid by Lactobacillus bifermentans were investigated in optimized culture medium and hemicellulosic hydrolyzates. The hydrolyzate used had the following composition (expressed in gL−1): xylose 50 ± 5 gL−1; glucose 18 ± 3 gL−1; arabinose 29 ± 5 gL−1. The immobilization experiments were conducted with microbial cells entrapped in calcium alginate beads. The results indicate that maximum concentrations of lactic acid were produced after 54 h of fermentation. All glucose and arabinose in wheat bran hydrolyzate were consumed during fermentation. Only xylose was not completely consumed. The substrate consumption rate was 3.2 gh−1, 1.9 gh−1, 1.6 gh−1 respectively for glucose, arabinose, and xylose. The optimized culture condition gave a lactic acid concentration and metabolic yield of 62.77 gL−1 and 0.83 gg−1. These parameters improved to 41.3 gL−1 and 0.47 gg−1 respectively, when cell free was used.  相似文献   

18.
Adult fungus gnats and moth flies were experimentally demonstrated to function as potential above‐ground vectors for three soilborne plant pathogens: Verticillium dahliae, Fusarium acuminatum and Thielaviopsis basicola. The adult insects externally acquired the conidia of the pathogens after exposure to the cultures as confirmed by scanning electron microscope photography. The intestinal contents and frass deposits of larvae exposed to fungal cultures contained viable fungal propagules. Internally infested larvae developed into internally infested pupae; however, the emerging adults were free of fungal structures. Because of the maintenance of a high level of inoculum on the external body surface and the ability of these adult insects to fly, they can be a significant factor in the dispersal of soilborne fungi in greenhouse agriculture. The rate of dispersal of T. basicola by adult fungus gnats was 1.78 cm2 h?1 per insect and by adult moth flies was 1.17 cm2 h?1 per insect. The area over which the pathogen was dispersed by the adult insects increased with the increase in exposure time. The study demonstrated that adult insects are efficient distributors of soilborne plant pathogenic fungal propagules.  相似文献   

19.
Chlamydospores of Phytophthora ramorum were used to infest field soil at densities ranging from 0.2 to 42 chlamydospores/cm3 soil. Recovery was determined by baiting with rhododendron leaf discs and dilution plating at time 0 and after 30 days of storage at 4°C, as recommended by USDA‐APHIS. Baiting was slightly more sensitive than dilution plating in recovering P. ramorum immediately following infestation of soil and allowed detection from samples infested with as little as 0.2 chlamydospores/cm3 compared with 1 chlamydospore/cm3 for dilution plating. After 30 days of infested soil storage at 4°C, P. ramorum was detected at significantly (P = 0.05) higher levels than at time 0 with both recovery methods. The results indicate that storage of P. ramorum‐infested soil at 4°C may allow for pathogen activity, such as sporangia production, which may enhance recovery from soil.  相似文献   

20.
The prawn Macrobrachium sintangense is likely to be subjected to occasional exposure to combined metal and saline stressors in its natural environment. This research evaluated the acute toxicity (96?h LC50) of cadmium (Cd) on the prawn M. sintangense, with respect to the osmoregulatory capacity (OC) of prawns and to document histological changes in the gills after exposure to sublethal Cd concentrations at different salinities. The 96?h LC50 of Cd to M. sintangense decreased with increasing salinity. The 96?h LC50 values were 89.12 (72.53–109.50), 681.26 (554.20–837.46) and 825.37 (676.99–1006.27) μg CdL?1 at 0, 10 and 20 ppt, respectively. The OC of prawns exposed to 30?μg?CdL?1 at 0 ppt and to 300?μg?CdL?1 at10 ppt decreased significantly compared with that of control prawns exposed to 0 and 10 ppt respectively. Swelling, hyperplasia and necrosis of gill lamellae resulting in the loss of marginal canals were observed in the gills of prawns exposed to 30?μg?CdL?1 at 0 ppt and to 300?μg?CdL?1 at 10 ppt for 7?days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号