首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic GMP-dependent protein kinase I (cGKI) affects the inositol 1,4,5-trisphosphate (InsP(3))-dependent release of intracellular calcium by phosphorylation of IRAG (inositol 1,4,5-trisphophate receptor-associated cGMP kinase substrate). IRAG is present in a macromolecular complex with the InsP(3) receptor type I (InsP(3)RI) and cGKIbeta. The specificity of the interaction between these three proteins was investigated by using the yeast two-hybrid system and by co-precipitation of expressed proteins. The amino-terminal region containing the leucine zipper (amino acids 1-53) of cGKIbeta but not that of cGKIalpha or cGKII interacted with the sequence between amino acids 152 and 184 of IRAG in vitro and in vivo most likely through electrostatic interaction. cGKIbeta did not interact with the InsP(3)RI, but co-precipitated the InsP(3)RI in the presence of IRAG indicating that IRAG bound to the InsP(3)RI and to cGKIbeta. cGKIbeta phosphorylated up to four serines in IRAG. Mutation of these four serines to alanine showed that cGKIbeta-dependent phosphorylation of Ser(696) is necessary to decrease calcium release from InsP(3)-sensitive stores. These results show that cGMP induced reduction of cytosolic calcium concentrations requires cGKIbeta and phosphorylation of Ser(696) of IRAG.  相似文献   

2.
Defective smooth muscle regulation in cGMP kinase I-deficient mice.   总被引:26,自引:2,他引:24       下载免费PDF全文
Regulation of smooth muscle contractility is essential for many important biological processes such as tissue perfusion, cardiovascular haemostasis and gastrointestinal motility. While an increase in calcium initiates smooth muscle contraction, relaxation can be induced by cGMP or cAMP. cGMP-dependent protein kinase I (cGKI) has been suggested as a major mediator of the relaxant effects of both nucleotides. To study the biological role of cGKI and its postulated cross-activation by cAMP, we inactivated the gene coding for cGKI in mice. Loss of cGKI abolishes nitric oxide (NO)/cGMP-dependent relaxation of smooth muscle, resulting in severe vascular and intestinal dysfunctions. However, cGKI-deficient smooth muscle responded normally to cAMP, indicating that cAMP and cGMP signal via independent pathways, with cGKI being the specific mediator of the NO/cGMP effects in murine smooth muscle.  相似文献   

3.
Nitric oxide (NO)-mediated smooth muscle relaxation is mediated by cGMP through activation of cGMP-dependent protein kinase I (cGKI). We studied the importance of cGKI for lower urinary tract function in mice lacking the gene for cGKI (cGKI-/-) and in litter-matched wild-type mice (cGKI+/+) in vitro and in vivo. cGKI deficiency did not result in any changes in bladder gross morphology or weight. Urethral strips from cGKI-/- mice showed an impaired relaxant response to nerve-derived NO. The cGMP analog 8-bromo-cGMP (8-BrcGMP) and the NO-donor SIN-1 relaxed the wild-type urethra (50-60%) but had only marginal effects in the cGKI-deficient urethra. Bladder strips from cGKI-/- mice responded normally to electrical field stimulation and to carbachol but not to 8-BrcGMP. In vivo, the cGKI-deficient mice showed bladder hyperactivity characterized by decreased intercontraction intervals and nonvoiding bladder contractions. Loss of cGKI abolishes NO-cGMP-dependent relaxations of urethral smooth muscle and results in hyperactive voiding. These data suggest that certain voiding disturbances may be associated with impaired NO-cGKI signaling.  相似文献   

4.
For the type I cGMP-dependent protein kinases (cGKIalpha and cGKIbeta), a high affinity interaction exists between the C2 amino group of cGMP and the hydroxyl side chain of a threonine conserved in most cGMP binding sites. To examine the effect of this interaction on ligand binding and kinase activation in the type II isozyme of cGMP-dependent protein kinase (cGKII), alanine was substituted for the conserved threonine or serine. cGKII was found to require the C2 amino group of cGMP and its cognate serine or threonine hydroxyl for efficient cGMP activation. Of the two binding sites, disruption of cGMP-specific binding in the NH(2)-terminal binding site had the greatest effect on cGMP-dependent kinase activation, like cGKI. However, ligand dissociation studies showed that the location of the rapid and slow dissociation sites of cGKII was reversed relative to cGKI. Another set of mutations that prevented cyclic nucleotide binding demonstrated the necessity of the NH(2)-terminal, rapid dissociation binding site for cyclic nucleotide-dependent activation of cGKII. These findings suggest distinct mechanisms of activation for cGKII and cGKI isoforms. Because cGKII mediates the effects of heat-stable enterotoxins via the cystic fibrosis transmembrane regulator Cl(-) channel, these findings define a structural target for drug design.  相似文献   

5.
Signalling by cGMP-dependent protein kinase type I (cGKI) relaxes various smooth muscles modulating thereby vascular tone and gastrointestinal motility. cGKI-dependent relaxation is possibly mediated by phosphorylation of the inositol 1,4,5-trisphosphate receptor I (IP(3)RI)-associated protein (IRAG), which decreases hormone-induced IP(3)-dependent Ca(2+) release. We show now that the targeted deletion of exon 12 of IRAG coding for the N-terminus of the coiled-coil domain disrupted in vivo the IRAG-IP(3)RI interaction and resulted in hypomorphic IRAG(Delta12/Delta12) mice. These mice had a dilated gastrointestinal tract and a disturbed gastrointestinal motility. Carbachol- and phenylephrine-contracted smooth muscle strips from colon and aorta, respectively, of IRAG(Delta12/Delta12) mice were not relaxed by cGMP, while cAMP-mediated relaxation was unperturbed. Norepinephrine-induced increases in [Ca(2+)](i) were not decreased by cGMP in aortic smooth muscle cells from IRAG(Delta12/Delta12) mice. In contrast, cGMP-induced relaxation of potassium-induced smooth muscle contraction was not abolished in IRAG(Delta12/Delta12) mice. We conclude that cGMP-dependent relaxation of hormone receptor-triggered smooth muscle contraction essentially depends on the interaction of cGKI-IRAG with IP(3)RI.  相似文献   

6.
The cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase type I (cGKI) pathway regulates many cellular functions. The current study shows that 8-Br-cGMP stimulates the number of attached primary but not that of subcultured murine vascular smooth muscle cells (VSMCs). These effects of 8-Br-cGMP require the presence of cGKI. In agreement with previous studies, cGKI inhibited the number of cells in repeatedly passaged murine VSMCs. Activation of the cGMP/cGKI pathway in freshly isolated primary VSMCs slightly decreased apoptosis and strongly increased cell adhesion. The stimulation of cell adhesion by cGKI involves an inhibition of the RhoA/Rho kinase pathway and increased exposure of β1 and β3 integrins on the cell surface. Together, these results identify a novel proadhesive function of cGMP/cGKI signaling in primary VSMCs and suggest that the opposing effects of this pathway on VSMC number depend on the phenotypic context of the cells.  相似文献   

7.
8.
We aimed to assess intrinsic smooth muscle mechanisms contributing to greater nitric oxide (NO) responsiveness in pulmonary vascular vs. airway smooth muscle. Porcine pulmonary artery smooth muscle (PASM) and tracheal smooth muscle (TSM) strips were used in concentration-response studies to the NO donor (Z)-1-[N-2-aminoethyl-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO). PASM consistently exhibited greater relaxation at a given DETA-NO concentration (NO responsiveness) than TSM NO responsiveness, with DETA-NO log EC(50) being -6.55 +/- 0.11 and -5.37 +/- 0.13 for PASM and TSM, respectively (P < 0.01). We determined relationships between tissue cGMP concentration ([cGMP](i)) and relaxation using the particulate guanylyl cyclase agonist atrial natriuretic peptide. Atrial natriuretic peptide resulted in nearly complete relaxation, with no detectable increase in [cGMP](i) in PASM and only 20% relaxation (10-fold increase in [cGMP](i)) in TSM, indicating that TSM is less cGMP responsive than PASM. Total cGMP-dependent protein kinase I (cGKI) mRNA expression was greater in PASM than in TSM (2.23 +/- 0.36 vs. 0.93 +/- 0.31 amol mRNA/mug total RNA, respectively; P < 0.01), but total cGKI protein expression was not significantly different (0.56 +/- 0.07 and 0.49 +/- 0.04 ng cGKI/mug protein, respectively). The phosphotransferase assay for the soluble fraction of tissue homogenates demonstrated no difference in the cGMP EC(50) between PASM and TSM. The maximal phosphotransferase activity indexed to the amount of total cGKI in the homogenate differed significantly between PASM and TSM (1.61 +/- 0.15 and 1.04 +/- pmol.min(-1).ng cGKI(-1), respectively; P < 0.05), suggesting that cGKI may be regulated differently in the two tissues. A novel intrinsic smooth muscle mechanism accounting for greater NO responsiveness in PASM vs. TSM is thus greater cGMP responsiveness from increased cGKI-specific activity in PASM.  相似文献   

9.
It is generally well accepted that nitrovasodilator-induced relaxation of vascular smooth muscle involves elevation of cGMP and activation of a specific cGMP-dependent protein kinase [protein kinase G (PKG)]. However, the protein targets of PKG and the underlying mechanisms by which this kinase leads to a relaxant response have not been elucidated. Several types of smooth muscle, including rat myometrium and vas deferens, are not relaxed by sodium nitroprusside, even at concentrations that produce marked elevation of cGMP and activation of PKG. The main objective of our studies was to compare PKG-mediated protein phosphorylation in intact rat aorta, rat myometrium, and rat vas deferens using two-dimensional gel electrophoresis. In intact rat aorta, seven PKG substrates were detected during relaxation of the tissue. None of the PKG substrates identified in the rat aorta appeared to be phosphorylated in the myometrium or vas deferens after administration of various cGMP-elevating agents. Thus the failure of the rat myometrium and rat vas deferens to relax in the face of cGMP elevation and PKG activation may be due to a lack of PKG substrate phosphorylation.  相似文献   

10.
The atrial natriuretic peptide (ANP) stimulates cGMP production and protein phosphorylation in a particulate fraction of cultured rat aortic smooth muscle cells. Three proteins of 225, 132, and 11 kDa were specifically phosphorylated in response to ANP treatment, addition of cGMP (5 nM), or addition of purified cGMP-dependent protein kinase. The cAMP-dependent protein kinase inhibitor had no effect on the cGMP-stimulated phosphorylation of the three proteins but inhibited cAMP-dependent phosphorylation of a 17-kDa protein. These results demonstrate that the particulate cGMP-dependent protein kinase mediates the phosphorylation of the 225-, 132-, and 11-kDa proteins. The 11-kDa protein is phospholamban based on the characteristic shift in apparent Mr from 11,000 to 27,000 on heating at 37 degrees C rather than boiling prior to electrophoresis. ANP (1 microM) increased the cGMP concentration approximately 4-fold in the particulate fractions, from 4.3 to 17.7 nM, as well as the phosphorylation of the 225-, 132-, and 11-kDa proteins. In contrast, the biologically inactive form of ANP, carboxymethylated ANP (1 microM), did not stimulate phosphorylation of any proteins nor did the unrelated peptide hormone, angiotensin II (1 microM). These results demonstrate the presence of the cGMP-mediated ANP signal transduction pathway in a particulate fraction of smooth muscle cells and the specific phosphorylation of three proteins including phospholamban, which may be involved in ANP-dependent relaxation of smooth muscle.  相似文献   

11.
Previous in vitro studies using cGMP or cAMP revealed a cross-talk between signaling mechanisms activated by axonal guidance receptors. However, the molecular elements modulated by cyclic nucleotides in growth cones are not well understood. cGMP is a second messenger with several distinct targets including cGMP-dependent protein kinase I (cGKI). Our studies indicated that the alpha isoform of cGKI is predominantly expressed by sensory axons during developmental stages, whereas most spinal cord neurons are negative for cGKI. Analysis of the trajectories of axons within the spinal cord showed a longitudinal guidance defect of sensory axons within the developing dorsal root entry zone in the absence of cGKI. Consequently, in cGKI-deficient mice, fewer axons grow within the dorsal funiculus of the spinal cord, and lamina-specific innervation, especially by nociceptive sensory neurons, is strongly reduced as deduced from anti-trkA staining. These axon guidance defects in cGKI-deficient mice lead to a substantial impairment in nociceptive flexion reflexes, shown using electrophysiology. In vitro studies revealed that activation of cGKI in embryonic dorsal root ganglia counteracts semaphorin 3A-induced growth cone collapse. Our studies therefore reveal that cGMP signaling is important for axonal growth in vivo and in vitro.  相似文献   

12.
13.
The cGMP-dependent protein kinase (PKG) is the main mediator of nitric oxide-induced relaxation of smooth muscle. Although this pathway is well established, the cellular action of PKG, nitric oxide, and cGMP is complex and not fully understood. A cross-talk between the cGMP-PKG and other pathways (e.g. cAMP-protein kinase A) seems to exist. We have explored cGMP- and cAMP-dependent relaxation of smooth muscle using PKG-deficient mice (cGKI-/-). In intact ileum strips of wild type mice (cGKI+/+), 8-Br-cGMP inhibited the sustained phase of carbachol contractions by approximately 80%. The initial peak was less inhibited (approximately 30%). This relaxation was associated with a reduction in intracellular [Ca2+] and decreased Ca2+ sensitivity. Contractions of cGKI-/- ileum were not influenced by 8-Br-cGMP. EC50 for 8-Br-cGMP for PKG was estimated to be 10 nm. PKG-independent relaxation by 8-Br-cGMP had an EC50 of 10 microm. Relaxation by cAMP (approximately 50% at 100 microm), Ca2+ sensitivity of force, and force potentiation by GTPgammaS were similar in cGKI+/+ and cGKI-/- tissues. The results show that PKG is the main target for cGMP-induced relaxation in intestinal smooth muscle. cGMP desensitize the contractile system to Ca2+ via PKG. PKG-independent pathways are activated at 1000-fold higher cGMP concentrations. Relaxation by cAMP can occur independently of PKG. Long term deficiency of PKG does not lead to an apparent up-regulation of the cAMP-dependent pathways or changes in Ca2+ sensitivity.  相似文献   

14.
15.
Five protein kinases were used to study the phosphorylation pattern of the purified skeletal muscle receptor for calcium-channel blockers (CaCB). cAMP kinase, cGMP kinase, protein kinase C, calmodulin kinase II and casein kinase II phosphorylated the 165-kDa and the 55-kDa proteins of the purified CaCB receptor. The 130/28-kDa and the 32-kDa protein of the receptor are not phosphorylated by these protein kinases. Among these protein kinases only cAMP kinase phosphorylated the 165-kDa subunit with 2-3-fold higher initial rate than the 55-kDa subunit. Casein kinase II phosphorylated the 165-kDa and the 55-kDa protein of the receptor with comparable rates. cGMP kinase, protein kinase C and calmodulin kinase II phosphorylated preferentially the 55-kDa protein. The 55-kDa protein is phosphorylated 50 times faster by cGMP kinase and protein kinase C than by calmodulin kinase II or casein kinase II and about 10 times faster by these enzymes than by cAMP kinase. Two-dimensional peptide maps of the 165-kDa subunit yielded a total of 11 phosphopeptides. Four or five peptides are phosphorylated specifically by cAMP kinase, cGMP kinase, casein kinase II and protein kinase C, whereas the other peptides are modified by several kinases. The same kinases phosphorylate 11 peptides in the 55-kDa subunit. Again, some of these peptides are modified specifically by each kinase. These results suggest that the 165-kDa and the 55-kDa subunit contain specific phosphorylation sites for cAMP kinase, cGMP kinase, casein kinase II and protein kinase C. Phosphorylation of these sites may be relevant for the in vivo function of the CaCB receptor.  相似文献   

16.
Endogenous nitric oxide (NO), and possibly NO-releasing drugs, can both inhibit and promote vascular proliferative disorders, such as atherosclerosis and restenosis. The cell types and signaling pathways that mediate these opposing effects are controversial. It is widely assumed that the NO-mediated synthesis of the second messenger cGMP and the activation of cGMP-dependent protein kinase type I (cGKI) inhibits the proliferation of vascular smooth muscle cells and, thus, vascular remodeling. However, recent data from transgenic mouse models challenge this view. Here, we propose that cGMP signaling through cGKI might promote vasculoproliferative processes and their clinical complications. This new concept has important implications for the use of cGMP-elevating drugs in humans and might help to identify novel therapeutic strategies for vascular proliferative diseases.  相似文献   

17.
18.
19.
Conformational studies of myosin phosphorylated by protein kinase C   总被引:2,自引:0,他引:2  
Smooth muscle myosin from chicken gizzard is phosphorylated by Ca2+-activated phospholipid-dependent protein kinase, protein kinase C, as well as by Ca2+/calmodulin-dependent kinase, myosin light chain kinase (Endo, T., Naka, M., and Hidaka, H. (1982) Biochem. Biophys. Res. Commun. 105, 942-948). We have now demonstrated the effect of phosphorylation by protein kinase C on the smooth muscle myosin molecule. In glycerol/urea polyacrylamide gel electrophoresis the 20,000-dalton light chain phosphorylated by protein kinase C co-migrated with that phosphorylated by myosin light chain kinase. Moreover, the light chain phosphorylated by both kinases migrated more rapidly than did the light chain phosphorylated by either myosin light chain kinase or protein kinase C alone. Myosin phosphorylated by protein kinase C formed a bent 10 S monomer while that phosphorylated by myosin light chain kinase was an unfolded and extended 6 S monomer in the presence of 0.2 M KCl. In addition, myosin phosphorylated by kinases had a sedimentation velocity of 7.3 S, thereby suggesting that the myosin was partially unfolded. The unfolded myosin was visualized electron microscopically. The fraction in the looped form was higher when for myosin phosphorylated by both kinases higher than for that phosphorylated by light chain kinase alone. Therefore, phosphorylation by protein kinase C does not lead to the change in myosin conformation seen with myosin light chain kinase.  相似文献   

20.
The phosphorylation of the whole troponin complex and of the cardiac and skeletal troponin components by Ca2+-phospholipid-dependent protein kinase was studied. The activity of enzyme isolated from rat brain by ion-exchange chromatography on DEAE-Sephadex and by affinity chromatography on phosphatidylserine immobilized on polyacrylamide gel was shown to be completely dependent on Ca2+ and phospholipids and was equal to 0.4-0.6 mumol of phosphate/min.mg protein with histone H1 as substrate. The resulting preparation of Ca2+-phospholipid-dependent protein kinase was able to phosphorylate the isolated troponin I; the amount of phosphate transferred per mol of cardiac and skeletal troponin I was equal to 1.1 and 0.4, respectively. The maximal degree of phosphorylation of isolated troponin T by Ca2+-phospholipid-dependent protein kinase was 0.6 mol of phosphate per mol of troponin T both for skeletal and cardiac proteins. The rate and degree of phosphorylation were independent of the initial level of troponin T phosphorylation. Ca2+-phospholipid-dependent protein kinase did not phosphorylate the first serine residue of troponin T, i.e., the site which was phosphorylated in the highest degree after isolation of troponin T from skeletal muscles. The data obtained and the fact that the rate and degree of phosphorylation of troponins I and T within the whole troponin complex are 10-20 times less than those for isolated components provide little evidence for the participation of protein kinase C in troponin phosphorylation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号