首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Jung KK  Lee HS  Cho JY  Shin WC  Rhee MH  Kim TG  Kang JH  Kim SH  Hong S  Kang SY 《Life sciences》2006,79(21):2022-2031
Curcumin has been shown to exhibit anti-inflammatory, antimutagenic, and anticarcinogenic activities. However, the modulatory effect of curcumin on the functional activation of primary microglial cells, brain mononuclear phagocytes causing the neuronal damage, largely remains unknown. The current study examined whether curcumin influenced NO production in rat primary microglia and investigated its underlying signaling pathways. Curcumin decreased NO production in LPS-stimulated microglial cells in a dose-dependent manner, with an IC(50) value of 3.7 microM. It also suppressed both mRNA and protein levels of inducible nitric oxide synthase (iNOS), indicating that this drug may affect iNOS gene expression process. Indeed, curcumin altered biochemical patterns induced by LPS such as phosphorylation of all mitogen-activated protein kinases (MAPKs), and DNA binding activities of nuclear factor-kappaB (NF-kappaB) and activator protein (AP)-1, assessed by reporter gene assay. By analysis of inhibitory features of specific MAPK inhibitors, a series of signaling cascades including c-Jun N-terminal kinase (JNK), p38 and NF-kappaB was found to play a critical role in curcumin-mediated NO inhibition in microglial cells. The current results suggest that curcumin is a promising agent for the prevention and treatment of both NO and microglial cell-mediated neurodegenerative disorders.  相似文献   

5.
Adult T cell leukemia is an aggressive and frequently fatal malignancy that expressess constitutively activated growth-signaling pathways in association with deregulated growth and resistance to apoptosis. Curcumin (diferuloylmethane) is a naturally occurring yellow pigment, isolated from the rhizomes of the plant Curcuma longa that has traditionally been used in the treatment of injury and inflammation. But the effect and mechanism of action of curcumin on T cell leukemia is not known. To investigate the antitumor activity of curcumin in T cell leukemia, we examined its effect on constitutive phosphorylation of JAK and STAT proteins, proliferation, and apoptosis in HTLV-I-transformed T cell lines. HTLV-I-transformed T cell leukemia lines, MT-2, HuT-102, and SLB-1, express constitutively phosphorylated JAK3, TYK2, STAT3, and STAT5 signaling proteins. In vitro treatment with curcumin induced a dose-dependent decrease in JAK and STAT phosphorylation resulting in the induction of growth-arrest and apoptosis in T cell leukemia. The induction of growth-arrest and apoptosis in association with the blockade of constitutively active JAK-STAT pathway suggests this be a mechanism by which curcumin induces antitumor activity in T cell leukemia.  相似文献   

6.
7.
8.
We have previously reported that thrombin, the ultimate serine protease in the coagulation cascades, is a proinflammatory agent that causes proliferation and activation of brain microglial cells. However, participation of its principal receptor, the protease-activated receptor 1 (PAR1) appears to be limited to promoting microglial proliferation and not induction of inflammatory mediators. In the present study, we now report that thrombin action in promoting inflammatory mediators from brain microglia is mediated through another thrombin receptor, PAR4. Here we show that the PAR4 agonist peptide (PAR4AP, GYPGKF), but not the PAR1AP (TRAP, SFLLRN), induced tumor necrosis factor-alpha (TNF-alpha) production not only in cultured murine microglial cells in vitro but also in rat cortex in vivo. Down-regulation of PAR4 expression in microglial cultures by a specific antisense, but not a sense, oligonucleotide reduced PAR4AP-induced TNF-alpha. Mechanistic studies indicated that, in comparison with PAR1 signaling, prolonged increase of [Ca2+]i and phosphorylation of p44/42 mitogen-activated protein kinases, as well as NFkappaB activation may be responsible for PAR4AP-induced TNF-alpha production in microglia. Taken together, these results demonstrate that PAR4 activation mediates the potentially detrimental effects of thrombin on microglia, implying that perspectives of exploiting PAR1 as a potential anti-inflammatory target should be shifted toward PAR4 as a much more specific therapeutic target in brain inflammatory conditions associated with neurotrauma and neurodegenerations.  相似文献   

9.
10.
In our previous studies, structurally similar compounds of ascochlorin and ascofuranone exhibited anti-inflammatory activity. Neural inflammation plays a significant role in the commence and advancement of neurodegenerative diseases. It is not known whether 4-O-carboxymethylascochlorin (AS-6) regulates the initial stage of inflammatory responses at the cellular level in BV2 microglia cells. We here investigated the anti-inflammatory effects of AS-6 treatment in microglia cells with the microglial protection in neurons. We found that the lipopolysaccharide (LPS)-stimulated production of nitric oxide, a main regulator of inflammation, is suppressed by AS-6 in BV2 microglial cells. In addition, AS-6 dose-dependently suppressed the increase in COX-2 protein and messenger RNA levels in LPS-stimulated BV2 cells. Moreover, AS-6 inhibited the expression and secretion of proinflammatory cytokines in BV2 microglial cells. At the intracellular level, AS-6 inhibited LPS-activated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in BV2 microglial cells. AS-6 negatively affected mitogen-activated protein kinases (MAPK) and Akt phosphorylation: Phosphorylated forms of ERK, JNK, p38, and Akt decreased. To check whether AS-6 protects against inflammatory inducer-mediated neurotoxicity, neuronal SH-SY5Y cells were coincubated with BV2 cells in conditioned medium. AS-6 exerted a neuroprotective effect by suppressing microglial activation by LPS or amyloid-β peptide. AS-6 is a promising suppressor of inflammatory responses in LPS-induced BV2 cells by attenuating NF-κB and MAPKs signaling. AS-6 protected against microglial-mediated neurotoxicity in SH-SY5Y and BV2 cocultured cells from LPS–induced neuroinflammation and death via inhibiting MAPK, NF-κB, and Akt pathways.  相似文献   

11.
12.
13.
14.
Recognition of cytosolic DNA initiates a series of innate immune responses by inducing IFN-I production and subsequent triggering JAK1-STAT1 signaling which plays critical roles in the pathogenesis of infection, inflammation and autoimmune diseases through promoting B cell activation and antibody responses. The stimulator of interferon genes protein (STING) has been demonstrated to be a critical hub of type I IFN induction in cytosolic DNA-sensing pathways. However, it still remains unknown whether cytosolic DNA can directly activate the JAK1-STAT1 signaling or not. And the role of STING is also unclear in this response. In the present study, we found that dsDNA directly triggered the JAK1-STAT1 signaling by inducing phosphorylation of the Lyn kinase. Moreover, this response is not dependent on type I IFN receptors. Interestingly, STING could inhibit dsDNA-triggered activation of JAK1-STAT1 signaling by inducing SHP-1 and SHP-2 phosphorylation. In addition, compared with normal B cells, the expression of STING was significantly lower and the phosphorylation level of JAK1 was significantly higher in B cells from MRL/lpr lupus-prone mice, highlighting the close association between STING low-expression and JAK1-STAT1 signaling activation in B cells in autoimmune diseases. Our data provide a molecular insight into the novel role of STING in dsDNA-mediated inflammatory disorders.  相似文献   

15.
Numerous studies have indicated that inflammatory cytokines play a major role in osteoclastogenesis, leading to the bone resorption that is frequently associated with cancers and other diseases. Gene deletion studies have shown that receptor activator of NF-kappaB ligand (RANKL) is one of the critical mediators of osteoclastogenesis. How RANKL mediates osteoclastogenesis is not fully understood, but an agent that suppresses RANKL signaling has potential to inhibit osteoclastogenesis. In this report, we examine the ability of curcumin (diferuloylmethane), a pigment derived from turmeric, to suppress RANKL signaling and osteoclastogenesis in RAW 264.7 cells, a murine monocytic cell line. Treatment of these cells with RANKL activated NF-kappaB, and preexposure of the cells to curcumin completely suppressed RANKL-induced NF-kappaB activation. Curcumin inhibited the pathway leading from activation of IkappaBalpha kinase and IkappaBalpha phosphorylation to IkappaBalpha degradation. RANKL induced osteoclastogenesis in these monocytic cells, and curcumin inhibited both RANKL- and TNF-induced osteoclastogenesis and pit formation. Curcumin suppressed osteoclastogenesis maximally when added together with RANKL and minimally when it was added 2 days after RANKL. Whether curcumin inhibits RANKL-induced osteoclastogenesis through suppression of NF-kappaB was also confirmed independently, as RANKL failed to activate NF-kappaB in cells stably transfected with a dominant-negative form of IkappaBalpha and concurrently failed to induce osteoclastogenesis. Thus overall these results indicate that RANKL induces osteoclastogenesis through the activation of NF-kappaB, and treatment with curcumin inhibits both the NF-kappaB activation and osteoclastogenesis induced by RANKL.  相似文献   

16.
The receptor-like phosphotyrosine phosphatase eta (PTPeta) is an important intracellular effector of the cytostatic action of SST. Here we characterize, in Chinese hamster ovary-k1 cells, the intracellular pathway that from somatostatin receptor 1 (SSTR1), leads to the activation of PTPeta and that involves, in a multimeric complex and sequential activation, the tyrosine kinases Janus kinase (JAK) 2 and Src, and the cytosolic phosphotyrosine phosphatase SHP-2. We show that inhibitors of JAK2 and Src and dominant-negative mutants of SHP-2 and Src abolished the SSTR1-mediated PTPeta activation, suggesting that all these effectors participate in the activation of PTPeta. In basal conditions, JAK2 forms a multimeric complex with SHP-2, Src and PTPeta. In response to SST, JAK2 is activated in a G protein-dependent manner, dissociates from and phosphorylates SHP-2, increasing its activity. Subsequently, SHP-2 dissociates from Src, dephosphorylates the Src inhibitory tyrosine-529, and causes an autocatalytical increase of the phosphorylation of Src tyrosine 418, located inside its kinase activation loop. Active Src, in turn, controls the activity of PTPeta, via a direct interaction and phosphorylation of the phosphatase. These data for the first time depict an intracellular pathway involving a precise sequence of interactions and cross-activation among tyrosine phosphatases and kinases acting upstream of PTPeta. In particular the sequential activation of JAK2, SHP-2, and Src conveys the molecular signaling from SSTR1 to the activation of this phosphatase that is responsible for the final biological effects of SST.  相似文献   

17.
Microglial cells are resident immune cells of the central nervous system (CNS), recognized as key elements in the regulation of neural homeostasis and the response to injury and repair. As excessive activation of microglia may lead to neurodegeneration, therapeutic strategies targeting its inhibition were shown to improve treatment of most neurodegenerative diseases. Benfotiamine is a synthetic vitamin B1 (thiamine) derivate exerting potentially anti-inflammatory effects. Despite the encouraging results regarding benfotiamine potential to alleviate diabetic microangiopathy, neuropathy and other oxidative stress-induced pathological conditions, its activities and cellular mechanisms during microglial activation have yet to be elucidated. In the present study, the anti-inflammatory effects of benfotiamine were investigated in lipopolysaccharide (LPS)-stimulated murine BV-2 microglia. We determined that benfotiamine remodels activated microglia to acquire the shape that is characteristic of non-stimulated BV-2 cells. In addition, benfotiamine significantly decreased production of pro-inflammatory mediators such as inducible form of nitric oxide synthase (iNOS) and NO; cyclooxygenase-2 (COX-2), heat-shock protein 70 (Hsp70), tumor necrosis factor alpha α (TNF-α), interleukin-6 (IL-6), whereas it increased anti-inflammatory interleukin-10 (IL-10) production in LPS stimulated BV-2 microglia. Moreover, benfotiamine suppressed the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK) and protein kinase B Akt/PKB. Treatment with specific inhibitors revealed that benfotiamine-mediated suppression of NO production was via JNK1/2 and Akt pathway, while the cytokine suppression includes ERK1/2, JNK1/2 and Akt pathways. Finally, the potentially protective effect is mediated by the suppression of translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the nucleus. Therefore, benfotiamine may have therapeutic potential for neurodegenerative diseases by inhibiting inflammatory mediators and enhancing anti-inflammatory factor production in activated microglia.  相似文献   

18.
Oncostatin M (OSM), a member of the IL-6 superfamily of cytokines, is elevated in patients with rheumatoid arthritis and, in synergy with IL-1, promotes cartilage degeneration by matrix metalloproteinases (MMPs). We have previously shown that OSM induces MMP and tissue inhibitor of metalloproteinase-3 (TIMP-3) gene expression in chondrocytes by protein tyrosine kinase-dependent mechanisms. In the present study, we investigated signaling pathways regulating the induction of MMP and TIMP-3 genes by OSM. We demonstrate that OSM rapidly stimulated phosphorylation of Janus kinase (JAK) 1, JAK2, JAK3, and STAT1 as well as extracellular signal-regulated kinase (ERK) 1/2, p38, and c-Jun N-terminal kinase 1/2 mitogen-activated protein kinases in primary bovine and human chondrocytes. A JAK3-specific inhibitor blocked OSM-stimulated STAT1 tyrosine phosphorylation, DNA-binding activity of STAT1 as well as collagenase-1 (MMP-1), stromelysin-1 (MMP-3), collagenase-3 (MMP-13), and TIMP-3 RNA expression. In contrast, a JAK2-specific inhibitor, AG490, had no impact on these events. OSM-induced ERK1/2 activation was also not affected by these inhibitors. Similarly, curcumin (diferuloylmethane), an anti-inflammatory agent, suppressed OSM-stimulated STAT1 phosphorylation, DNA-binding activity of STAT1, and c-Jun N-terminal kinase activation without affecting JAK1, JAK2, JAK3, ERK1/2, and p38 phosphorylation. Curcumin also inhibited OSM-induced MMP-1, MMP-3, MMP-13, and TIMP-3 gene expression. Thus, OSM induces MMP and TIMP-3 genes in chondrocytes by activating JAK/STAT and mitogen-activated protein kinase signaling cascades, and interference with these pathways may be a useful approach to block the catabolic actions of OSM.  相似文献   

19.
Galectin-3, a β-galactoside-binding lectin, has been proposed to have multifaceted functions in various pathophysiological conditions. However, the characteristics of galectin-3 and its molecular mechanisms of action are still largely unknown. In this study, we show that galectin-3 exerts cytokine-like regulatory actions in rat and mouse brain-resident immune cells. Both the expression of galectin-3 and its secretion into the extracellular compartment were significantly enhanced in glia under IFN-γ-stimulated, inflamed conditions. After exposure to galectin-3, glial cells produced high levels of proinflammatory mediators and exhibited activated properties. Notably, within minutes after exposure to galectin-3, JAK2 and STAT1, STAT3, and STAT5 showed considerable enhancement of tyrosine phosphorylation; thereafter, downstream events of STAT signaling were also significantly enhanced. Treatment of the cells with pharmacological inhibitors of JAK2 reduced the galectin-3-stimulated increases of inflammatory mediators. Using IFN-γ receptor 1-deficient mice, we further found that IFN-γR 1 might be required for galectin-3-dependent activation of the JAK-STAT cascade. However, galectin-3 significantly induced phosphorylation of STATs in glial cells from IFN-γ-deficient mice, suggesting that IFN-γ does not mediate activation of STATs. Collectively, our findings suggest that galectin-3 acts as an endogenous danger signaling molecule under pathological conditions in the brain, providing a potential explanation for the molecular basis of galectin-3-associated pathological events.  相似文献   

20.
Curcumin is a phenolic natural product isolated from the rhizome of Curcuma longa (tumeric). It was previously described that curcumin had a potent anti-inflammatory effect and inhibited the proliferation of a variety of tumor cells. In the present study, we investigated the inhibitory effects of curcumin on the response of normal murine splenic B cells. Curcumin inhibited the proliferative response of purified splenic B cells from BALB/c mice stimulated with the Toll-like receptor ligands LPS and CpG oligodeoxynucleotides. LPS-induced IgM secretion was also inhibited by curcumin. The proliferative response induced by either the T-independent type 2 stimuli anti-delta-dextran or anti-IgM antibodies was relatively resistant to the effect of curcumin. We investigated the intracellular signaling events involved in the inhibitory effects of curcumin on murine B cells. Curcumin did not inhibit the increase in calcium levels induced by anti-IgM antibody. Western blotting analysis showed that curcumin inhibited TLR ligands and anti-IgM-induced phosphorylation of ERK, IκB and p38. Curcumin also decreased the nuclear levels of NFκB. Our results suggested that curcumin is an important inhibitor of signaling pathways activated upon B cell stimulation by TLR ligands. These data indicate that curcumin could be a potent pharmacological inhibitor of B cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号