首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 352 毫秒
1.
The extracellular polysaccharide produced by Butyrivibrio fibrisolvens strain H10b, when grown under strictly anaerobic conditions with glucose as carbohydrate source, has been studied by chemical and spectroscopic techniques. The results demonstrate that the polysaccharide consists of hexasaccharide repeating units with the following structure: [structure: see text] The isolated polysaccharide was found to be approximately 65% acetylated at O-2 of the 3-O-[(S)-1-carboxyethyl]-beta-D-Glcp residue. The absolute configuration of the 1-carboxyethyl groups was determined by circular dichroism.  相似文献   

2.
The conformational features of a chemically synthesized 23-residue glycopeptide construct (II) carrying Gal-beta-(1,3)-alpha-GalNAc and its deglycosylated counterpart (I; Gal: galactose; GalNAc: N-acetyl galactosamine) derived from the C-terminal domain of human salivary mucin (MUC7) were investigated using CD spectroscopy as well as molecular dynamic simulation studies. The corresponding deglycosylated peptide (I) was essentially used to compare and study the influence of the sugar moiety on peptide backbone conformation. CD measurements in aqueous medium revealed that the apopeptide (I) contains significant populations of beta-strand conformation while the glycopeptide (II) possess, partly, helical structure. This transition in the secondary structure upon glycosylation from beta-strand to helical conformation clearly demonstrates that the carbohydrate moiety exerts significant influence on the peptide backbone. On the other hand, upon titrating structure stabilizing organic cosolvent, trifluoroethanol (TFE), both the peptides showed pronounced helical structure. However, the propensity for helical structure formation is less pronounced in glycopeptide compared to apopeptide suggesting that the bulky carbohydrate moiety possibly posing steric hindrance to the formation of TFE-induced secondary structure in II. Energy-minimized molecular model for the glycopeptide revealed that the preferred helix conformation in aqueous medium appears to be stabilized by the hydrogen-bonded salt bridge like interaction between carbohydrate --OH and Lys-10 side--N(+)H(3) group. Size exclusion chromatographic analysis of both (glyco)peptides I and II showed an apparent Kd of 2.3 and 0.52 microM, respectively, indicating that glycopeptide (II) has greater tendency for self-association. Due to high amphipathic character as well as due to the presence of a leucine zipper motif ( approximately LLYMKNLL approximately ), which is known to increase the stability at the coiled-coil interface via hydrophobic interactions, we propose therefore that, this domain could be one of the key elements involved in the self-association of intact MUC7 in vivo. Profound conformational effects governed by glycosylation exemplified herein could have implications in determining structure-function relationships of mucin glycoproteins.  相似文献   

3.
In a series of our earlier studies, the O3 antigen isolated from culture supernatant of Klebsiella pneumoniae strain Kasuya (O3:K1) (KO3) was shown to exhibit very strong adjuvant activity in mice. KO3 obtained was homogeneous in analyses by either gel filtration or ultracentrifugation. Its molecular weight determined by ultracentrifugal analysis was greater than 2 X 10(6). It contained 37.9% C, 6.20% H, 0.24% N, and less than 0.1% P. KO3 was degraded into the polysaccharide moiety and lipid moiety (about 20%) by hydrolysis with 1% acetic acid at 100 C for 1 hr. The molecular weight of the polysaccharide moiety obtained by the hydrolysis was 16,200 as determined by the Somogyi-Nelson method. Chemical analyses using methylation analysis and Smith degradation as the principal methods indicated that the polysaccharide moiety consisted of a mannan which has a pentasaccharide repeating unit of alpha-mannosyl-1,3-alpha-mannosyl-1,2-alpha-mannosyl-1,2-alpha-mannosyl-1, 2-alpha-mannose joined through alpha-1,3-mannosyl linkages. The number of repetitions was less than 20. The fact that minor components such as 2-keto-3-deoxyoctonate and glucose were detected suggests the presence of a core oligosaccharide, but its precise structure is unknown.  相似文献   

4.
This study deals with the chemical characterization of an extracellular polysaccharide produced by the unicellular red alga Porphyridium sp. The sugar moiety of this polymer is composed of three neutral monosaccharides (Xyl, Glc, and Gal) and one uronic acid (GlcA). Proteins represent 5.5% of the dry weight of the polymer. Uronic degradation of this exopolysaccharide with lithium in ethylenediamine yielded two different oligosaccharides. The absolute configuration of the constitutive monosaccharides was chemically determined and revealed the presence of D-Xyl, D-Glc, D-, and L-Gal. The following oligosaccharide structures were established by NMR spectroscopy: [carbohydrate structure: see text].  相似文献   

5.
Antihypertensive compounds were purified from an extract of autologous Lactobacillus casei cell lysates. The most effective compounds were polysaccharide-glycopeptide complexes, found in the cell wall. The average molecular weight was estimated as 180,000 from gel filtration using Sephacryl S-300. The polysaccharide moiety of the complexes consisted of glucose, rhamnose, and galactose, whereas the glycopeptide moiety consisted of N-acetylglucosamine, N-acetylmuramic acid, asparagine, glutamine, alanine, and lysine. The varieties of the components of these moieties were constant and independent of complex molecular size. When these complexes were orally administered to spontaneously hypertensive rats (SHR) and renal hypertensive rats (RHR) at doses of 1 mg/kg-body weight, systolic blood pressure (SBP) decreased by 10–20 mmHg 6 to 12 hr after administration without any change in heart rate. Appreciable hypotensive activity was lost by treating the complexes with hydrofluoric acid, which hydrolytically cleaves the phosphodiester bond between the polysaccharide and glycopeptide moiety.  相似文献   

6.
The structure of a mannose-rich glycopeptide from a human pathological IgM has been investigated. It belongs to the group I (simple) glycopeptides and contains only mannose and N-acetylglucosamine residues in a molar ratio of 10:2. The structures of its oligosaccharide moiety and peptide chain have been determined: its molecular localization is specified and the relation between its biosynthesis and the oligosaccharide structure determine is discussed. Based on the alpha- and beta-mannosidase digestions and permethylation studies for the oligosaccharide moiety, and on the results obtained after sequential analysis of the peptide chain, the following structure is proposed for the mannose-rich IgM Du glycopeptide: (Formula: see text). The recovery of one molecule of this glycopeptide per molecule of heavy chain and the determination of the amino acid sequence have led us to locate this glycopeptide on asparagine 402 of the Fc portion of the heavy chain mu of IgM Du.  相似文献   

7.
以海洋红酵母为材料, 通过化学抽提法得到多糖, 用经典的Sevag 法进行脱蛋白处理, 经多级沉淀得到纯糖并采用硫酸-蒽酮法测得其中葡萄糖含量; 考马斯亮蓝法分析蛋白质含量。以定量海洋红酵母多糖人工注射日本蟳, 注射等量生理盐水为对照, 定时测定其血清中部分免疫活性因子的活性; 实验表明: 提取多糖为蛋白多糖, 其中葡萄糖含量为3.6%, 蛋白质含量1.9%, 含有多种氨基酸, 其中天冬氨酸含量最多; 注射后12 h 日本蟳血清中总超氧化物歧化酶(T-SOD) 活力达到最高, 酸性磷酸酶(ACP) 活力在注射后24 h 达到最高, 碱性磷酸酶(AKP) 48 h 达到最高, 过氧化氢酶(CAT) 48 h 达到最高, 溶菌酶(LZM) 12 h 即达到最高, 最高点分别高于对照组24%、43%、25%、35%、95%; 72 h 后都恢复至对照组水平。结论: 海洋红酵母多糖注射48 h 内日本蟳体内免疫活性因子均有不同程度的提高, 对日本蟳有较强免疫刺激作用。  相似文献   

8.
《Carbohydrate research》1985,138(2):257-266
A glycopeptide (In1) was isolated by phenol-water extraction from Cyttaria harioti Fischer, parasite of Nothofagus sps. Neutral sugars account for 89% of In1 and were characterized as glucose, mannose, and galactose. Glucosamine, identified by g.l.c., was colorimetrically estimated (5.8%). The molar ratio of Glc:Man:Gal:GlcNAc was 17:11:3:2. The linkages between the various monosaccharide residues were established through methylation analysis and periodate oxidation studies. The anomeric configurations of the various glycosyl groups were determined by chromium trioxide oxidation of the acetylated polysaccharide. The results were confirmed by 13C-n.m.r. spectroscopy. The sugar chain is N-glycosyl-linked to the peptide. Structural features of the carbohydrate moiety of glycopeptide In1 are described.  相似文献   

9.
Purification and carbohydrate structure of natural murine interferon-beta   总被引:1,自引:0,他引:1  
Mouse interferon-beta (Mu-INF-beta) induced in C-243 cells with Newcastle disease virus was purified in four steps including ammonium sulfate fractionation. DEAE-cellulose, monoclonal Mu-IFN-beta antibody affinity and Mono-S cation-exchange chromatographies. Specific activity of the purified Mu-IFN-beta ranged over 1.1-1.4 X 10(9) NIH units/mg protein. This preparation was submitted to pronase digestion and gel on Fractogel TSK HW-40. The permethylated and acetylated glycopeptide fraction was analyzed by chemical-ionization (ammonia) mass spectrometry. The major glycopeptide is composed of Gal, Man, GlcNAc and NeuAc with a molar ratio of 2.0:3.6:3.4:0.5. The GLC pattern of methyl derivatives obtained by methanolysis and acetylation of fully methylated glycopeptide identified 2,3,4,6-tetra-O-methylgalactose; 3,4,6-tri-O-methyl-mannose; 2,3,4- and 2,4,6-tri-O-methylgalactose; 2,4,di-O-methyl mannose and 3,6-di-O-methylglucosamine. These results when compared with data on N-glycans suggest the following structure for the carbohydrate moiety of Mu-INF-beta: (formula; see text).  相似文献   

10.
A polysaccharide fraction (AQS-II) has been isolated from the hot aqueous extract of the fruits of an ectomycorrhizal fungus Astraeus hygrometricus. It was found to contain 63% polysaccharide and 35% protein. The polysaccharide part contains glucose, galactose, and fucose in a 2:1:1 molar ratio. On the basis of total acid hydrolysis, methylation analysis, periodate oxidation, and NMR studies ((1)H, (13)C, DQF-COSY, TOCSY, NOESY, HMBC, and HSQC) the structure of the repeating unit of the polysaccharide was established as [structure: see text].  相似文献   

11.
The polysaccharide isolated from the gum exudate of palm Scheelea phalerata (SPN) was water-insoluble and composed of Fuc, Ara, Xyl, and uronic acid moieties in a 5:34:54:7 molar ratio: 12% of phenolics were also present. A soluble polysaccharide (SPNa) was obtained after alkaline treatment, which contained Fuc, Ara, Xyl and uronic acid in a 7:44:42:7 molar ratio, with only 2% phenolics. SPNa had an M(W) approximately 1.04 x 10(5) g mol(-1) and was almost monodisperse (M(W)/M(N) : 1.25 +/-0.22). It had a branched structure with side chains of 2-O-substituted Xylp (approximately 8%) and 3-O-substituted Araf (12%) units, and a large proportion of nonreducing end-units of Araf (15%), Fucp (10%), Xylp (4%), and Arap (6%). The (1 --> 4)-linked beta-Xylp main-chain units were 3-O- (9%), 2-O- (13%), and 2,3-di-O- (13%) substituted. Its (13)C NMR spectrum contained at least 9 C-1 signals, those at delta 108.6 and 107.7 arising from alpha-Araf units. Others were present at delta 175.4 from C-6 of alpha-GlcpA and delta 15.6 from C-6 of Fucp units. The main chain of SPNa was confirmed by analysis of a Smith-degraded polysaccharide (SPDS): methylation analysis provided a 2,3-Me(2)-Xyl (65%) derivative and its (13)C NMR spectrum showed five main signals typical of a (1 --> 4)-linked beta-Xylp units. Methylation analysis of a carboxy-reduced polysaccharide (SPN-CR) revealed a 2,3,4,6-Me(4)-Glc derivative (4%) arising from nonreducing end-units of GlcpA. Alpha-GlcpA-(1 --> 2)-alphabeta-Xy1p and alpha-GlcpA-(1 --> 2)-beta-Xylp-(1 --> 4)-alphabeta-Xylp were obtained via partial acid hydrolysis of SPN, showing the structure of side-chain substituents on O-2 of the main-chain units.  相似文献   

12.
Streptococcus parasanguis is a primary colonizer of the tooth surface and plays a pivotal role in the formation of dental plaque. The fimbriae of S. parasanguis are important in mediating adhesion to saliva-coated hydroxylapatite (SHA), an in vitro tooth adhesion model. The Fap1 adhesin has been identified as the major fimbrial subunit, and recent studies suggest that Fap1 is a glycoprotein. Monosaccharide analysis of Fap1 purified from the culture supernatant of S. parasanguis indicated the presence of rhamnose, glucose, galactose, N-acetylglucosamine and N-acetylgalactosamine. A glycopeptide moiety was isolated from a pronase digest of Fap1 and purified by immunoaffinity chromatography. The monosaccharide composition of the purified glycopeptide was similar to that of the intact molecule. The functionality of the glycan moiety was determined using monoclonal antibodies (MAbs) specific for the intact Fap1 glycoprotein. These antibodies were grouped into two categories based on their ability to block adhesion of S. parasanguis to SHA and their corresponding specificity for either protein or glycan epitopes of the Fap1 protein. 'Non-blocking' MAb epitopes were mapped to unique protein sequences in the N-terminus of the Fap1 protein using non-glycosylated recombinant Fap1 proteins (rFap1 and drFap1) expressed in Escherichia coli. In contrast, the 'blocking' antibodies did not bind to the recombinant Fap1 proteins, and were effectively competed by the binding to the purified glycopeptide. These data suggest that the 'blocking' antibodies are specific for the glycan moiety and that the adhesion of S. parasanguis is mediated by sugar residues associated with Fap1.  相似文献   

13.
A polysaccharide fraction was isolated form sodium-dodecyl-sulfate (SDS) treated cell walls of Bacillus anthracis (delta Sterne) by hydrofluoric acid (HF) hydrolysis and ethanolic precipitation. The polysaccharide fraction was subsequently purified by several washings with absolute ethanol. Purity of the isolated polysaccharide was tested using the anthrone assay and amino acid analyzer. The molecular mass of the polysaccharide fraction as determined by gel filtration chromatography was about 12000 Da. Preliminary analyses of the polysaccharide was done using thin layer chromatography and amino acid analyzer, and results obtained from these analyses were further confirmed by gas liquid chromatography and 13C-NMR spectroscopy. Results showed that the polysaccharide moiety contained galactose, N-acetylglucosamine, and N-acetylmannosamine in an approximate molar ratio of 3:2:1. This moiety was devoid of muramic acid, alanine, diaminopimelic acid, glutamic acid, and lipid, thus indicating that the isolated polysaccharide was of pure quality.  相似文献   

14.
A galactofuranosyl-containing glycopeptide has been isolated from mycelium ofAscobolus furfuraceus by extraction with water. The glycoconjugate was purified by DEAE-cellulose chromatography followed by gel filtration. A molecular weight of about 20 000 was determined by the latter method using standard dextrans. Neutral sugars accounted for 94.5% of the glycopeptide and were characterized as mannose, galactose, and glucose. Glucosamine was estimated colorimetrically (1.8%). The molar ratio of Man:Gal:Glc:GlcNH2 was 68:32:16:2. A trace amount of total phosphorus (0.2%) was found. The predominant amino acids were threonine and serine. The peptide moiety was labeled with [14C]formaldehyde and the elution of radioactivity was coincident with sugar on gel filtration in the presence of sodium dodecyl sulfate. The peak of radioactivity was retarded on release of galactose by mild acid hydrolysis. These results confirm the sugar-peptide linkage.  相似文献   

15.
The structure of the phenol-soluble polysaccharide from Pseudoalteromonas rubra type strain ATCC 29570T has been elucidated using 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, gNOESY, ROESY, 1H,13C gHMQC and gHMBC experiments. It is concluded that the trisaccharide repeating unit of the polysaccharide has the following structure: [carbohydrate structure: see text] where Sug is 2-acetamido-2,6-dideoxy-D-xylo-hexos-4-ulose, Am is acetimidoyl and Acyl is a malic acid residue, which is O-acetylated in approximately 70% of the units.  相似文献   

16.
A glycopeptide fraction has been prepared from human chorionic gonadotropin (HCG) by digesting the reduced, S-carboxymethylated hormone with pronase and fractionating the digest by gel exclusion chromatography. The glycopeptide fraction was estimated to contain (w/w) 29% sialic acid, 31% hexose, 23% hexosamine, and 17% amino acids and/or peptides; thus, the glycopeptide mixture is 83% carbohydrate compared to intact HCG which is about 30% carbohdyrate. There was no cross-reactivity of the glycopeptide fraction with an antiserum directed against HCG. Also, when corrected for minimal non-specific effects, the fraction failed to displace 125I-HCG from a rat testicular preparation even when tested at a 10,000-fold (w/w) excess. Thus, any model involving carbohydrate effects in gonadotropin action must include the protein moiety as a necessary component.  相似文献   

17.
The O-antigen of the lipopolysaccharide (LPS) from the enteroaggregative Escherichia coli strain 87/D2 has been determined by component analysis together with NMR spectroscopy. The polysaccharide has pentasaccharide repeating units in which all the residues have the galacto-configuration. The repeating unit of the O-antigen, elucidated using the O-deacylated LPS, is branched with the following structure: Analysis of the 1H NMR spectrum of the LPS revealed O-acetyl groups (approximately 0.7 per repeating unit) distributed over two positions. Subsequent analysis showed that the galactose residue carries acetyl groups at either O-3 or O-4 in a ratio of approximately 2:1. The international reference strain from E. coli O128ab was investigated and the repeating unit of the O-antigens has the following structure: Analysis of the 1H NMR spectrum of the LPS revealed O-acetyl groups (approximately one per repeating unit) distributed over two positions. The integrals of the resonances for the O-acetyl groups indicated similarities between the O-antigen from E. coli O128ab and that of E. coli strain 87/D2, whereas the O-acetyl substitution pattern in the E. coli O128ac O-antigen differed slightly. Enzyme immunoassay using specific anti-E. coli O128ab and anti-E. coli O128ac rabbit sera confirmed the results.  相似文献   

18.
The partial structure of glycopeptide moiety of new acid protease A isolated from Scytalidium lignicolum ATCC 24568 was studied by Smith degradation, methylation and partial acetolysis techniques. The main product, glycopeptide V (GP-V), obtained by Pronase digestion was composed of mannose, glucosamine, asparagine, serine and glycine in an approximate molar ratio of 10: 3: 2: 1: 1, and a possible structure was proposed as follows:  相似文献   

19.
The structure of the core part of the LPS from Geobacter sulfurreducens was analysed. The LPS contained no O-specific polysaccharide (O-side chain) and upon mild hydrolysis gave a core oligosaccharide, which was isolated by gel chromatography. It was studied by chemical methods, NMR and mass spectrometry, and the following structure was proposed. [carbohydrate structure: see text] where Q = 3-O-Me-alpha-L-QuiNAc-(1-->or H (approximately 3:2).  相似文献   

20.
Solution structures of a 23 residue glycopeptide II (KIS* RFLLYMKNLLNRIIDDMVEQ, where * denotes the glycan Gal-beta-(1-3)-alpha-GalNAc) and its deglycosylated counterpart I derived from the C-terminal leucine zipper domain of low molecular weight human salivary mucin (MUC7) were studied using CD, NMR spectroscopy and molecular modeling. The peptide I was synthesized using the Fmoc chemistry following the conventional procedure and the glycopeptide II was synthesized incorporating the O-glycosylated building block (Nalpha-Fmoc-Ser-[Ac4-beta-D-Gal-(1,3)-Ac2-alpha-D-GalN3+ ++]-OPfp) at the appropriate position in stepwise assembly of peptide chain. Solution structures of these glycosylated and nonglycosylated peptides were studied in water and in the presence of 50% of an organic cosolvent, trifluoroethanol (TFE) using circular dichroism (CD), and in 50% TFE using two-dimensional proton nuclear magnetic resonance (2D 1H NMR) spectroscopy. CD spectra in aqueous medium indicate that the apopeptide I adapts, mostly, a beta-sheet conformation whereas the glycopeptide II assumes helical structure. This transition in the secondary structure, upon glycosylation, demonstrates that the carbohydrate moiety exerts significant effect on the peptide backbone conformation. However, in 50% TFE both the peptides show pronounced helical structure. Sequential and medium range NOEs, CalphaH chemical shift perturbations, 3JNH:CalphaH couplings and deuterium exchange rates of the amide proton resonances in water containing 50% TFE indicate that the peptide I adapts alpha-helical structure from Ile2-Val21 and the glycopeptide II adapts alpha-helical structure from Ser3-Glu22. The observation of continuous stretch of helix in both the peptides as observed by both NMR and CD spectroscopy strongly suggests that the C-terminal domain of MUC7 with heptad repeats of leucines or methionine residues may be stabilized by dimeric leucine zipper motif. The results reported herein may be invaluable in understanding the aggregation (or dimerization) of MUC7 glycoprotein which would eventually have implications in determining its structure-function relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号