首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Bovine lung thromboxane synthase was immobilized on phenyl-Sepharose beads by adsorption. The immobilized enzyme was catalytically active and synthesized both TXA2 and HHT. The production of both products was inhibited by 1-benzylimidazole and furegrelate. Multiple additions of PGH2 dramatically reduced the ability of the enzyme to synthesize TXA2, but did not effect the synthesis of HHT. In addition, 1-benzylimidazole did not protect thromboxane synthase from inactivation with multiple additions of PGH2. When the enzyme was incubated with PGH2 in the presence of 1-benzylimidazole, the synthesis of TXA2 was inhibited. When the inhibitor was removed the enzyme had still been inactivated by PGH2 in the presence of 1-benzylimidazole. Thus the substrate inactivation of the enzyme does not require the production of TXA2. Our data suggests that the synthesis of TXA2 and HHT can be differentially inactivated and may occur at different sites on the enzyme.  相似文献   

2.
Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) feature prominently in retinal neovascular diseases. Although the role of VEGF in retinal angiogenesis is well established, the importance of bFGF in this process requires further clarification. This study was undertaken to investigate the responses of retinal capillary cells (endothelial cells and pericytes) to bFGF under hypoxic conditions, as well as the potentially synergistic effects of bFGF and VEGF on the proliferation and cord formation of retinal endothelial cells. Cell proliferation was determined by cell number and by 3H-thymidine incorporation. Cord formation was assessed in three-dimensional gels of collagen type I. VEGF and bFGF increased 3H-thymidine incorporation by both cell types, an effect that was more pronounced in a hypoxic environment. Moreover, the proliferation of pericytes was stimulated to a greater extent by bFGF relative to VEGF. Endothelial migration in collagen gels, however, was induced more effectively by VEGF than by bFGF. A synergistic effect of VEGF and bFGF on cell invasion was observed in the collagen gel assay. VEGF and bFGF each augment proliferation of these cells, especially under hypoxia. We thus propose that these two cytokines have a synergistic effect at several stages of angiogenesis in the retina.  相似文献   

3.
Thromboxane synthase (TXAS) is an enzyme that catalyzes the synthesis of thromboxane A(2) (TXA(2)). Overexpression of TXAS is associated with a variety of vascular diseases. Recently, we reported that visfatin, a novel adipokine, exhibits angiogenic actions. In this study, we showed that visfatin increased mRNA and protein levels of TXAS and stimulated TXA(2) biosynthesis in vascular endothelial cells. In addition, visfatin induced the expression and secretion of interleukin-8 (IL-8), which is blocked by a TXAS inhibitor and by the transfection of siRNA specific for TXAS. Furthermore, the inhibition of TXAS activity and blockade of the IL-8 receptor attenuated visfatin-induced endothelial angiogenesis. Together, these results showed that visfatin promoted IL-8 production by upregulation of TXAS, leading to angiogenic activation in endothelial cells.  相似文献   

4.
Platelet-vascular endothelial cell interactions are central to the maintenance of vascular homeostasis. Thromboxane A2 (TXA2) and prostacyclin (prostaglandin (PG)I2) are the major products of cyclooxygenase (COX) metabolism by platelets and the vascular endothelium, respectively. Here we report the effects of platelet-endothelial interactions on human umbilical vein endothelial cells (HUVECs) COX-2 expression and prostanoid synthesis. Co-incubation of platelets with HUVECs resulted in a dose-dependent induction in COX-2 expression. This was accompanied by a relatively small increase in thromboxane B2 synthesis (2 ng) by comparison to the production of 6-keto-PGF1alpha and PGE2, which increased by approximately 14 and 12 ng, respectively. Abrogation of platelet-HUVEC interactions excluded direct cell-cell contact as a required event. Preincubation of HUVECs with SQ29548, a TXA2 receptor antagonist, dose-dependently inhibited platelet-induced COX-2 expression and prostanoid synthesis. Similarly, if platelet TXA2 synthesis was inhibited no induction of COX-2 was observed. Furthermore, a TXA2 analog, carbocyclic TXA2, induced HUVEC COX-2 expression and the synthesis of 6-keto-PGF1alpha and PGE2. This was also associated with an increase in the expression and activity of PGI synthase and PGE synthase but not TX synthase. Platelet co-incubation (or TXA2) also selectively activated the p44/42 mitogen-activated protein kinase pathway to regulate HUVEC COX-2 expression. Thus it seems that platelet-derived TXA2 can act in a paracrine manner to up-regulate endothelial COX-2 expression and PGI2 synthesis. These observations are of particular importance given the recent observations regarding selective COX-2 inhibitors and the suppression of PGI2 synthesis.  相似文献   

5.
Cytochrome P-450 (CYP) epoxygenases metabolize arachidonic acid to epoxyeicosatrienoic acid (EET) regioisomers, which activate several signaling pathways to promote endothelial cell proliferation, migration, and angiogenesis. Since vascular endothelial growth factor (VEGF) plays a key role in angiogenesis, we assessed a possible role of EETs in the VEGF-activated signal transduction cascade. Stimulation with VEGF increased CYP2C promoter activity in endothelial cells and enhanced CYP2C8 mRNA and protein expression resulting in increased intracellular EET levels. VEGF-induced endothelial cell tube formation was inhibited by the EET antagonist 14,15-epoxyeicosa-5(Z)-enoicacid (14,15-EEZE), which did not affect the VEGF-induced phosphorylation of its receptor or basic fibroblast growth factor (bFGF)-stimulated tube formation. Moreover, VEGF-stimulated endothelial cell sprouting in a modified spheroid assay was reduced by CYP2C antisense oligonucleotides. Mechanistically, VEGF stimulated the phosphorylation of the AMP-activated protein kinase (AMPK), which has also been linked to CYP induction, and the overexpression of a constitutively active AMPK mutant increased CYP2C expression. On the other hand, a dominant-negative AMPK mutant prevented the VEGF-induced increase in CYP2C RNA and protein expression in human endothelial cells. In vivo (Matrigel plug assay) in mice, endothelial cells were recruited into VEGF-impregnated plugs; an effect that was sensitive to 14,15-EEZE and the inclusion of small interfering RNA directed against the AMPK. The EET antagonist did not affect responses observed in plugs containing bFGF. Taken together, our data indicate that CYP2C-derived EETs participate as second messengers in the angiogenic response initiated by VEGF and that preventing the increase in CYP expression curtails the angiogenic response to VEGF.  相似文献   

6.
Histamine, a major mediator present in mast cells that is released into the extracellular milieu upon degranulation, is well known to possess a wide range of biological activities in several classic physiological and pathological processes. However, whether and how it participates in angiogenesis remains obscure. In the present study, we observed its direct and synergistic action with basic fibroblast growth factor (bFGF), an important inducer of angiogenesis, on in vitro angiogenesis models of endothelial cells. Data showed that histamine (0.1, 1, 10 µM) itself was absent of direct effects on the processes of angiogenesis, including the proliferation, migration, and tube formation of endothelial cells. Nevertheless, it could concentration‐dependently enhance bFGF‐induced angiogenesis as well as production of vascular endothelial growth factor (VEGF) from endothelial cells. The synergistic effect of histamine on VEGF production could be reversed by pretreatments with diphenhydramine (H1‐receptor antagonist), SB203580 (selective p38 mitogen‐activated protein kinase (MAPK) inhibitor) and L ‐NAME (nitric oxide synthase (NOS) inhibitor), but not with cimetidine (H2‐receptor antagonist) and indomethacin (cyclooxygenase (COX) inhibitor). Moreover, histamine could augment bFGF‐incuced phosphorylation and degradation of IκBα, a key factor accounting for the activation and translocation of nuclear factor κB (NF‐κB) in endothelial cells. These findings indicated that histamine was able to synergistically augment bFGF‐induced angiogenesis, and this action was linked to VEGF production through H1‐receptor and the activation of endothelial nitric oxide synthase (eNOS), p38 MAPK, and IκBα in endothelial cells. J. Cell. Biochem. 114: 1009–1019, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Active angiogenesis and progesterone (P) synthesis occur in parallel during development of the corpus luteum (CL). Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) are known to stimulate angiogenesis and P synthesis in vitro. The aim of the present study was to investigate the impact of bFGF or VEGF on the CL development in the cow by using a specific antibody against bFGF or VEGF. bFGF antibody, VEGF antibody, or saline as a control (n = 4 cows/treatment) were injected directly into the CL immediately after ovulation (Day 1), and the treatment was continued for 3 times/day over 7 days. Luteal biopsies were applied on Day 8 of the estrous cycle to determine the expression of genes associated with P synthesis and angiogenesis. Intraluteal injections with the bFGF antibody or the VEGF antibody markedly decreased the CL volume, plasma P concentration and StAR mRNA expression. bFGF antibody treatment decreased the mRNA expression of bFGF, FGF receptor-1, VEGF120, and angiopoietin (ANPT)-1, and increased ANPT-2/ANPT-1 ratio. However, VEGF antibody treatment decreased ANPT-2 mRNA expression and ANPT-2/ANPT-1 ratio. These results indicate that local neutralization of bFGF or VEGF changes genes regulating angiogenesis and P synthesis, and remarkably suppresses the CL size and P secretion during the development of CL in the cow, supporting the concept that bFGF and VEGF control the CL formation and function.  相似文献   

8.
Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) play a critical role in tumor-associated angiogenesis and have become the targets of anti-tumor therapy. The BALB/c mice were immunized with VEGF/bFGF complex peptide (VBP3) constructed with different epitope peptides of human VEGF and bFGF. The results of the immunogenicity showed that the VBP3 could effectively stimulate immune response in mice and elicit the mice to produce high titer specific anti-VEGF and anti-bFGF antibodies (anti-VBP3 antibodies). The polyclonal anti-VBP3 antibodies separated from the mouse immune serum could effectively inhibit the proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs) and block the proliferation and migration of lung cancer A549 cells. Besides, the anti-VBP3 antibodies could effectively inhibit tumor growth and tumor angiogenesis in BABL/c nude mice. The results demonstrated that the VBP3 complex peptide could elicit the body to produce the high titer anti-VEGF and anti-bFGF antibodies, which showed anti-tumor and anti-angiogenic effects in vitro and in vivo. The results revealed that the VBP3 complex peptide could be used as a potential peptide vaccine in tumor therapy.  相似文献   

9.
Tumor necrosis factor alpha (TNF-alpha) is a macrophage/monocyte-derived polypeptide which modulates the expression of various genes in vascular endothelial cells and induces angiogenesis. However, the underlying mechanism by which TNF-alpha mediates angiogenesis is not completely understood. In this study, we assessed whether TNF-alpha-induced angiogenesis is mediated through TNF-alpha itself or indirectly through other TNF-alpha-induced angiogenesis-promoting factors. Cellular mRNA levels of interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and their receptors were increased after the treatment of human microvascular endothelial cells with TNF-alpha (100 U/ml). TNF-alpha-dependent tubular morphogenesis in vascular endothelial cells was inhibited by the administration of anti-IL-8, anti-VEGF, and anti-bFGF antibodies, and coadministration of all three antibodies almost completely abrogated tubular formation. Moreover, treatment with Sp1, NF-kappaB, and c-Jun antisense oligonucleotides inhibited TNF-alpha-dependent tubular morphogenesis by microvascular endothelial cells. Administration of a NF-kappaB antisense oligonucleotide almost completely inhibited TNF-alpha-dependent IL-8 production and partially abrogated TNF-alpha-dependent VEGF production, and an Sp1 antisense sequence partially inhibited TNF-alpha-dependent production of VEGF. A c-Jun antisense oligonucleotide significantly inhibited TNF-alpha-dependent bFGF production but did not affect the production of IL-8 and VEGF. Administration of an anti-IL-8 or anti-VEGF antibody also blocked TNF-alpha-induced neovascularization in the rabbit cornea in vivo. Thus, angiogenesis by TNF-alpha appears to be modulated through various angiogenic factors, both in vitro and in vivo, and this pathway is controlled through paracrine and/or autocrine mechanisms.  相似文献   

10.
11.
The eicosanoid thromboxane A(2) (TXA(2)) is released by activated platelets, monocytes, and the vessel wall and interacts with high affinity receptors expressed in several tissues including endothelium. Whether TXA(2) might alter endothelial migration and tube formation, two determinants of angiogenesis, is unknown. Thus, we investigated the effect of the TXA(2) mimetic [1S-(1alpha, 2beta(5Z),3alpha(1E,3R), 4alpha]-7-[3-(3-hydroxy-4-(4'-iodophenoxy)-1-butenyl)-7-o xab icyclo- [2.2.1]heptan-2-yl]-5'-heptenoic acid (IBOP) on human endothelial cell (HEC) migration and angiogenesis in vitro. IBOP stimulation inhibited HEC migration by 50% and in vitro capillary formation by 75%. These effects of IBOP were time- and concentration-dependent with an IC(50) of 25 nM. IBOP did not affect integrin expression or cytoskeletal morphology of HEC. Since gap junction-mediated intercellular communication increases in migrating HEC, we determined whether IBOP might inhibit coupling or connexin expression in HEC. IBOP reduced the passage of microinjected dyes between HEC by 50%, and the effects of IBOP on migration and tube formation were mimicked by the gap junction inhibitor 18beta-glycyrrhetinic acid (1 microM) with a similar time course and efficacy. IBOP (24 h) did not affect the expression or phosphorylation of connexin 43 in whole HEC lysates. Immunohistologic examination of HEC suggested that IBOP may impair functional coupling by altering the cellular distribution of gap junctions, leading to increased connexin 43 internalization. Thus, this finding that TXA(2) mimetics can prevent HEC migration and tube formation, possibly by impairing intercellular communication, suggests that antagonizing TXA(2) signaling might enhance vascularization of ischemic tissue.  相似文献   

12.
We hypothesize that compensatory lung growth after unilateral pneumonectomy in a murine model is, in part, angiogenesis dependent and can be altered using angiogenic agents, possibly through regulation of endothelial cell proliferation and apoptosis. Left pneumonectomy was performed in mice. Mice were then treated with proangiogenic factors [vascular endothelial growth factor (VEGF); basic fibroblast growth factor (bFGF)], VEGF receptor antibodies (MF-1, DC101), and VEGF receptor small molecule chemical inhibitors. Lung volume and mass were measured. The lungs were analyzed using immunohistochemistry by CD31 staining, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling, type II pneumocytes staining, and proliferating cell nuclear antigen. Compensatory lung growth was complete by postoperative day 10 and was associated with diffuse apoptosis of endothelial cells and pneumocytes. This process was accelerated by VEGF, such that growth was complete by postoperative day 4 with similar associated apoptosis. bFGF had no effect on lung growth. MF-1 and DC101 had no effect. The VEGF receptor small molecule chemical inhibitors also had no effect. VEGF, but not bFGF, accelerates growth. VEGF receptor inhibitors do not block growth, suggesting that other proangiogenic factors play a role or can compensate for VEGF receptor blockade. Diffuse apoptosis, endothelial cell and pneumocyte, occurs at cessation of both normal compensatory and VEGF-accelerated growth. Angiogenesis modulators may control growth via regulation of endothelial cell proliferation and apoptosis, although the exact relationship between endothelial cells and pneumocytes has yet to be determined. The fact that bFGF did not accelerate growth in our model when it did accelerate regeneration in the liver model suggests that angiogenesis during organ regeneration is regulated in an organ-specific manner.  相似文献   

13.
《The Journal of cell biology》1996,132(6):1177-1188
In angiogenesis associated with tissue repair and disease, fibrin and inflammatory mediators are often involved. We have used three- dimensional fibrin matrices to investigate the humoral requirements of human microvascular endothelial cells (hMVEC) to form capillary-like tubular structures. bFGF and VEGF165 were unable to induce tubular structures by themselves. Simultaneous addition of one or both of these factors with TNFalpha induced outgrowth of tubules, the effect being the strongest when bFGF, VEGF165, and TNFalpha were added simultaneously. Exogenously added u-PA, but not its nonproteolytic amino-terminal fragment, could replace TNFalpha, suggesting that TNFalpha-induced u-PA synthesis was involved. Soluble u-PA receptor (u- PAR) or antibodies that inhibited u-PA activity prevented the formation of tubular structures by 59-99%. epsilon-ACA and trasylol which inhibit the formation and activity of plasmin reduced the extent of tube formation by 71-95%. TNFalpha or u-PA did not induce tubular structures without additional growth factors. bFGF and VEGF165 enhanced of the u- PAR by 72 and 46%, but TNFalpha itself also increased u-PAR in hMVEC by 30%. Induction of mitogenesis was not the major contribution of bFGF and VEGF165 because the cell number did not change significantly in the presence of TNFalpha, and tyrphostin A47, which inhibited mitosis completely, reduced the formation of tubular structures only by 28-36%. These data show that induction of cell-bound u-PA activity by the cytokine TNFalpha is required in addition to the angiogenic factors VEGF165 and/or bFGF to induce in vitro formation of capillary-like structures by hMVEC in fibrin matrices. These data may provide insight in the mechanism of angiogenesis as occurs in pathological conditions.  相似文献   

14.
Although angiogenesis is crucial for tumor growth and metastasis, the molecular mechanisms controlling this process are not clearly understood. Here, we explore the role of Dab2 in tumor angiogenesis. We found that Dab2 is expressed in several cancer cells, including A549 lung cancer cells, but it is hardly detectable in SW480 colon cancer cells. Migration and Erk phosphorylation were enhanced in human umbilical vein endothelial cells (HUVECs) treated with the conditioned medium obtained from Dab2-overexpressing SW480 stable cells. In addition, vascular endothelial growth factor (VEGF) protein was strongly detected in conditioned medium derived from Dab2-overexpressing SW480 cells, and Erk phosphorylation enhanced by Dab2(+) CM was restored by VEGF inhibition. Moreover, Dab2 depletion in A549 cells led to a decrease in HUVEC migration and Erk phosphorylation. Furthermore, we show that Dab2 is required for the TGFβ-induced gene expression of angiogenic factors such as VEGF and FGF2. Taken together, these results suggest that Dab2, which is expressed in cancer cells, is pivotal for endothelial cell migration by affecting VEGF expression.  相似文献   

15.
Thromboxane (TX) B2, a stable metabolic product of hydrolysis of TXA2, was measured by radioimmunoassay in tissue extracts of ovaries of immature rats pretreated with pregnant mare's serum gonadotropin and human chorionic gonadotropin. Ovarian concentrations of TXB2 increased before, and remained elevated after, the time of ovulation. In a subsequent study, ovulation was inhibited in a dose-dependent fashion by a reported TXA2 receptor antagonist, AH23848. Nevertheless, inhibition of the preovulatory rise in synthesis of TXB2 by furegrelate (a thromboxane synthetase inhibitor) did not prevent ovulation. Nor was the blockade of ovulation caused by indomethacin (a cyclooxygenase inhibitor) reversed by a TXA2 mimetic (U-46619). It does not appear that a preovulatory increase in ovarian thromboxane is an obligatory component of the ovulatory mechanism of gonadotropin-primed immature rats.  相似文献   

16.
Vascular endothelial growth factor (VEGF) stimulates endothelial cell (EC) migration. The protein kinase Akt activates the endothelial NO synthase (eNOS) by phosphorylation of Ser-1177. Therefore, we investigated the contribution of Akt-mediated eNOS phosphorylation to VEGF-induced EC migration. Inhibition of NO synthase or overexpression of a dominant negative Akt abrogated VEGF-induced cell migration. In contrast, overexpression of constitutively active Akt was sufficient to induce cell migration. Moreover, transfection of an Akt site phospho-mimetic eNOS (S1177D) potently stimulated EC migration, whereas a non-phosphorylatable mutant (S1177A) inhibited VEGF-induced EC migration. Our data indicate that eNOS activation via phosphorylation of Ser-1177 by Akt is necessary and sufficient for VEGF-mediated EC migration.  相似文献   

17.
Angiopoietin-2 (Ang2) promotes tumor growth and metastasis by specifically priming endothelial cells for angiogenesis. Multiple angiogenic factors up-regulate expression of Ang2, suggesting that Ang2 may be the common pathway in growth factor initiated-angiogenesis. Using phage display technology, we generated single chain Fv molecule against human Ang2 (scFv-Ang2) with high affinity (K(d)=0.01 microM) from a mouse phage antibody library. Compared with control scFv, the mouse scFv-Ang2 completely inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) treated with vascular endothelial growth factor (VEGF, 10 ng/ml), but not that of the cells treated with either basic fibroblast growth factor, or angiotensin II, or Ang2. Chemotaxis assay showed that scFv-Ang2 could block completely Ang2-induced (100%) and partially VEGF-induced (49%) migration of HUVECs. The results indicate that Ang2 takes part in the VEGF-induced angiogenesis and scFv-Ang2 might be a promising compound in blocking both VEGF and Ang2 induced angiogenesis.  相似文献   

18.
Vascular endothelial growth factor (VEGF) is a potent endothelial cell growth and permeability factor highly expressed in rodent alveolar epithelium after injury and repair. To investigate VEGF synthesis in human lung epithelial cells, we examined VEGF expression by cultured cells under basal conditions and after cytokine treatment or oxidative stress. Basal VEGF expression was detected in transformed human epithelial cell lines (A549 and 1HAEo-) and in primary human bronchial epithelial cells with RT-PCR, Western blot, and immunocytochemistry. Among the cytokines tested, only transforming growth factor-beta1 increased the levels of excreted VEGF(165) as measured by ELISA. Under hypoxia (0% O(2) for 24 h), the VEGF(165) level increased fivefold, and this effect was O(2) concentration dependent. VEGF concentrations in the medium of all the cell types studied reached values similar to those found in bronchoalveolar lavage fluids from normal patients. Endothelial cells (human umbilical vein endothelial cells) exposed to conditioned medium from primary bronchial epithelial cell cultures showed an increased growth rate, which was inhibited in the presence of a specific neutralizing antibody to VEGF. These results suggest that lung epithelial cells participate in the endothelial repair and angiogenesis that follow lung injury through the synthesis of VEGF.  相似文献   

19.
Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are important proangiogenic factors in tumor procession. The autocrine and paracrine bFGF and the VEGF in tumor tissue can promote tumor angiogenesis, tumor growth, and metastasis. A VEGF/bFGF Complex Peptide (VBP3) was designed on the basis of epitope peptides from both VEGF and bFGF to elicit in vivo production of anti‐bFGF and anti‐VEGF antibodies. In this study, we reported on the production of recombinant VBP3 using high cell density fermentation. Fed‐batch fermentation for recombinant VBP3 production was conducted, and the production procedure was optimized in a 10‐L fermentor. The fraction of soluble VBP3 protein obtained reached 78% of total recombinant protein output under fed‐batch fermentation. Purified recombinant VBP3 could inhibit tumor cell proliferation in vitro and stimulate C57BL/6 mice to produce high titer anti‐VEGF and anti‐bFGF antibodies in vivo. A melanoma‐grafted mouse model and an immunohistochemistry assay showed that tumor growth and tumor angiogenesis were significantly inhibited in VBP3‐vaccinated mice. These results demonstrated that soluble recombinant VBP3 could be produced by large‐scale fermentation, and the product, with good immunogenicity, elicited production of high‐titer anti‐bFGF and anti‐VEGF antibodies, which could be used as a therapeutic tumor vaccine to inhibit tumor angiogenesis and tumor growth. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:194–203, 2015  相似文献   

20.
Substance P as a member of tachykinin family plays an important role in angiogenesis. Hemokinins (HKs) have been identified as new members of substance P-like peptides of tachykinin family. However, the effects of HKs on endothelial cells and angiogenesis have not been studied. For the first time, here we demonstrated that r/mHK-1, hHK-1 and hHK(4-11) dose-dependently stimulated the proliferation, migration, adhesion and tube formation of freshly isolated human umbilical vein endothelial cells (HUVECs), and further exhibited in vivo angiogenic effects in chick embryo chorioallantoic membrane model. The angiogenic effects of HKs were inhibited by the selective antagonist of neurokinin-1 rather than neurokinin-2 receptor. Mechanistically, HKs activated ERK1/2 phosphorylation, stimulated nitric oxide production, and upregulated the expression of endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) in HUVECs. Taken together, our data suggest that HKs emerge as pivotal endogenous regulators of angiogenesis and represent potential targets for the intervention of angiogenesis in different pathological conditions given their specific peripheral distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号