首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A spontaneous adhesion-defective mutant (mutant D5) of Ruminococcus albus strain 20 was isolated and compared to the parent to investigate the impact of the mutation on cellulolysis and to identify the adhesion mechanism of R. albus. The comparison of kinetics of cellulose degradation by strain 20 and mutant D5 showed that the mutation delayed and reduced bacterial growth on cellulose and cellulose degradation. These results were partly explained by a twofold lower cellulase activity in the mutant than in the parent. The glycocalyx of strain 20, observed by transmission electron microscopy, was large and homogeneous, and linked cells to cellulose. The mutant glycocalyx was aggregated at its periphery and cells attached loosely to cellulose. A glycoprotein of 25 kDa (GP25), present in the membrane fraction and the extracellular medium of strain 20, was not detected in the same fractions of mutant D5. Though glycoprotein GP25 did not bind to cellulose, it may be involved in adhesion as an intermediate component. Different cell-surface features of mutant D5 (cellulases, glycoprotein GP25, glycocalyx) were thus affected, any or all of which may be involved in its adhesion-defective phenotype. These results suggest that adhesion and cellulolysis are linked and that adhesion is a multifactorial phenomenon that involves at least the extracellular glycocalyx.  相似文献   

2.
AIMS: To compare the subcellular distribution of glycanase-related components between wild-type Ruminococcus albus SY3 and an adhesion-defective mutant, to identify their possible contribution to the adhesion process, and to determine their association with cellulosome-like complexes. METHODS AND RESULTS: Cell fractionation revealed that most of the cellulases and xylanases were associated with capsular and cell-wall fractions. SDS-PAGE and gel filtration indicated that most of the bacterial enzyme activity was not integrated into cellulosome-like complexes. The adhesion-defective mutant produced significantly less (5- to 10-fold) overall glycanase activity, and the 'true cellulase activity' appeared to be entirely confined to the cell membrane fractions. Antibodies specific for the cellulosomal scaffoldin of Clostridium thermocellum recognized a single 240 kDa band in R. albus SY3. CONCLUSIONS: The adhesion-defective mutant appeared to be blocked in exocellular transport of enzymes involved in true cellulase activity. A potential cellulosomal scaffoldin candidate was identified in R. albus SY3. SIGNIFICANCE AND IMPACT OF THE STUDY: Several glycanase-related proteins and more than one mechanism appear to be involved in the adhesion of R. albus SY3 to cellulose.  相似文献   

3.
Abstract Factors influencing the adhesion of Ruminococcus albus to cellulose were investigated. Changes in pH between 5.5 and 8.0 had little effect but below pH 5.0 there was a marked decrease in adhesion. The optimum temperature for adhesion was around 30°C. Carboxymethyl cellulose and methyl cellulose both inhibited adhesion, but no significant inhibition was caused by starch or amylopectin. Glucose and cellobiose as well as rumen fluid and sodium chloride mildly stimulated adhesion. Adhesion was resistant to the action of detergents and was not inhibited by EDTA or potassium thiocyanate. Certain commercial lignin compounds caused a marked reduction in adhesion, but a range of phenolic monomers had no significant effect.  相似文献   

4.
5.
The rate of cellulose digestion by Ruminococcus albus 8 grown on a defined medium could be increased by adding a minimum of 6.6% (vol/vol) rumen fluid. Strain 8 was grown on half this concentration, and the culture medium before and after growth was analyzed by gas chromatography-mass spectrometry to determine which components of the rumen fluid were used. Phenylacetic acid was identified as the component needed to make the defined medium nutritionally equivalent to one supplemented with rumen fluid. [14C]phenylacetic acid fed to cultures of strain 8 was primarily incorporated into protein. Hydrolysis of protein samples and separation of the resulting amino acids showed that only phenylalanine was labeled. The results indicate that cellulose digestion by strain 8 was probably limited by phenylalanine biosynthesis in our previously reported medium. The data obtained on the utilization of other rumen fluid components, as well as on the production of metabolites, illustrate the potential usefulness of this method in formulating defined media to simulate those in nature.  相似文献   

6.
Miron J  Forsberg CW 《Anaerobe》1998,4(1):35-43
A spontaneous adhesion-defective mutant (DR7-M) of Fibrobacter intestinalis DR7 was isolated which was capable of growing on glucose and cellobiose, but impaired in its capacity to degrade cellulose. Levels of enzyme activities were determined in solubilized fractions of DR7 and DR7-M. Total endoglucanases and xylanase activity values of parent DR7 fractions were 2.84 and 1.85 folds higher than those of the mutant, and were distributed mainly in the bacterial envelope fractions, with some activity also found in the extracellular fluid. In a separate assay, measurement of the enzymatic activity bound to cellulose showed that a portion of the endoglucanase activity bound to cellulose while most xylanase activity did not bind. Notwithstanding, the wild type DR7 cells had 26-fold higher total activities of cellulose-degrading enzymes than the mutant, and 96% of its activity was exclusively located in outer membrane and periplasm fractions. In the mutant, the lower cellulose degrading enzymes activity was located only in the extracellular fluid. Most of the cellulose degrading enzymes activity of DR7 had the capability to bind to cellulose. SDS-page electrophoresis of outer membrane and periplasm cell fractions showed that DR7 and DR7-M possess similar molecular weight (MW) profiles but different quantities of 16 cellulose-binding-proteins (CBPs) in the MW range of 36 up to 225 kDa. Zymogram analysis with soluble substrates, either carboxymethylcellulose or soluble xylan, following SDS-page of DR7 and DR7-M fractions, suggested that CBPs of approximate MW 120, 110, 100, 90, 70 and 40 kDa have endoglucanase activity, and that CBPs of all fractions lack any xylanase activity.  相似文献   

7.
Two mutant strains of Ruminococcus flavefaciens strain 007 that differ in their ability to hydrolyse cotton fibres have been shown also to differ in their cell-surface topology, in that the cotton degrading form possessed larger and more protuberant cell surface structures. The strains had similar CMCase, cellobiosidase and beta-glucosidase activities. The results indicate the importance of cell-surface properties in cotton degradation by R. flavefaciens.  相似文献   

8.
Cellulose and wheat straw degradation by Ruminococcus albus was monitored using NMR spectroscopy. In situ solid-state (13)C-cross-polarization magic angle spinning NMR was used to monitor the modification of the composition and structure of cellulose and (13)C-enriched wheat straw during the growth of the bacterium on these substrates. In cellulose, amorphous regions were not preferentially degraded relative to crystalline areas by R. albus. Cellulose and hemicelluloses were also degraded at the same rate in wheat straw. Liquid state two-dimensional NMR experiments were used to analyse in detail the sugars released in the culture medium, and the integration of NMR signals enabled their quantification at various times of culture. The results showed glucose and cellodextrin accumulation in the medium of cellulose cultures; the cellodextrins were mainly cellotriose and accumulated to up to 2 mm after 4 days. In the wheat straw cultures, xylose was the main soluble sugar detected (1.4 mm); arabinose and glucose were also found, together with some oligosaccharides liberated from hemicellulose hydrolysis, but to a much lesser extent. No cellodextrins were detected. The results indicate that this strain of R. albus is unable to use glucose, xylose and arabinose for growth, but utilizes efficiently xylooligosaccharides. R. albus 20 appears to be less efficient than Fibrobacter succinogenes S85 for the degradation of wheat straw.  相似文献   

9.
The origin of cell nitrogen and amino acid nitrogen during growth of ruminal cellulolytic bacteria in different growth media was investigated by using (15)NH(3). At high concentrations of peptides (Trypticase, 10 g/liter) and amino acids (15.5 g/liter), significant amounts of cell nitrogen of Fibrobacter succinogenes BL2 (51%), Ruminococcus flavefaciens 17 (43%), and Ruminococcus albus SY3 (46%) were derived from non-NH(3)-N. With peptides at 1 g/liter, a mean of 80% of cell nitrogen was from NH(3). More cell nitrogen was formed from NH(3) during growth on cellobiose compared with growth on cellulose in all media. Phenylalanine was essential for F. succinogenes, and its (15)N enrichment declined more than that of other amino acids in all species when amino acids were added to the medium.  相似文献   

10.
A system is described that combines the fermentation of cellulose to acetate, CH4, and CO2 by Ruminococcus albus and Methanobrevibacter smithii with the fermentation of acetate to CH4 and CO2 by Methanosarcina barkeri to convert cellulose to CH4 and CO2. A cellulose-containing medium was pumped into a co-culture of the cellulolytic R. albus and the H2-using methanogen, Mb. smithii. The effluent was fed into a holding reservoir, adjusted to pH 4.5, and then pumped into a culture of Ms. barkeri maintained at constant volume by pumping out culture contents. Fermentation of 1% cellulose to CH4 and CO2 was accomplished during 132 days of operation with retention times (RTs) of the Ms. barkeri culture of 7.5–3.8 days. Rates of acetate utilization were 9.5–17.3 mmol l−1 day−1 and increased with decreasing RT. The K s for acetate utilization was 6–8 mM. The two-stage system can be used as a model system for studying biological and physical parameters that influence the bioconversion process. Our results suggest that manipulating the different phases of cellulose fermentation separately can effectively balance the pH and ionic requirements of the acid-producing phase with the acid-using phase of the overall fermentation. Received: 7 December 1999 / Received revision: 28 April 2000 / Accepted: 19 May 2000  相似文献   

11.
The origin of cell nitrogen and amino acid nitrogen during growth of ruminal cellulolytic bacteria in different growth media was investigated by using 15NH3. At high concentrations of peptides (Trypticase, 10 g/liter) and amino acids (15.5 g/liter), significant amounts of cell nitrogen of Fibrobacter succinogenes BL2 (51%), Ruminococcus flavefaciens 17 (43%), and Ruminococcus albus SY3 (46%) were derived from non-NH3-N. With peptides at 1 g/liter, a mean of 80% of cell nitrogen was from NH3. More cell nitrogen was formed from NH3 during growth on cellobiose compared with growth on cellulose in all media. Phenylalanine was essential for F. succinogenes, and its 15N enrichment declined more than that of other amino acids in all species when amino acids were added to the medium.  相似文献   

12.
A transconjugant Ruminococcus albus A3 culture was released into a goat rumen, and the extent of its survival in the rumen microcosm was measured by distinguishing this bacterium from indigenous microbes by antibiotic resistance. A3 cells remained roughly constant for 14 days in this goat rumen.  相似文献   

13.
The gene for cellulase from Ruminococcus albus F-40 was cloned in Escherichia coli HB101 with pBR322. A 3.4-kilobase-pair HindIII fragment encoding cellulase hybridized with the chromosomal DNA of R. albus. The Ouchterlony double-fusion test gave a single precipitation line between the cloned enzyme and the cellulase from R. albus. The size of the cloned fragment was reduced by using HindIII and EcoRI. The resulting active fragment had a size of 1.9 kilobase pairs; and the restriction sites EcoRI, BamHI, PvuII, EcoRI, PvuII, and HindIII, in that order, were ligated into pUC19 at the EcoRI and HindIII sites (pURA1). Cellulase production by E. coli JM103(pURA1) in Luria-Bertani broth was remarkably enhanced, up to approximately 80 times, by controlling the pH at 6.5 and by reducing the concentration of NaCl in the broth to 80 mM.  相似文献   

14.
The rumen bacterium Ruminococcus albus binds to and degrades crystalline cellulosic substrates via a unique cellulose degradation system. A unique family of carbohydrate-binding modules (CBM37), located at the C terminus of different glycoside hydrolases, appears to be responsible both for anchoring these enzymes to the bacterial cell surface and for substrate binding.  相似文献   

15.
The morphology and cellulases of Ruminococcus albus 8 were markedly affected by the inclusion of 3-phenylpropanoic acid (PPA) in a defined growth medium. PPA-grown bacteria produced substantial quantities of cell-bound cellulase, as well as a very high-molecular-weight extracellular enzyme and lesser amounts of two low-molecular-weight enzymes. PPA-deprived bacteria produced greater total amounts of cellulase, but all of it exists in soluble, low-molecular-weight forms. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the availability of PPA did not affect the kinds of proteins produced, but the distribution of two major proteins between cells and supernatant was PPA dependent. These two proteins (85 and 102 kilodaltons) were primarily associated with the cells of PPA-grown bacteria but were found chiefly in the supernatants of PPA-deprived cultures. Examination of thin sections of PPA-grown R. albus 8 by transmission electron microscopy showed a lobed ruthenium red-staining capsule surrounding the cell wall, as well as small vesicular structures (diameter, 0.05 to 0.06 μm) which appeared to aggregate into larger spherical units (diameter, 0.2 to 0.3 μm). In contrast, thin sections of PPA-deprived cells were devoid of vesicles and showed little or no capsule surrounding the cells.  相似文献   

16.
A continuous-culture device, adapted for use with solid substrates, was used to evaluate the effects of 3-phenylpropanoic acid (PPA) upon the ability of the South African strain Ruminococcus albus Ce63 to ferment cellulose. Steady states of fermentation were established with a dilution rate of 0.17 h−1, and the extent and volumetric rates of cellulose fermentation were determined over four consecutive days. When the growth medium contained no additions (control), 25 μM phenylacetate alone, 25 μM PPA alone, or 25 μM each of phenylacetate and PPA, the extent of cellulose hydrolysis was determined to be 41.1, 35.7, 90.2, and 86.9%, respectively, and the volumetric rate of cellulose hydrolysis was 103.0, 97.9, 215.5, and 230.4 mg liter−1 h−1, respectively. To evaluate the effect of PPA availability on affinity for cellulose, the values for dilution rate and extent of cellulose hydrolysis were used in combination with values for maximum specific growth rate determined from previous studies of growth rates and kinetics of cellulose hydrolysis. The findings support the contention that PPA maintains a competitive advantage for R. albus when grown in a dynamic, fiber-rich environment.  相似文献   

17.
The gene for cellulase from Ruminococcus albus F-40 was cloned in Escherichia coli HB101 with pBR322. A 3.4-kilobase-pair HindIII fragment encoding cellulase hybridized with the chromosomal DNA of R. albus. The Ouchterlony double-fusion test gave a single precipitation line between the cloned enzyme and the cellulase from R. albus. The size of the cloned fragment was reduced by using HindIII and EcoRI. The resulting active fragment had a size of 1.9 kilobase pairs; and the restriction sites EcoRI, BamHI, PvuII, EcoRI, PvuII, and HindIII, in that order, were ligated into pUC19 at the EcoRI and HindIII sites (pURA1). Cellulase production by E. coli JM103(pURA1) in Luria-Bertani broth was remarkably enhanced, up to approximately 80 times, by controlling the pH at 6.5 and by reducing the concentration of NaCl in the broth to 80 mM.  相似文献   

18.
Expression analyses of Nrt2 plant genes have shown a strict correlation with root nitrate influx mediated by the high-affinity transport system (HATS). The precise assignment of NRT2 protein function has not yet been possible due to the absence of heterologous expression studies as well as loss of function mutants in higher plants. Using a reverse genetic approach, we isolated an Arabidopsis thaliana knock-out mutant where the T-DNA insertion led to the complete deletion of the AtNrt2.1 gene together with the deletion of the 3' region of the AtNrt2.2 gene. This mutant is impaired in the HATS, without being modified in the low-affinity system. Moreover, the de-regulated expression of a Nicotiana plumbaginifolia Nrt2 gene restored the mutant nitrate influx to that of the wild-type. These results demonstrate that plant NRT2 proteins do have a role in HATS.  相似文献   

19.
Once the plant coenzyme A (CoA) biosynthetic pathway has been elucidated by comparative genomics, it is feasible to analyze the physiological relevance of CoA biosynthesis in plant life. To this end, we have identified and characterized Arabidopsis (Arabidopsis thaliana) T-DNA knockout mutants of two CoA biosynthetic genes, HAL3A and HAL3B. The HAL3A gene encodes a 4'-phosphopantothenoyl-cysteine decarboxilase that generates 4'-phosphopantetheine. A second gene, HAL3B, whose gene product is 86% identical to that of HAL3A, is present in the Arabidopsis genome. HAL3A appears to have a predominant role over HAL3B according to their respective mRNA expression levels. The hal3a-1, hal3a-2, and hal3b mutants were viable and showed a similar growth rate as that in wild-type plants; in contrast, a hal3a-1 hal3b double mutant was embryo lethal. Unexpectedly, seedlings that were null for HAL3A and heterozygous for HAL3B (aaBb genotype) displayed a sucrose (Suc)-dependent phenotype for seedling establishment, which is in common with mutants defective in beta-oxidation. This phenotype was genetically complemented in aaBB siblings of the progeny and chemically complemented by pantethine. In contrast, seedling establishment of Aabb plants was not Suc dependent, proving a predominant role of HAL3A over HAL3B at this stage. Total fatty acid and acyl-CoA measurements of 5-d-old aaBb seedlings in medium lacking Suc revealed stalled storage lipid catabolism and impaired CoA biosynthesis; in particular, acetyl-CoA levels were reduced by approximately 80%. Taken together, these results provide in vivo evidence for the function of HAL3A and HAL3B, and they point out the critical role of CoA biosynthesis during early postgerminative growth.  相似文献   

20.
Bioconversion of cellulose to acetate was accomplished with cocultures of two organisms. One was the cellulolytic species Ruminococcus albus. It ferments crystalline cellulose (Avicel) to acetate, ethanol, CO(inf2), and H(inf2). The other organism (HA) obtains energy for growth by using H(inf2) to reduce CO(inf2) to acetate. HA is a gram-negative coccobacillus that was isolated from horse feces. Coculture of R. albus with HA in batch or continuous culture alters the fermentation products formed from crystalline cellulose by the ruminococcus via interspecies H(inf2) transfer. The major product of the fermentation by R. albus and HA coculture is acetate. High concentrations of acetate (333 mM) were obtained when batch cocultures grown on 5% cellulose were neutralized with Ca(OH)(inf2). Continuous cocultures grown at retention times of 2 and 3.1 days produced 109 and 102 mM acetate, respectively, when fed 1% cellulose with utilization of 84% of the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号