首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the growth of turnip seedlings, two new lipases have been demonstrated, one with a maximum activity at pH 4.5 (acid lipase) and the other with a maxima at pH 8.6 (alkaline lipase). Many different enzymes are involved in gluconeogenesis: catalase, isocitrate lyase, malate synthetase, malate dehydrogenase, aconitase, citrate synthetase, fumarase, glycolate oxidase, phosphoenol-pyruvate carboxykinase. All of these show maximum activity coinciding with the stage in which lipid hydrolysis is maximal and when the accumulation of soluble carbohydrates has also reached its peak. The alkaline lipase as found to be located mainly in the spherosomes, whereas the glyoxysomes contained the following main activities: catalase, isocitrate lyase, malate synthetase, malate dehydrogenase and citrate synthetase. Aconitase, together with cytochrome oxidase and fumarase showed their highest activity in the mitochondria, and the presence of malate dehydrogenase, citrate synthetase and glycolate oxidase was also observed in these organelles. In the membrane-bound fraction, the activities of cytochrome reductase, glycolate oxidase and phosphoenol-pyruvate kinase were marked, although the latter enzyme was even more active in the soluble fraction.  相似文献   

2.
Greenhouse grown seedlings of corn (Zea mays L.) and foxtail (Setaria faberii Herrm.) were used as source material in determining the intracellular localization of nitrate reductase, nitrite reductase, and glutamic acid dehydrogenase, Nonaqueous and aqueous isolation techniques were used to establish that nitrite reductase is localized within the chloroplasts, but that nitrate reductase and glutamic acid dehydrogenase are not. Nonaqueous isolation gives distribution patterns of nitrite reductase which are the same as those observed for NADP-dependent 3-phosphoglyceraldehyde dehydrogenase but which differ drastically from the patterns observed for pyruvic acid kinase. The distribution patterns for nitrate reductase are the same as those of pyruvic acid kinase. The techniques used do not eliminate the possibility that nitrate reductase and pyruvic acid kinase are localized on the external chloroplast membrane.

The data obtained establish that glutamic acid dehydrogenase of green leaves is localized within the mitochondria.

  相似文献   

3.
Miflin BJ 《Plant physiology》1974,54(4):550-555
Density gradient separation of plastids from leaf and root tissue was carried out. The distribution in the gradients of the activity of the following enzymes was determined: nitrite reductase, glutamine synthetase, acetolactate synthetase, aspartate aminotransferase, catalase, cytochrome oxidase, and triosephosphate isomerase. The distribution of chlorophyll was followed in gradients from leaf tissue. The presence of plastids that have retained their stroma enzymes was denoted by a peak of triosephosphate isomerase activity. Coincidental with this peak were bands of nitrite reductase, acetolactate synthetase, glutamine synthetase, and aspartate aminotransferase activity. The results suggest that most, if not all, the nitrite reductase and acetolactate synthetase activity of the cell is in the plastids. The plastids were found to contain only part of the total glutamine synthetase, aspartate aminotransferase, and triosephosphate dehydrogenase activity in the cell. Some evidence was obtained for low levels of glutamate dehydrogenase activity in chloroplasts.  相似文献   

4.
Approximately 15% of the total nitrite reductase of crude homogenates of wheat roots applied to sucrose gradients was separated with an organelle whose isopycnic density was about 1.22 g·cm−3. The activity recovered in the supernatant was thought to be particulate in origin, because similar ratios of activity of isoenzyme 1 and 2 of nitrite reductase were found in both particulate and supernatant fractions. The particle with nitrite reductase activity also contained glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, triose phosphate isomerase and NADPH diaphorase. This root particle and whole chloroplasts from leaves had a similar isopycnic density as well as these enzymes, and thus the data suggest that the root particle may be a proplastid.

Nitrate reductase was found only in the supernatant and it was not associated with any of the root organelles.

Mitochondria from wheat roots had an equilibrium density of 1.18 g·cm−3 and contained both NAD and NADP glutamate dehydrogenase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, triosephosphate isomerase and NADPH diaphorase but not nitrite reductase. Microbodies of wheat roots had an equilibrium density of about 1.20 g·cm−3 on the sucrose gradient and contained catalase and glycollate oxidase.  相似文献   


5.
Seventeen strains of the new species Bacillus azotoformans were isolated by enrichment culture in peptone broth inoculated with pasteurized soil and then incubated under N2O at 32 degrees C. The bacterium is a Gram-negative rod, motile with peritrichous flagella, which produces oval spores without exosporia in swollen sporangia. However, the cells have thick walls, mesosomes, and persistent septa characteristic of Gram-positive bacteria. The bacterium lacks fermentative activity, does not attack carbohydrates, has complex growth requirements, and will grow anaerobically only if one of the following electron acceptors is present: NO3-, NO2-, N2O, S4O6--, or fumarate. Nitrate, nitrite, and nitrous oxide are denitrified with the production of N2. The microorganism is mesophilic, gives a positive oxidase reaction, synthesizes a type c cytochrome, and does not hydrolyse gelatin, starch, or "Tween 80." Poly-beta-hydroxybutyric acid is snythesized when the bacterium is grown in a medium containing DL-3-hydroxybutyrate. The following enzymes are present: nitrate reductase A, respiratory nitrite reductase, tetrathionate and fumarate reductases, and L-glutamate dehydrogenase. The following enzymes are absent: thiosulfate reductase, urease, lecithinase, arginine dihydrolase, phenylalanine deaminase, and catalase. For the 17 strains, the mean value of the G = C percent of the DNA is 39.8 +/- 1.2. All the strains are highly similar.  相似文献   

6.
The series introduced by this paper reports the results of a detailed analysis of the microsomal fraction from rat liver by density gradient centrifugation. The biochemical methods used throughout this work for the determination of monoamine oxidase, NADH cytochrome c reductase, NADPH cytochrome c reductase, cytochrome oxidase, catalase, aminopyrine demethylase, cytochromes b5 and P 450, glucuronyltransferase, galactosyltransferase, esterase, alkaline and acid phosphatases, 5'-nucleotidase, glucose 6-phosphatase, alkaline phosphodiesterase I, N-acetyl-β-glucosaminidase, β-glucuronidase, nucleoside diphosphatase, aldolase, fumarase, glutamine synthetase, protein, phospholipid, cholesterol, and RNA are described and justified when necessary.  相似文献   

7.
High levels of aconitase and fumarase activities were found in Rhodobacter capsulatus E1F1 cells cultured with nitrate as the sole nitrogen source either under light-anaerobic or dark-aerobic conditions. Both activities were strongly and reversibly inhibited in vitro by nitrite or nitric oxide, whereas nitrate or hydroxylamine showed a lower effect. Other enzymes of the tricarboxylic acids cycle such as malate dehydrogenase or isocitrate dehydrogenase were not affected by these nitrogen compounds. When growing on nitrate in the dark R. capsulatus E1F1 cells accumulated nitrite intracellularly, so that an in vivo inhibition of aconitase and fumarase could account for the strong inhibition of growth observed in the presence of nitrite under dark-aerobic conditions.Abbreviations ACO aconitase - FUM fumarase - MDH malate dehydrogenase - ICDH isocitrate dehydrogenase - TCA tricarboxylic acid  相似文献   

8.
Bradyrhizobium japonicum cytochrome c(550), encoded by cycA, has been previously suggested to play a role in denitrification, the respiratory reduction of nitrate to dinitrogen. However, the exact role of this cytochrome in the denitrification process is unknown. This study shows that cytochrome c(550) is involved in electron transfer to the copper-containing nitrite reductase of B. japonicum, as revealed by the inability of a cycA mutant strain to consume nitrite and, consequently, to grow under denitrifying conditions with nitrite as the electron acceptor. Mutation of cycA had no apparent effect on methylviologen-dependent nitrite reductase activity. However, succinate-dependent nitrite reduction was largely inhibited, suggesting that c(550) is the in vivo electron donor to copper-containing nitrite reductase. In addition, this study demonstrates that a cytochrome c(550) mutation has a negative effect on expression of the periplasmic nitrate reductase. This phenotype can be rescued by extending the growth period of the cells. A model is proposed whereby a mutation in cycA reduces expression of the cbb(3)-type oxidase, affecting oxygen consumption rate by the cells and consequently preventing maximal expression of the periplasmic nitrate reductase during the first days of the growth period.  相似文献   

9.
转BADH基因烟草的光系统Ⅱ和呼吸酶活性变化   总被引:3,自引:0,他引:3  
测定了导入甜菜碱醛脱氢酶(BADH) 基因烟草( Nicotianatabacum L.) 植株的叶绿素荧光诱导瞬变特性、呼吸酶和光呼吸酶的活性,并与亲本植株比较。结果表明,转基因植株的Fv/Fo 、Fv/Fm 和Fd/Fs 没有明显的变化;三羧酸循环中的苹果酸脱氢酶、异柠檬酸脱氢酶和琥珀酸脱氢酶活性略有增加;末端氧化的细胞色素氧化酶活性明显提高;光呼吸途径中的羟基丙酮酸还原酶、乙醇酸氧化酶和过氧化氢酶活性明显提高。对这些变化的可能意义进行了讨论。  相似文献   

10.
The effects of the intensity of iron and zinc deficiencies respectivelyon a range of enzymes in Neurospora have been determined. Irondeficiency reduced catalase, peroxidase, cytochrome c reductase,and oxidase (in that order) and DPN'ase activity whereas Zn-deficiencyreduced glutamic dehydrogenase. TPNH and DPNH diaphorases weredepleted by Zn or Fe deficiency and these enzymes were reconstitutedwithin 24 hours of returning the deficient metal in vivo tothe felts. Responses of other enzymes to a shortage of eithermetal varied greatly depending on the degree of the deficiency.  相似文献   

11.
The reactivity of cytochromesc derived from various organisms withPseudomonas aeruginosa nitrite reductase and cow cytochrome oxidase has been studied.Generally, cytochromesc isolated from primitive organisms react very rapidly with the bacterial nitrite reductase but do not react with cow cytochrome oxidase while those from higher organisms react poorly with the nitrite reductase but react very rapidly with the animal oxidase. The reactivity of cytochromec with the bacterial nitrite reductase reflects very well the evolutionary position of the organism from which it is isolated, while that with cow cytochrome oxidase seems to be related to the extent of adaptation of the parent organism to molecular oxygen. The results obtained in the present investigation suggests that cytochromec molecule which reacts very rapidly with the bacterial nitrite reductase but does not react with cow cytochrome oxidase has evolved to that which reacts very poorly with the nitrite reductuase but reacts very rapidly with the animal oxidase. It is also inferred that the evolution of cytochromec molecule may be caused by the evolution of cytochrome oxidase, and that the latter may be intimately related to genesis of molecular oxygen in the biosphere.Special Symposium on Photochemistry and the Origins of Life, Sixth International Congress on Photobiology, Bochum, Germany.  相似文献   

12.
Bradyrhizobium japonicum cytochrome c 550, encoded by cycA , has been previously suggested to play a role in denitrification, the respiratory reduction of nitrate to dinitrogen. However, the exact role of this cytochrome in the denitrification process is unknown. This study shows that cytochrome c 550 is involved in electron transfer to the copper-containing nitrite reductase of B. japonicum , as revealed by the inability of a cycA mutant strain to consume nitrite and, consequently, to grow under denitrifying conditions with nitrite as the electron acceptor. Mutation of cycA had no apparent effect on methylviologen-dependent nitrite reductase activity. However, succinate-dependent nitrite reduction was largely inhibited, suggesting that c 550 is the in vivo electron donor to copper-containing nitrite reductase. In addition, this study demonstrates that a cytochrome c 550 mutation has a negative effect on expression of the periplasmic nitrate reductase. This phenotype can be rescued by extending the growth period of the cells. A model is proposed whereby a mutation in cycA reduces expression of the cbb 3-type oxidase, affecting oxygen consumption rate by the cells and consequently preventing maximal expression of the periplasmic nitrate reductase during the first days of the growth period.  相似文献   

13.
Catalase, glycolate oxidase, and hydroxypyruvate reductase, enzymes which are located in the microbodies of leaves, show different developmental patterns in the shoots of wheat seedlings. Catalase and hydroxypyruvate reductase are already present in the shoots of ungerminated seeds. Glycolate oxidase appears later. All three enzymes develop in the dark, but glycolate oxidase and hydroxypyruvate reductase have only low activities. On exposure of the seedlings to continuous white light (14.8 × 103 ergs cm−2 sec−1), the activity of catalase is doubled, and glycolate oxidase and hydroxypyruvate reductase activities increase by 4- to 7-fold. Under a higher light intensity, the activities of all three enzymes are considerably further increased. The activities of other enzymes (cytochrome oxidase, fumarase, glucose-6-phosphate dehydrogenase) are unchanged or only slightly influenced by light. After transfer of etiolated seedlings to white light, the induced increase of total catalase activity shows a much longer lag-phase than that of glycolate oxidase and hydroxypyruvate reductase. It is concluded that the light-induced increases of the microbody enzymes are due to enzyme synthesis. The light effect on the microbody enzymes is independent of chlorophyll formation or the concomitant development of functional chloroplasts. Short repeated light exposures which do not lead to greening are very effective. High activities of glycolate oxidase and hydroxypyruvate reductase develop in the presence of 3-amino-1,2,4-triazole which blocks chloroplast development. The effect of light is not exerted through induced glycolate formation and appears instead to be photomorphogenetic in character.  相似文献   

14.
Summary Thirty-nine chlorate resistant cell lines were isolated after plating ethylmethane sulphonate treated allodihaploid cells of Nicotiana tabacum cv. Xanthi on agar medium containing 20 mM chlorate. Thirty-two of these cell lines grew as well on nitrate medium as on amino acid medium and three other cell lines grew well on amino acid medium but poorly on nitrate medium. Four other cell lines, 042, P12, P31 and P47 which could grow on amino acid medium, but not on nitrate medium, were examined further. They lacked in vitro nitrate reductase activity but were able to accumulate nitrate. All lines possessed nitrite reductase activity. Lines 042, P12, and P31 had a cytochrome c reductase species which was the same size as the wild type nitrate reductase associated cytochrome c reductase species, whilst the cytochrome c reductase species in line P47 was slightly smaller. All four lines lacked xanthine dehydrogenase activity and neither nitrate reductase nor xanthine dehydrogenase activity was restored by subculture of the four lines into either nitrate medium or glutamine medium supplemented with 1 mM sodium molybdate. These four lines are different from other molybdenum cofactor defective cell lines so far described in N. tabacum and possess similar properties to certain other cnx mutants described in Aspergillus nidulans.  相似文献   

15.
Isocitrate dehydrogenase was found in Pisum sativum chloroplasts purified on sucrose density gradients. A chloroplast-enriched pellet obtained by differential centrifugation formed two chlorophyll-containing bands. The lower one containing intact chloroplasts had NADP-specific isocitrate dehydrogenase and triose-phosphate isomerase activities. Mitochondria and peroxisomes were observed to band well away from the intact chloroplast region, as indicated by peak activities of fumarase and catalase, respectively. The presence of isocitrate dehydrogenase in chloroplasts suggests that chloroplasts may generate at least some of the α-ketoglutarate required for glutamate synthesis.  相似文献   

16.
Effects of betaine and NaC1 in various concentrations on the activities of enzymes in tricarboxylic acid cycle (isocitric dehydrogenase, malic dehydrogenase, succinic dehydrogenase and fumarase), terminal oxidation (cytochrome oxidase) and photorespiratory pathway (glycolate oxidase and hydroxypyruvate reductase) have been studied. Betaine, in contrast to electolyte NaC1 was non-inhibitory to these enzymes up to 500 mmol/L. Partial protection against NaC1 inhibition to the activities of these enzymes were afforded by betaine. These results were consistent with the postulated role of betaine in cytoplasmic osmoregulation. These results showed that betaine was a superior compatible solute.  相似文献   

17.
甜菜碱对呼吸酶的保护效应   总被引:13,自引:0,他引:13  
梁峥  赵原 《Acta Botanica Sinica》1994,36(12):947-951
以菠菜(Spinacia oleracea L.)叶片为材料,研究了不同浓度的甜菜碱和NaCl对三羧酸循环、末端氧化和光呼吸的组成酶的活性的影响。与电解质NaCl不同,高浓度的甜菜碱对这些酶的活性是非抑制性的,并对NaCl的抑制作用有一定保护效应。甜菜碱是很好的有机渗透调节剂。这与甜菜碱在细胞质中起渗透调节作用,以及是无机渗透调节剂的配伍溶质的假设是一致的。  相似文献   

18.
Summary The occurrence of heterotrophic nitrification in nitrogen-starved cells of Ankistrodesmus braunii was confirmed. The levels of nitrate and nitrite were measured over a period of four weeks. The validity of quantitative determinations in the presence of highly active nitrate and nitrite reductases is discussed. Whereas free hydroxylamine as an intermediate could not be detected, increased hydroxylamine oxidase activity was found in nitrogen-starved cultures. Nitrite reductase and hydroxylamine oxidase can be assigned to particles by sucrose density gradient centrifugation. The possible involvement of microbodies, which were found to be present in Ankistrodesmus, in metabolic processes during nitrogen starvation is discussed.Abbreviations NR nitrate reductase - NiR nitrite reductase - NNEDA N-(1-naphthyl)ethylenediaminedihydrochloride - DCPIP 2,6-dichlorophenolindophenol - EDTA ethylenediaminetetraacetic acid - TCA trichloroacetic acid - DAB 3,3-diaminobenzidine - AT 3-amino-1H-1,2,4-triazole - AMP 2-amino-2-methyl-1,3-propanediol  相似文献   

19.
Whole homogenates from cells of Glycine max grown in suspension culture were centrifuged on linear sucrose gradients. Assays for marker enzymes showed that distinct peaks enriched in particular organelles were separated as follows: endoplasmic reticulum (density 1.10 g/cm3, NADH-cytochrome-c reductase), Golgi membranes (density 1.12 g/cm3, inosine diphosphatase), mitochondria (density 1.18—1.19 g/cm3, fumarase, cytochrome oxidase) and microbodies (density 1.21—1.23 g/cm3, catalase). In cells which had ceased to grow (stationary phase) only a single symmetrical catalase peak at density 1.23 g/cm3 was observed on the sucrose gradient. During the phase of cell division and expansion a minor particulate catalase component of lighter density was present; its possible significance is discussed.  相似文献   

20.
1. Possible mechanisms regulating the activities of three enzymes involved in nitrate assimilation, nitrate reductase, nitrite reductase and glutamate dehydrogenase, were studied in radish cotyledons. 2. Nitrate-reductase and nitrite-reductase activities are low in nitrogen-deficient cotyledons, and are induced by their substrates. 3. Glutamate dehydrogenase is present regardless of the nitrogen status, and the enzyme can be increased only slightly by long-term growth on ammonia. 4. Although nitrate is the best inducer of nitrate reductase, lower levels of induction are also obtained with nitrite and ammonia. The experiments did not distinguish between direct or indirect induction by these two molecules. 5. Nitrite reductase is induced by nitrite and only indirectly by nitrate. 6. The induction of both nitrate reductase and nitrite reductase is prevented by the inhibitors actinomycin D, puromycin and cycloheximide, indicating a requirement for the synthesis of RNA and protein. 7. The decay of nitrate reductase, determined after inhibition of protein synthesis, is slower than the synthesis of the enzyme. Nitrite reductase is much more stable than nitrate reductase. 8. The synthesis of nitrate reductase is not repressed by ammonia, but is repressed by growth on a nitrite medium. 9. There is no inhibition of nitrate reductase, nitrite reductase or glutamate dehydrogenase by the normal end products of assimilation, but cyanate is a fairly specific inhibitor of nitrate reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号