首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Caenorhabditis elegans vulva is induced by a member of the epidermal growth factor (EGF) family that is expressed in the gonadal anchor cell, representing a prime example of signaling processes in animal development. Comparative studies indicated that vulva induction has changed rapidly during evolution. However, nothing was known about the molecular mechanisms underlying these differences. By analyzing deletion mutants in five Wnt pathway genes, we show that Wnt signaling induces vulva formation in Pristionchus pacificus. A Ppa-bar-1/beta-catenin deletion is completely vulvaless. Several Wnt ligands and receptors act redundantly in vulva induction, and Ppa-egl-20/Wnt; Ppa-mom-2/Wnt; Ppa-lin-18/Ryk triple mutants are strongly vulvaless. Wnt ligands are differentially expressed in the somatic gonad, the anchor cell, and the posterior body region, respectively. In contrast, previous studies indicated that Ppa-lin-17, one of the Frizzled-type receptors, has a negative role in vulva formation. We found that mutations in Ppa-bar-1 and Ppa-egl-20 suppress the phenotype of Ppa-lin-17. Thus, an unexpected complexity of Wnt signaling is involved in vulva induction and vulva repression in P. pacificus. This study provides the first molecular identification of the inductive vulva signal in a nematode other than Caenorhabditis.  相似文献   

2.
Costs and benefits of foraging have been studied in predatory animals. In nematodes, ambushing or cruising behaviours represent adaptations that optimize foraging strategies for survival and host finding. A behaviour associated with host finding of ambushing nematode dauer juveniles is a sit-and-wait behaviour, otherwise known as nictation. Here, we test the function of nictation by relating occurrence of nictation in Pristionchus pacificus dauer juveniles to the ability to attach to laboratory host Galleria mellonella. We used populations of recently isolated and mutagenized laboratory strains. We found that nictation can be disrupted using a classical forward genetic approach and characterized two novel nictation-defective mutant strains. We identified two recently isolated strains from la Réunion island, one with a higher proportion of nictating individuals than the laboratory strain P. pacificus PS312. We found a positive correlation between nictation frequencies and host attachment in these strains. Taken together, our combination of genetic analyses with natural variation studies presents a new approach to the investigation of behavioural and ecological functionality. We show that nictation behaviour in P. pacificus nematodes serves as a host-finding behaviour. Our results suggest that nictation plays a role in the evolution of new life-history strategies, such as the evolution of parasitism.  相似文献   

3.
Vulva development differs between Caenorhabditis elegans and Pristionchus pacificus in several ways. Seven of 12 ventral epidermal cells in P. pacificus die of apoptosis, whereas homologous cells in C. elegans fuse with the hypodermal syncytium. Vulva induction is a one-step process in C. elegans, but requires a continuous interaction between the gonad and the epidermis in P. pacificus. Here we describe several novel cell-cell interactions in P. pacificus, focusing on the vulva precursor cell P8.p and the mesoblast M. P8.p in P. pacificus, unlike its homologous cell in C. elegans, is incompetent to respond to gonadal signaling in the absence of other vulva precursor cells, but can respond to lateral signaling from a neighboring vulval precursor. P8.p provides an inhibitory signal that determines the developmental competence of P(5,7).p. This lateral inhibition acts via the mesoblast M and is regulated by the homeotic gene Ppa-mab-5. In Ppa-mab-5 mutants, M is misspecified and provides inductive signaling to the vulval precursor cells, including P8.p. Taken together, vulva development in P. pacificus displays novel cell-cell interactions involving the mesoblast M and P8.p. In particular, P8.p represents a new ventral epidermal cell type, which is characterized by novel interactions and a specific response to gonadal signaling.  相似文献   

4.
In the nematode Caenorhabditis elegans, up to 15% of the genes are organized in operons. Polycistronic precursor RNAs are processed by trans-splicing at the 5' ends of genes by adding a specific trans-spliced leader. Ten different spliced leaders are known in C. elegans that differ in sequence and abundance. The SL1 leader is most abundant and is spliced to the 5' ends of monocistronic genes and to upstream genes in operons. Trans-splicing is common among nematodes and was observed in the genera Panagrellus, Ascaris, Haemonchus, Anisakis, and Brugia. However, little is known about operons in nonrhabditid nematodes. Dolichorhabditis CEW1, another rhabditid nematode that is now called Oscheius CEW1, contains operons and SL2 trans-splicing. We have studied the presence of operons and trans-splicing in Pristionchus pacificus, a species of the Diplogastridae that has recently been developed as a satellite organism in evolutionary developmental biology. We provide evidence that P. pacificus contains operons and that downstream genes are trans-spliced to SL2. Surprisingly, the one operon analyzed so far in P. pacificus is not conserved in C. elegans, suggesting unexpected genomic plasticity.  相似文献   

5.

Background

The genetic tractability and the species-specific association with beetles make the nematode Pristionchus pacificus an exciting emerging model organism for comparative studies in development and behavior. P. pacificus differs from Caenorhabditis elegans (a bacterial feeder) by its buccal teeth and the lack of pharyngeal grinders, but almost nothing is known about which genes coordinate P. pacificus feeding behaviors, such as pharyngeal pumping rate, locomotion, and fat storage.

Methodology/Principal Findings

We analyzed P. pacificus pharyngeal pumping rate and locomotion behavior on and off food, as well as on different species of bacteria (Escherichia coli, Bacillus subtilis, and Caulobacter crescentus). We found that the cGMP-dependent protein kinase G (PKG) Ppa-EGL-4 in P. pacificus plays an important role in regulating the pumping rate, mouth form dimorphism, the duration of forward locomotion, and the amount of fat stored in intestine. In addition, Ppa-EGL-4 interacts with Ppa-OBI-1, a recently identified protein involved in chemosensation, to influence feeding and locomotion behavior. We also found that C. crescentus NA1000 increased pharyngeal pumping as well as fat storage in P. pacificus.

Conclusions

The PKG EGL-4 has conserved functions in regulating feeding behavior in both C. elegans and P. pacificus nematodes. The Ppa-EGL-4 also has been co-opted during evolution to regulate P. pacificus mouth form dimorphism that indirectly affect pharyngeal pumping rate. Specifically, the lack of Ppa-EGL-4 function increases pharyngeal pumping, time spent in forward locomotion, and fat storage, in part as a result of higher food intake. Ppa-OBI-1 functions upstream or parallel to Ppa-EGL-4. The beetle-associated omnivorous P. pacificus respond differently to changes in food state and food quality compared to the exclusively bacteriovorous C. elegans.  相似文献   

6.
Comprehensive studies of evolution have historically been hampered by the division among disciplines. Now, as biology moves towards an ‘‐omics’ era, it is more important than ever to tackle the evolution of function and form by considering all those research areas involved in the regulation of phenotypes. Here, we review recent attempts to establish the nematode Pristionchus pacificus as a model organism that allows integrative studies of development and evo‐devo, with ecology and population genetics. Originally developed for comparative study with the nematode Caenorhabditis elegans, P. pacificus provided insight into developmental pathways including dauer formation, vulva and gonad development, chemosensation, innate immunity and neurobiology. Its subsequent discovery across a wide geographic distribution in association with scarab beetles enabled its evaluation in a biogeographic context. Development of an evolutionary field station on La Réunion Island, where P. pacificus is present in high abundance across a number of widespread habitat types, allows examination of the microfacets of evolution – processes of natural selection, adaptation and drift among populations can now be examined in this island setting. The combination of laboratory‐based functional studies with fieldwork in P. pacificus has the long‐term prospective to provide both proximate (mechanistic) and ultimate (evolutionary and ecological) causation and might therefore help to overcome the long‐term divide between major areas in biology.  相似文献   

7.
8.
9.
In this study evolutionary host plant patterns at ranks from order to species were analysed using spatial evolutionary and ecological vicariance analysis (SEEVA), based on a multigene phylogeny of 45 ascomycete fungal species. The objective was to understand speciation events and host associations in Ophiognomonia (Gnomoniaceae). Species of this genus are perithecial fungi that occur as endophytes, pathogens, and latent saprobes on plants in the families of Betulaceae, Fagaceae, Juglandaceae, Lauraceae, Malvaceae, Platanaceae, Rosaceae, Salicaceae, and Sapindaceae. A second objective was to determine whether speciation events are influenced by host conservatism, host specialization, or host switching at different taxonomic host ranks. Host differences between sister clades were interpreted using the divergence index (D) from the SEEVA analysis, ranging from 0 for no divergence to 1 for maximum possible divergence. Several fungal subclades showed clear patterns of host order/family conservatism (D = 1.00) for hosts in Betulaceae, Fagaceae, Juglandaceae, and Rosaceae. Clear trends of host specialization at host genus and species ranks (D = 1.00) were suggested within these host families. Independent host jumps were observed for two species at the family rank and three at the order rank. As a result of this study, host specificity and specialization is hypothesized as a mechanism that can strongly contribute to speciation patterns in fungal pathogens. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 1–16.  相似文献   

10.
The nematode Pristionchus pacificus was developed as a satellite system in evolutionary developmental biology and forward and reverse genetic approaches allow a detailed comparison of various developmental processes between P. pacificus and Caenorhabditis elegans. To facilitate map-based cloning in P. pacificus, a genome map was generated including a genetic linkage map of approximately 300 molecular markers and a physical map of 10,000 BAC clones. Here, we describe the isolation and characterization of more than 40 morphological mutations that can be used as genetic markers. These mutations fall into 12 Dumpy genes and one Roller gene that represent morphological markers for all six P. pacificus chromosomes. Using an in silico approach, we identified approximately 150 hits of P. pacificus collagen genes in the available EST, BAC-end, and fosmid-end sequences. However, 1:1 orthologs could only be identified for fewer than 20 collagen genes.  相似文献   

11.
12.
13.
Many free-living nematodes, including the laboratory model organisms Caenorhabditis elegans and Pristionchus pacificus, have a choice between direct and indirect development, representing an important case of phenotypic plasticity. Under harsh environmental conditions, these nematodes form dauer larvae, which arrest development, show high resistance to environmental stress and constitute a dispersal stage. Pristionchus pacificus occurs in a strong association with scarab beetles in the wild and remains in the dauer stage on the living beetle. Here, we explored the circumstances under which P. pacificus enters and exits the dauer stage by using a natural variation approach. The analysis of survival, recovery and fitness after dauer exit of eight P. pacificus strains revealed that dauer larvae can survive for up to 1 year under experimental conditions. In a second experiment, we isolated dauer pheromones from 16 P. pacificus strains, and tested for natural variation in pheromone production and sensitivity in cross-reactivity assays. Surprisingly, 13 of the 16 strains produce a pheromone that induces the highest dauer formation in individuals of other genotypes. These results argue against a simple adaptation model for natural variation in dauer formation and suggest that strains may have evolved to induce dauer formation precociously in other strains in order to reduce the fitness of these strains. We therefore discuss intraspecific competition among genotypes as a previously unconsidered aspect of dauer formation.  相似文献   

14.
15.
16.
Tube formation is a widespread process during organogenesis. Specific cellular behaviors participate in the invagination of epithelial monolayers that form tubes. However, little is known about the evolutionary mechanisms of cell assembly into tubes during development. In Caenorhabditis elegans, the detailed step-to-step process of vulva formation has been studied in wild type and in several mutants. Here we show that cellular processes during vulva development, which involve toroidal cell formation and stacking of rings, are conserved between C. elegans and Pristionchus pacificus, two species of nematodes that diverged approximately 100 million years ago. These cellular behaviors are divided into phases of cell proliferation, short-range migration, and cell fusion that are temporally distinct in C. elegans but not in P. pacificus. Thus, we identify heterochronic changes in the cellular events of vulva development between these two species. We find that alterations in the division axes of two equivalent vulval cells from Left-Right cleavage in C. elegans to Anterior-Posterior division in P. pacificus can cause the formation of an additional eighth ring. Thus, orthogonal changes in cell division axes with alterations in the number and sequence of cell fusion events result in dramatic differences in vulval shape and in the number of rings in the species studied. Our characterization of vulva formation in P. pacificus compared to C. elegans provides an evolutionary-developmental foundation for molecular genetic analyses of organogenesis in different species within the phylum Nematoda.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号